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49. Asynchronous domain decomposition methods for
solving continuous casting problem

E. Laitinen1, A. Lapin2, J. Pieskä3

1. Introduction. The general idea of the Schwarz alternating methods is to solve
the boundary value problem restricted to each subdomain, using as the boundary conditions
the function values of the approximative solution of the neighboring subdomains. One of the
advantages of the additive Schwarz is that the solutions in the subdomains can be handled by
the different processors of a parallel computer. However, due to the mutual waits among the
processors when a synchronous method is applied, it leads to a substantial loss of computing
time. To exploit the asynchronous parallel computing capacity of a multiprocessor system, we
propose and study theoretically and numerically the asynchronous algorithms [1] for solving
nonlinear finite-dimensional problem.

2. Continuous casting problem. A continuous casting problem can be stated
mathematically as follows. Let Ω = {0 < x1 < Lx1 , 0 < x2 < Lx2} be the rectangular domain
with the boundary Γ = ∂Ω consisting of two parts: Γ1 = {x ∈ ∂Ω : x2 = 0 ∨ x2 = Lx2} and
Γ2 = {x ∈ ∂Ω\Γ1}. We assume that the domain Ω ⊂ R

2 is occupied by a thermodynamically
homogeneous and isotropic steel. We denote by H(x, t) the enthalpy related to the unit mass
and by u(x, t) the temperature for (x, t) ∈ Ω×]0, T [. We have a constitutive law

H = H(u) = ρ

∫ u

0

c(Θ)dΘ + ρL(1 − fs(u)) in Ω×]0, T [,

where ρ is density, c(u) is specific heat, L is latent heat and fs(u) is solid fraction. For
a steel casting process the graph H(u) is an increasing function R → R, involving nearly
vertical segments, which correspond to a phase transition states, namely, for u ∈ [TL, TS]
where 0 < TL < TS are melting and solidification temperatures. When a copper casting
problem is studied, the graph H(u) has a vertical segment for u = TL = TS. We denote by
H(u), u ∈ R, a maximal monotone, generally multivalued, graph.

We also suppose, that the graph H(u) is uniformly monotone: there exists a positive
constant α such that

(γ1 − γ2, u1 − u2) ≥ α(u1 − u2, u1 − u2)∀u1, u2∀γi ∈ H(ui). (2.1)

Now a continuous casting process can be described by a boundary-value problem, formally
written in the following pointwise form: find u(x, t) and γ(x, t) such that

(P)




∂γ

∂t
+ v

∂γ

∂x2
− ∆u = 0 for x ∈ Ω, t > 0,

u = z(x1, t) for x ∈ Γ1, t > 0,
∂u

∂n
+ au + b|u|3u = g, a ≥ 0, b ≥ 0, for x ∈ Γ2, t > 0,

γ = H0(x) for x ∈ Ω̄, t = 0,
γ(x, t) ∈ H(u(x, t)) for x ∈ Ω, t > 0.

Below we suppose, that the boundary temperature z(x1, t) at any point of Γ1 and for all
t ≥ 0 does not coincide with the phase transition temperature TL = TS, in other words, the
enthalpy function H has a single values at all these points. This corresponds to the physical
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meaning of the problem, because the incoming material (points x ∈ Γ1 : x2 = 0) is in liquid
state, while the outcoming material (points x ∈ Γ1 : x2 = Lx2) is in solid state. The existence
and uniqueness of a weak solution for problem (P) are proved in [6].

We approximate problem (P) by an implicit in time finite difference scheme and by a
semi-implicit finite difference scheme, using for the approximation in the space variables a
finite element method with the quadrature rules.

Let Th be a triangulation of Ω in the rectangular elements δ of dimensions h1×h2 and Vh =
{uh(x) ∈ H1(Ω) : uh(x) ∈ Q1 for all δ ∈ Th}, where Q1 is the space of bilinear functions.
By Πhv(x) we denote the Vh-interpolant of a continuous function v(x), i.e. Πhv(x) ∈ Vh and
coincides with v(x) in the mesh nodes – vertices of all δ ∈ Th. We also use an interpolation
operator Ph, which is defined as follows: for any continuous function v(x) the function Phv(x)
is piecewise linear in x1, piecewise constant in x2 and on δ = [x1, x1 + h1] × [x2, x2 + h2] it
coincides with v(x) at (x1, x2 + h2) and (x1 + h1, x2 + h2).

Let further V 0
h = {uh(x) ∈ Vh : uh(x) = 0 for all x ∈ Γ1}, V z

h = {uh(x) ∈ Vh : uh(x) =
zh for all x ∈ Γ1}. Here zh is the bilinear interpolation of z on the boundary Γ1. For any
continuous function v(x) we define the quadrature formulas:

Sδ(v) =

∫
δ

Πhvdx, SΩ(v) =
∑
δ∈Th

Sδv,

S∂δ(v) =

∫
∂δ

Πhvdx, SΓ2(v) =
∑

∂δ∈Th∩Γ̄2

S∂δ(v);

Eδ(v) =

∫
δ

Phvdx, EΩ(v) =
∑
δ∈Th

Eδ(v).

Let also ωτ = {tk = kτ, 0 ≤ k ≤ M, Mτ = T} be a uniform mesh in time on the segment
[0, T ] and ∂t̄γ = 1

τ
(γ(x, t) − γ(x, t − τ)). Then the implicit in time finite difference scheme

with up-wind approximation of the convective term v∂γ/∂x2 can be written as follows: for
all t ∈ ωτ , t > 0, find uh ∈ V z

h and γh ∈ Vh such that




SΩ(∂t̄γhηh) + EΩ(v(t)
∂γh

∂x2
ηh) + SΩ(∇uh∇ηh)

+SΓ2((auh + b|uh|3uh)ηh) = SΓ2(gηh) for all ηh ∈ V 0
h ,

γh(x, t) ∈ H(uh(x, t)) for all mesh nodes x.

(2.2)

When constructing the semi-implicit mesh scheme the term
(

∂
∂t

+ v(t) ∂
∂x2

)
γ is approx-

imate by using the characteristics of the first order differential operator (similar to [2], [3]).

Namely, if (x1, x2, t) is the mesh point on the time level t we choose x̃2 = x2 −
∫ t

t−τ

v(ξ)dξ

and approximate this term by:

(
∂

∂t
+ v(t)

∂

∂x2

)
γ ≈ 1

τ
(γ(x1, x2, t) − γ(x1, x̃2, t − τ)) . We

denote γ̃(x, t− τ) = γ(x1, x̃2, t− τ). If x̃2 < 0 then we put γ̃(x, t− τ) = γ(x1, 0, t− τ). Note,
that γ(x1, 0, t − τ) = H(z(x1, t − τ)) with single values H(z(x1, t − τ)) of H at these points,
as it was mentioned above. In what follows we use the notation dt̄γ = 1

τ
(γ(x, t)− γ̃(x, t− τ))

for the difference quotient in each mesh point on time level t.
Now, the semi-implicit finite difference scheme for problem (P) is: for all t ∈ ωτ , t >

0, find uh ∈ V z
h and γh ∈ Vh such that




SΩ(dt̄γhηh) + SΩ(∇uh∇ηh) + SΓ2((auh + b|uh|3uh)ηh)
= SΓ2(gηh) for all ηh ∈ V 0

h ,
γh(x, t) ∈ H(uh(x, t)) for all mesh nodes x.

(2.3)
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Let N0 = card V 0
h and u ∈ R

N0 be the vector of nodal values for uh ∈ V 0
h . We use

the writing uh ⇔ u for this bijection. We define N0 × N0 matrices A and B and nonlinear
operator C by the following relations: for all V 0

h � uh ⇔ u ∈ R
N0 and V 0

h � ηh ⇔ η ∈ R
N0

(Au, η) = SΩ(∇uh∇ηh) + SΓ2(auhηh),

(Bu, η) = SΩ(
1

τ
uhηh) + EΩ(v(t)

∂uh

∂x2
ηh),

(Cu, η) = SΓ2(b|uh|3uhηh).

Further we define a vector f : (f, η) = SΓ2(gηh)+SΩ(
1

τ
γ(uh(x, t−τ))ηh). Let now z̃h(x) ∈ Vh

be the function which is equal to zh on Γ̄1 and 0 for all nodes in Ω ∪ Γ2, then f0 is defined
by the equality:

(f0, η) = SΩ(∇z̃h,∇ηh) + EΩ(v(t)
∂Πh(H(z̃h))

∂x2
ηh) for all ηh ∈ V 0

h .

(Here we use again the fact, that the graph H(u) is single-valued for u = z̃h(x), when x is a
mesh point). Finally we get F = f − f0.

In these notations the algebraic form for the implicit mesh scheme (2.2) at fixed time
level is:

Au + Bγ + Cu = F, γ ∈ H(u). (2.4)

If we set (Bu, η) = SΩ( 1
τ
uhηh) and (f, η) = SΓ2(gηh)+SΩ( 1

τ
γ̃hηh), then the semi-implicit

mesh scheme (2.3) has also the algebraic form (2.5).

Au + Bγ + Cu = F, γ ∈ H(u). (2.5)

The matrices A, and B and the operators C, and H have the following properties:

A and B are M − matrices, (2.6)

A is weakly diagonally dominant in columns:

N0∑
j �=i

|aji|/aii ≤ 1∀i; (2.7)

B is strictly diagonally dominant in columns:

N0∑
j �=i

|bji|/bii ≤ β < 1∀i; (2.8)

(in fact, for the semi-implicit scheme matrix B is diagonal); the operators γ and C have the
diagonal forms:

γ(u) = (γ(u1), γ(u2), ..., γ(uN0))
t, Cu = (c1(u1), c2(u2), ..., cN (uN0))

t, (2.9)

where ci are continuous non-decreasing functions and γ(.) is maximal monotone and uniformly

monotone graph (see (2.1)). Note, that β =
τ

τ + h2
for the case of the implicit finite difference

scheme, while β = 0 for the semi-implicit scheme.
Below we use the following notations: u 
 0 ⇔ ui ≥ 0 ∀i, A 
 0 ⇔ aij ≥ 0 ∀i, j.

There exist a subsolution (u, γ):

Au + Bγ + Cu ≤ F, γ ∈ H(u), (2.10)

and a supersolution (ū, γ̄):

Aū + Bγ̄ + Cū ≥ F, γ̄ ∈ H(ū) (2.11)

for form (2.4). Under above assumptions, the following theorem can be proved [4], [5], .

Theorem 2.1 The implicit mesh scheme (2.2) and the semi-implicit mesh scheme (2.3) have
unique solutions.
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3. Asynchronous algorithms. In this section we present the asynchronous addi-
tive Schwarz alternating algorithms.

Algorithm 1 (ASM1)

1. Divide the domain Ω into p overlapping subdomains and construct approximative sub-
problems in these subdomains.

2. Solve simultaneously the subproblems in the slave processors.

3. When the local stopping criterion in a slave processor is reached, send information
about this to the master processor and keep calculating further.

4. When all slaves have finished the calculations, send the subsolutions to the master
processor for updating the information for all slave processors.

5. If the accuracy is reached, then STOP, else goto 2.

Algorithm 2 (ASM2)

1. Divide the domain Ω into p overlapping subdomains and construct approximative sub-
problems in these subdomains.

2. Solve simultaneously the subproblems in the slave processors.

3. When the local stopping criterion in a slave processor is reached, send subsolution to
the master processor and check if there is a new information from the neighboring sub-
domains. If yes, then update it and restart the calculations, otherwise keep calculating
further.

4. When all slaves have finished the calculations, send the subsolutions to the master
processor for updating the information for all slave processors.

5. If the accuracy is reached, then STOP, else goto 2.

In Algorithm 1 we do not use the newest available information. This slows convergence.
Although it is much faster to just send a signal to the master that the processor is ready
than send the whole subsolution.

In Algorithm 2 we send the subsolution to the master whenever there is an improvement.
This increase the total calculation time. On the other hand we use the newest available
information which decreases the calculation time.

Intuitively if there is a large load imbalance, i.e. if some processors have substantially
more work than others, one can expect the asynchronous versions to converge faster than the
synchronous one. It is also expected that ASM2 would be faster than ASM1.

4. Iterative methods. In this section we study the convergence of asynchronous
iterative methods. For simplicity but without loss of generality we suppose that the domain
Ω is decomposed into two overlapping subdomains Ω1 and Ω2, consisting of the elements of a
triangulation Th. We arrange the nodes of the mesh as follows. First, we enumerate the nodes
lying in the non-overlapping part of the first subdomain, namely x ∈ (Ω̄1 \ Γ̄1) \ Ω1 ∩ Ω2,
then the nodes in the overlapping zone x ∈ Ω1 ∩ Ω2 \ Γ̄1 and at last the nodes in the non-
overlappping part of the second subdomain. A vector u ∈ R

N0 , u ⇔ uh(x), takes the form
u = (u11, u12, u22)

t with the subvectors uij corresponding to enumeration of the nodes.
This decomposition implies also the partitioning of the matrices and nonlinear operators:

A = (Aij)
3
ij=1, B = (Bij)

3
ij=1, C = diag(C1, C2, C3). Note, that Aij � 0, Bij � 0 for i �= j

and the blocks A13, A31, B13, B31 are equal to zero.
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We use also the following notations:

A1
0 =

(
A11 A12

A21 A22

)
, B1

0 =

(
B11 B12

B21 B22

)
, A1

1 = diag(0, A23), B1
1 = diag(0, B23);

A2
0 =

(
A22 A23

A32 A33

)
, B2

0 =

(
B22 B23

B32 B33

)
, A2

1 = diag(A21, 0), B2
1 = diag(B21, 0);

C1 = diag(C1, C2), C2 = diag(C2, C3).

Let further u1 = (u11, u12)
t, u2 = (u12, u22)

t and similar for all other vectors.

Then ASAM has the form (4.1), (4.2):

{
A1

0v
k+1
1 + B1

0ηk+1
1 + C1vk+1

1 = F1 − A1
1u

k
2 − B1

1γk
2 ; ηk+1

1 ∈ H(vk+1
1 ),

A2
0w

k+1
2 + B2

0ξk+1
2 + C2wk+1

2 = F2 − A2
1u

k
1 − B2

1γk
1 ; ξk+1

2 ∈ H(wk+1
2 ),

(4.1)

{
uk+1

11 = vk+1
11 , uk+1

22 = wk+1
22 , uk+1

12 = αvk+1
12 + (1 − α)wk+1

12 ,

γk+1
11 = ηk+1

11 , γk+1
22 = ξk+1

22 , γk+1
12 = αηk+1

12 + (1 − α)ξk+1
12 ,

(4.2)

with an initial guess (u0, γ0) and α ∈ (0, 1).

Let now every subproblem in (4.1) be solved by using a finite number of iterations of an
inner iterative algorithm. Then we derive a two-stage additive Schwarz alternating method.

Let for i = 1, 2 Ai
0 = Mi + Ni, B

i
0 = Ki + Li be regular splittings of A and B with

diag(Ai
0) ⊆ Mi, diag(Bi

0) ⊆ Ki and Ni � 0, Li � 0. Starting from the initial guess z1,0 =
uk

1, z2,0 = uk
2, ε1,0 = γk

1 , ε2,0 = γk
2 , we solve the subproblems in (4.1) by the iterative

methods: {
M1z1,i + K1ε1,i + C1z1,i = ϕk

1 − N1z1,i−1 − L1ε1,i−1,
ε1,i ∈ H(z1,i), i = 1, . . . , p1,

(4.3)

{
M2z2,i + K2ε2,i + C2z2,i = ϕk

2 − N1z2,i−1 − L1ε2,i−1,
ε2,i ∈ H(z2,i), i = 1, . . . , p2,

(4.4)

set vk+1
1 ≡ z1,p1 , ηk+1

1 ≡ ε1,p1 ; wk+1
2 ≡ z2,p2 , ξk+1

2 ≡ ε2,p2 and then update the outer
iterations using formulas (4.2).

Here ϕk
1 = F1 − A1

1u
k
2 − B1

1γk
2 , ϕk

2 = F2 − A2
1u

k
1 − B2

1γk
1 for method ASM1, when we

calculate all subproblems by using inner iterative methods until we reach the desired accuracy
in all subproblems and after that send the calculated vk+1

1 , wk+1
2 , ηk+1

1 , ξk+1
2 to the master

processor to update the outer iterations to using formulas (4.2). On the other hand, for
method ASM2 the formulas for ϕk

i are changed to ϕk
1 = F1 − A1

1w
k+1
2 − B1

1ξk+1
2 or to ϕk

2 =
F2 − A2

1v
k+1
1 − B2

1ηk+1
1 , depending on which of subproblems was solved faster.

Theorem 4.1 Iterative method (4.3)– (4.4), (4.2) with an initial guess (u0, γ0) ∈ 〈(u, γ), (ū, γ̄)〉
converges with geometric rate of convergence:

||A0(uk+1 − u) + B0(γk+1 − γ)||1 ≤ q||A0(uk − u) + B0(γk − γ)||1, (4.5)

with q =
cAB + αβ

cAB + α
< 1, cAB = max

1≤i≤N0

aii

bii
. Here ||v||1 =

N0∑
i=1

|vi| and cAB =
2τ(1 + h2

2/h2
1)

h2(τ + h2)

for the implicit scheme, while cAB =
2τ(1 + h2

2/h2
1)

h2
2

for the semi-implicit scheme. The pa-

rameter α is from equation (2.1) and β from (2.8).



464 LAITINEN, LAPIN, PIESKÄ

5. Numerical results. To validate theoretical results the following numerical exam-
ple was considered. Let Ω =]0, 1[×]0, 1[ with the boundary Γ divided in two parts such that
ΓD = {x ∈ ∂Ω : x2 = 0 ∨ x2 = 1} and ΓN = Γ \ ΓD, moreover let T = 1. Let us consider the
case where the phase change temperature uSL = 1 and the latent heat L = 1 and the density
ρ = 1. Let the velocity be v(t) = 1

5
. Our numerical example is

∂H

∂t
− ∆K + v(t)

∂H

∂x2
= f(x; t) on Ω,

u(x1, x2; t) = (x1 − 1
2
)2 + (x2 − 1

2
)2 − 1

2
e−4t + 5

4
on ΓD,

∂u

∂n
= 1 on ΓN,

u(x1, x2; 0) = (x1 − 1
2
)2 + (x2 − 1

2
)2 + 1

2
on Ω,

where the Kirchoff’s temperature K(u) and the enthalpy H(u) are according to their defini-
tions

K(u) =

{
u if u < uSL,
2u − 1 if u ≥ uSL,

and H(u) =




2u if u < uSL,
[2uSL, 2uSL + ρL] if u = uSL,
6u − 4uSL + ρL if u > uSL.

Furthermore the known right-hand side is

f(x; t) =

{
4e−4t + 1

5
(4x2 − 2) − 4 if u < uSL,

12e−4t + 1
5
(12x2 − 6) − 8 if u ≥ uSL.

The stopping criterion of the outer iterations was the value of the L2−norm of residual
‖r‖L2 = ‖Au+Bγ +δ−f‖L2 ≤ 10−3. We use through all the calculations the decomposition
presented on the figure 5.1. The subdomain Ω1 is roughly twice as big as other subdomains.

5.1. Implicit scheme. In our first test case we changed the number of grid points
both in time and in space. We solved the problem by using the implicit scheme (2.2). The
results can be seen in table 5.1. The over is the number of grid lines in the overlapping
area. The inner iterations was performed till all of the processors have reached the desired
accuracy ‖r‖L2 ≤ 10−3. Due to this the number of inner iterations can be different for
different processors. The synchronous Schwarz alternating method is denoted by (SASM)

Grid over ASM1 ASM1 ASM2 ASM2 SASM SASM
iterations T[s] iterations T[s] iterations T[s]

65 × 65 × 128 4 17 14.8 8 11.4 16 16.0
129 × 129 × 256 8 16 92.1 11 73.0 11 146
257 × 257 × 512 16 19 1184 17 1120 9 2776

Table 5.1: The number of outer iterations and calculation times in seconds for different
grids for 4 processors; Implicit scheme.

5.2. Semi-Implicit scheme. We solve the same problem as for the implicit scheme
to compare these methods against each other. The results can be seen in table 5.2.

6. Conclusions. Two mesh schemes with two different kind of discretizations for the
convection term were considered, an implicit and a semi-implicit scheme. A model problem
was solved by using both asynchronous methods ASM1 and ASM2. It can be seen from
tables 5.1 and 5.2 that ASM2 takes fewer outer iterations than ASM1 and is thus the faster
of the these two methods.
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Figure 5.1: The decomposition used in model continuous casting problem.
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Grid over ASM1 ASM1 ASM2 ASM2 SASM SASM
iterations T[s] iterations T[s] iterations T[s]

65 × 65 × 128 4 17 12.2 13 10.6 16 15.8
129 × 129 × 256 8 16 84.5 14 65.9 11 128
257 × 257 × 512 16 19 1171 17 1056 9 2528

Table 5.2: The number of outer iterations and calculation times in seconds for different
grids for 4 processors: Semi-Implicit scheme.

Numerical results confirm the theoretical results. Our numerical results show that the
calculation times of the asynchronous methods ASM1 and ASM2 are smaller than for the
synchronous method SASM. In our opinion, ASM1 and ASM2 are faster for this kind of de-
composition. We could also gain some advantage with asynchronous methods if the processors
differ from each other.
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