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31. Successive Subspace Correction method for Singular
System of Equations

Young-Ju Lee1, Jinchao Xu2, Ludmil Zikatanov3 4

1. Introduction. The method of successive subspace corrections, an abstraction of
general iterative methods such as multigrid and Multiplicative Schwarz methods, is an algo-
rithm for finding the solution of a linear system of equations. In this paper, we shall study
in particular, Multiplicative Schwarz methods in a Hilbert space framework and present a
sharp result on the convergence of the methods for singular system of equations.

For the symmetric positive definite (SPD) problems, a variety of literatures on the con-
vergence analysis are available. Among others, we would like to refer to the upcoming paper
by Xu and Zikatanov (Refer to [3]). In [3], the convergence rate of the method of subspace
corrections has been beautifully established by introducing a new identity for the product of
nonexpansive operators.

The main result in this paper is in that we obtained an appropriate identity for the non-
SPD problems, which is suitably applied to devise or improve algorithms for singular and
especially nearly singular system of equations. The related results and the corresponding
estimate of the convergence rate of multigrid methods for singular system of equations shall
be reported in the forthcoming paper.

The rest of this paper is organized as follows. In section 2, we set up a problem and review
a successive subspace correction method in a Hilbert space setting. In section 3, we estabilsh
the convergence factor of the algorithm and present an identity for the convergence rate of
the method of successive subspace correction for singular system of equations. In section
4, we adapt our identity for Multiplicative Schwarz method and present various identities
for the special algorithm such as Gauss-Seidel and Block Gauss-Seidel method. In the final
section 5, we give some concluding remarks and future works.

2. MSC: The Method of Subspace Corrections. Let V be a Hilbert space
with an inner product (·, ·)V = (·, ·) and an induced norm ‖ · ‖V = ‖ · ‖. Let V ∗ denote the
dual space of V . We consider the following variational problem: Find u ∈ V for any given
f ∈ V ∗ such that

a(u, v) = 〈f, v〉 ∀v ∈ V (2.1)

where 〈·, ·〉 is a dual paring and a(·, ·) is a symmetric and nonnegative definite bilinear form
satisfying a(u, v) ≤ ‖a‖‖u‖‖v‖ where ‖a‖ > 0 is a constant. We shall define N and N ◦

by N = {v ∈ V : a(v, w) = 0 ∀w ∈ V } and N ◦ = {f ∈ V ∗ : 〈f, v〉 = 0 ∀v ∈ N}
respectively. The latter is often called the polar set of N . By usual convention, for any
set W ⊂ V , W⊥ shall denote the orthogonal complement of W with respect to the inner
product, (·, ·)V . Throughout this paper, we shall assume that f ∈ N ◦ and the continuous
bilinear form a(·, ·) : V ×V �→ R satisfies the following coercivity conditions on N⊥, namely:
There exists a constant α > 0 such that a(v, v) ≥ α‖v‖2. This assumption implies that the
problem (2.1) is well-posed on N⊥. We would like to remark that the problem (2.1) is not
well-posed on V in a sense that it has infinitely many solutions, namely if u is a solution
to (2.1), then u + c will be again a solution to the problem for any c ∈ N .

Now we shall discuss the method of successive subspace correction for solving 2.1. The
idea of the method of successive subspace correction is to solve the residual equation on some
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properly chosen subspaces. A decomposition of V consists of a number of closed subspaces
Vi ⊂ V, (1 ≤ i ≤ J) satisfying V =

∑J
i=1 Vi.

Associated with each subspaces Vi, we introduce a continuous bilinear form ai(·, ·) which
can be viewed as an approximation of a(·, ·) restricted on Vi. We shall assume that the
following inf-sup conditions are satisfied for all i = 1, 2, ..., J ,

inf
vi∈Vi

sup
w∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= inf

wi∈Vi

sup
v∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= αi > 0 (2.2)

and for all i = 1, 2, ..., J , there exists βi > 0 such that

a(vi, vi) ≥ βi‖vi‖2 ∀vi ∈ Vi. (2.3)

These inf-sup conditions are often known as Babuska-Brezzi conditions or B-B conditions.
(See e.g. [4]) This is equivalent to say that the approximate subspace problems and subspace
problems are uniquely solvable. While we can not in general impose the inf-sup condition for
a(·, ·) on Vi due to the fact that Vi may contain a non trivial subspace of N . In this paper,
we shall assume that a(·, ·) satisfies the B-B conditions since we are mainly concerned with
Multiplicative Schwarzs methods.

2.1. SSC: Successive Subspace Corrections.. The method of successive sub-
space corrections (MSSC) is an iterative algorithm that corrects residual equation successively
on each subspace.

Algorithm[MSSC] Let u0 ∈ V be given.

for l = 1, 2, ...

ul−1
0 = ul−1

for i = 1 : J

Let ei ∈ Vi solve

ai(ei, vi) = f(vi) − a(ul−1
i−1, vi) ∀vi ∈ Vi

ul−1
i = ul−1

i−1 + ei

endfor

ul = ul−1
J

endfor

We note that the above algorithm is well-defined, thanks to the inf-sup conditions for (2.2).
For the analysis of this algorithm, let us introduce another class of linear operators Ti : V �→
Vi defined by ai(Tiv, vi) = a(v, vi) ∀vi ∈ Vi. Again, thanks to inf-sup condition (2.2), each
Ti is well-defined and R(Ti) = Vi. In the special case when the subspace equation is solved
exactly, we shall use the notation Pi for Ti, namely Ti = Pi if ai(·, ·) = a(·, ·).

It is easy to see that for given u ∈ V a solution to (2.1),

u − ul−1
i = (I − Ti)(u − ul−1

i−1).

By a simple recursive application of the above identity, we obtain that

u − ul = EJ(u − ul−1) = ... = El
J(u − u0) (2.4)

where

EJ = (I − TJ)(I − TJ−1) · · · (I − T1). (2.5)

which is often called an error transfer operator. Because of this special form of EJ , the suc-
cessive subspace correction method is also known as the Multiplicative or Product (Schwarz)
method. The general notion of subspace corrections by means of space decomposition was
described in Xu[2].
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3. An identity for the convergence factor of MSSC. In view of (2.4), the
convergence of the method of subspace correction is equivalent to liml→∞ El

J = 0. As was
discussed before in this paper, for the case when a(·, ·) : V × V �→ R is a symmetric
positive definite bilinear form, the uniform convergence result under some natural condi-
tions on the subspace solvers Ti was established as an identity for the convergence factor
‖EJ‖a = sup‖v‖a=1 ‖EJv‖a, namely the norm of the product of nonexpansive operators.
(Refer to [3].) In our case when a(·, ·) is nonnegative definite, two types of convergences can
be considered, namely the classical convergence (or norm convergence in the space V ):

‖ul − u‖V → 0 as l → ∞

and quotient norm or energy norm convergence (Refer to [1]):

‖ul − u‖V/N → 0 as l → ∞,

where V/N is the quotient space. We shall present that the following quantity is both the
norm and the quotient norm convergence factor for the MSSC under some suitable conditions.

Definition[Convergence Factor]

‖EJ‖L(N⊥,V )a
= sup

v∈N⊥

|EJv|a
‖v‖a

In the sequel of this paper, we shall establish an identity for the convergence factor ‖EJ‖L(N⊥,V )a

under certain assumptions.

3.1. Assumptions on subspace solvers. We shall now try to derive conditions
on the subspaces and subspace solvers for the convergence of the MSSC.

First of all, we shall assume that

Assumption[A0] A decomposition of V consists of closed subspaces Vi ⊂ V, i =
1, 2, ..., J satisfying

V =
J∑

i=1

Vi.

This assumption is necessary for any quantitative convergence even for SPD problems.
(See [3] page 15.)

Assumption[A1] There exists αi > 0 such that

a(vi, vi) ≥ αi‖vi‖2 ∀vi ∈ Vi

inf
vi∈Vi

sup
w∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= inf

wi∈Vi

sup
v∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= βi > 0

This assumption implies that the subspace problems are well-posed and that Ti : Vi �→ Vi

is isomorphic for each i = 1, 2, 3, ..., J .

Assumption[A2] For each 1 ≤ i ≤ J , there exists ω ∈ (0, 2) such that

a(Tiv, Tiv) ≤ ωa(Tiv, v) ∀v ∈ V.

Let us discuss the assumption (A1) briefly for the finite dimensional case. For the notational
simplicity and invoking Riesz Representation theorem (See e.g. [5] (e.g. a(·, ·) ⇔ A and
ai(·, ·) ⇔ Ri), let us put the discretization of the system of equation (2.1) as following
operator equation: Find u ∈ R

n such that

Au = b
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R(A) and N (A) denote the range of A and kernel of A respectively. The iterative method is
based on the classical matrix splitting as follows:

A = D − L − LT

where D is the diagonal and L is the strictly lower triangular matrix. In this situation, one
can easily show that the sufficient condition that (A1) holds true is that A has a positive
diagonal and the symmetric part of the approximate subspace operators, say Ri to A is
positive definite.

Remark 3.1 For the case multigrid method with nested subspaces, with the assumption that
a(·, ·) satisfies the inf-sup condtion on R(Ti), an appropriate identity can be deriven.

3.2. On the Convergence factor of the MSSC. In this subsection, we shall
see that the convergence factor of the MSSC is given by ‖EJ‖L(N⊥,V )a

as mentioned before.
Let us begin with simple but important lemma.

Lemma 3.1 Let EJ = (I − TJ) · · · (I − T1). Then

a(EJv, EJv) ≤ ‖EJ‖L(N⊥,V )a
a(v, v) ∀v ∈ V

The following lemma and the theorem shall reveal that ‖EJ‖L(N⊥,V )a
is indeed both the

norm and quotient norm convergence rate of the MSSC.

Theorem 3.1 Assume (A1) and (A2). Then for any initial guess u0 ∈ V , the followings
hold true:

‖u − uk‖ ≤ C‖EJ‖k−1
L(RA,V )a

‖u − uk−1‖
and

‖u − uk‖V/N ≤ C‖EJ‖k
L(RA,V )a

‖u − uk−1‖V/N ,

where u is a solution to (2.1).

3.3. An identity for the convergence factor for the MSSC. We are in
a position to present the identity for the convergence factor for the MSSC. The theorem
presented below is based on the aforementioned assumptions (A0), (A1) and (A2). Let us
first introduce an operator QA : V �→ N⊥ defined by ∀v ∈ V and ∀w ∈ N⊥, (QAv, w) = (v, w)
and define Qi,A by the restriction of QA on R(Ti) = Vi. We also denote a space QAW for
any set W ⊂ V by QAW = {QAw ∈ V : w ∈ W}. We shall also introduce linear operators
Ti,A : V �→ V defined by Ti,A = Qi,ATi.

Lemma 3.2 Let us define EJ,A by EJ,A = (I − TJ,A) · · · (I − T1,A). Then,

‖EJ‖L(N⊥,V )a
= ‖EJ,A‖a = sup

v∈N⊥

‖EJ,Av‖a

‖v‖a

Proof. The proof is completed by the simple observation that

|EJv|2a = ‖QAEJv‖2
a = ‖EJ,Av‖2

a.

We would like to remark that we use the notation ‖ · ‖a rather than | · |a. This is because
EJ,A is invariant operator on N⊥ and a(·, ·) is SPD on N⊥. We shall use this rule in the
sequel of this paper if no confusion arises.

In view of the lemma (3.2), the convergence factor for the MSSC is transformed into
the norm of a product of nonexpansive operators on N⊥. Now, by this observation, the
acquisition of an identity for the convergence factor of the MSSC is in showing the three
assumptions on Ti,A’s (Refers to [3]) under which we can apply the known theory in Xu and
Zikatanov [3] and obtain the desired result.
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Lemma 3.3 Assume (A0), (A1) and (A2). Then the followings hold true.

• Each R(Ti,A) = QAR(Ti) is closed and Qi,A : R(Ti) �→ R(Ti,A) is an isomorphism.

• Each Ti,A : R(Ti,A) �→ R(Ti,A) is an isomorphism.

• The following holds true: for each 1 ≤ i ≤ J , there exists ω ∈ (0, 2) such that

a(Ti,Av, Ti,A) ≤ ωa(Ti,Av, v) ∀v ∈ V.

• N⊥ =
∑J

i=1 R(Ti,A).

Theorem 3.2 Under the assumptions (A0), (A1) and (A2), we obtain the following identity:

‖EJ‖L(N⊥,V )a
= ‖EJ,A‖a =

c0

1 + c0

where

c0 = sup
v∈N⊥

inf∑J
i=1 Ti,Avi=v

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

, ui =
∑J

j=i Tj,Avj − vi and ṽT = (v1, ..., vJ) ∈ R(T1,A) × · · · × R(TJ,A).

Proof. From the lemma (3.3) and by applying the main result theorem 4.2 (page 10) in [3],
the proof is completed.
We would like to point out that c0 is a bit different from that given in [3]. One can obtain
this by the following simple change of variable: Ti,Avi ↔ vi.

4. Multiplicative Schwarz Method. We shall devote this section to write the
expression c0 in terms of the real subspace solvers Ti instead of Ti,A. We shall first discuss
an adjoint operator of Ti.

4.1. On the adjoint operator T ∗
i . It is easy to see that it is not possible to define

a unique adjoint of Ti with respect to a(·, ·) in a classical sense due to the fact that a(·, ·) is
semi definite. While this is the fact, we shall see that we need to define the adjoint of Ti in
some sense so that we can write c0 in terms of the real subspace solvers Ti. In doing so, let us
introduce another class of operators as follows: For each 1 ≤ i ≤ J , we define Ri : Vi �→ Vi and
Qi : V �→ Vi by (Rivi, wi) = ai(vi, wi) and (Qiv, wi) = (v, wi) ∀v ∈ V, wi ∈ Vi respectively.
We would like to remark that by inf-sup condition (2.3), Ri is an isomorphism. We can then
introduce the adjoint T ∗

i and symmetrization T̄i of Ti as follows:

T ∗
i = RT

i QiA and T̄i = Ti + T ∗
i − T ∗

i Ti.

where RT
i is the adjoint of Ri with respect to (·, ·)V . We here point out that T ∗

i satisfies

a(Tiv, w) = a(v, T ∗
i w) ∀v, w ∈ V.

Correspondingly, we also define T ∗
i,A and T̄i,A by

T ∗
i,A = Q∗

i,AT ∗
i and T̄i,A = Ti,A + T ∗

i,A − T ∗
i,ATi,A.

where Q∗
i,A is the restriction of QA on R(T ∗

i ). Note that Qi,A = Q∗
i.A if R(Ti) = R(T ∗

i ).

Lemma 4.1 Assume that (A1), (A2). Then the followings hold true:

• R(Ti) = R(T ∗
i ) = R(T̄i) = Vi

• Ti, T
∗
i and T̄i are all isomorphic from Vi to itself.
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• T̄i is nonnegative on V and symmetric positive definite on Vi.

Here we provide the main theorem in the paper.

Theorem 4.1 Assume that (A0), (A1) and (A2). Then the convergence rate of subspace
correction method above is given by the following identity.

‖EJ‖L(N⊥,V )a
=

c0

1 + c0

where

c0 = sup
v∈N⊥

inf∑
i vi=v∈N⊥

inf∑
i ci=c∈N

∑J
i=1(TiT̄

−1
i T ∗

i wi, wi)a

‖v‖a

wi =
∑J

j=i(vj + cj) − T−1
i (vi + ci). and vi, ci ∈ Vi.

Proof. By theorem (3.2) and simple change of variable, it is easy to see that we can write an
identity for the convergence rate as follows:

‖EJ‖L(N⊥,V )a
=

c0

c0 + 1

where

c0 = sup
v∈N⊥

inf∑J
i=1 Tiwi=v+c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

with ui = (
∑J

j=i Tjwj −wi). Let us denote Ṽ by V1×·· ·×VJ and ṽ by (v1, ·, ·, ·, vJ) ∈ Ṽ . We

note that since T̃ : Ṽ �→ V is onto, c may vary arbitrarily in N . Let us decompose w̃ ∈ Ṽ as
followings: w̃ = ṽ + c̃ with ṽ, c̃ ∈ Ṽ and T̃ ṽ = v and T̃ c̃ = c. Thanks to this decomposition,
we see that

c0 = sup
v∈N⊥

inf
T̃ ṽ+T̃ c̃

=

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

with ui =
∑J

j=i T ∗
j (vj + cj) − (vi + ci).

Now let us set

c1 = inf
T̃ (ṽ+c̃)

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

c2 = inf
T̃ ṽ=v

inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

and we shall show that c1 = c2. It is clear that c1 ≥ c2, since if

w̃ = arg( inf
T̃ w̃=v+c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
) ∈ Ṽ

with ui =
∑

j=i Tjwj −wi. We can choose any decomposition of w̃ = ṽ + c̃ such that T̃ ṽ = v

and T̃ c̃ = c with ṽ, c̃ ∈ Ṽ . Let us show the reverse inequality. Now for any given ṽ ∈ Ṽ , let

c̃(ṽ) = arg{ inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}

with ui =
∑J

i=1 Tj(vj + cj) − (vi + ci) and now again set

ṽ = arg( inf
T̃ ṽ=v

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}
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with ui =
∑J

i=1 Tj(vj + cj(ṽ)) − (vi + ci(ṽ)). Then it is easy to see that

ṽ + c̃ = arg{ inf
T̃ ṽ=v

( inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}

with ui = (
∑J

j=i Tj(vj + cj) − (vi + ci)) and T̃ (ṽ + c̃) = v + c, which implies that c1 ≤ c2.
Hence it has been shown that

c0 = sup
v∈N⊥

inf
T̃ ṽ=v∈N⊥

inf
T̃ c̃=c∈N

∑J
i=1(T̄

−1
i,AT ∗

i,A(vi + ci), (vi + ci))a

(v, v)a

Finally, we insert an explicit expression for T̄−1
i,A as follows and obtain:

a(T̄−1
i Q−1

i,AQi,AT ∗
i v, w) = a(T̄−1

i T ∗
i v, w) ∀v ∈ N⊥ and ∀wi ∈ Vi

This completes the proof.
Let us consider some special cases : in the case we use exact solvers Ti ⇔ Pi, c0 in the
theorem (4.1) is given by

c0 = sup
v∈N⊥

inf∑
i vi=v∈N⊥

inf∑
i ci=c∈N

∑J
i=1 |Pi(

∑J
j=i+1(vj + cj)|2a
‖v‖a

(4.1)

where vi, ci ∈ Vi. and in particular, for Gauss-Seidel method, c0 is given by

c0 = sup
v∈N⊥

inf
c∈N

(S(v − c), v − c)

(v, v)a
(4.2)

where A = D − L − LT and S = LT D−1L.

5. Conclusion and extensions. We would like to remark that we can also consider
the sharp result on the convergence rate of Multigrid methods with a nested subspace decom-
position by modifying the assumption (A1) slightly, in which case, the subspace problems are
not well-posed. The theory presented in this paper can be applied to devise algorithms for
Singular system of equations and especially Nearly singular system of equations. We shall
report such related and further results in the forthcoming paper.
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