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19. A FETI-DP Corner Selection Algorithm for
three-dimensional problems

M. Lesoinne1

1. Introduction. The FETI-DP algorithm is a numerically scalable iterative domain
decomposition method for static and dynamic problems. It was first derived as an alternative
to the two-level FETI method for fourth order problems [1] and later extended to three
dimensional second order problems [5, 2]. Later, several authors have showed that FETI-DP
is scalable for scalar and mechanical problems [6] even in the presence of heterogeneities [4].

As it is derived from the two-level FETI method for fourth order problems, the choice
of corner in such problems has to follow the same rules [3], however, for second order, three
dimensional problems, the FETI-DP implementations remain flexible on the choice of corners.
However a few constraints have to be placed on their choices, so that the resulting subdomain
matrices and the resulting coarse problem is non-singular.

This article describes a robust algorithm for the selection of corners for three-dimensional
problems that guarantees that none of the matrices involved in the FETI operator will be
singular.

2. The Dual-Primal FETI Method. Let Ω be partitioned into a set of Ns, non-
overlapping subdomains (or substructures) Ωs. Select a set of points called corner points on
which the degrees of freedom will remain primal variable. The mechanical interpretation of
this particular method of mesh splitting can be viewed as making incisions into the mesh
but leaving the corner points attached. This is analogous to the “tearing” stage of FETI.
The “interconnecting” stage occurs only on the subdomain interfaces which now excludes the
corner points (see Figure 2.1). By splitting, us into two sub-vectors such that:

u =

[
ur

uc

]
=


u1

r

...
uNs

r

uc

 (2.1)

where us
r is the remaining subdomain solution vector and uc is a global/primal solution vector

over all defined corner degrees of freedom. The solution at the corner points is continuous
by definition when the solution vector is constructed in this manner. Using this notation, we
can split the subdomain stiffness matrix into:

Ks =

[
Ks

rr Ks
rc

KsT

rc Ks
cc

]
(2.2)
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Figure 2.1: Dual-Primal Mesh Partitions

Then the FETI-DP equilibrium equations can be written using the following matrix parti-
tioning where the subscripts c and r denote the corner and the remainder degrees of freedom.
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(2.3)

While the compatibility equations of interface displacements take the form:

Ns∑
s=1

Bs
rus

r = 0 (2.4)

In the preceeding, the corner stiffness matrix, Kcc =

Ns∑
s=1

BsT

c Ks
ccB

s
c is a global stiffness

quantity, Bs
c maps the local corner equation numbering to global corner equation numbering,

fs
r is the external force applied on the r degrees of freedom, BsT

r is a boolean matrix that
extracts the interface of a subdomain, and λ are the Lagrange multipliers.

Let Krr denote the block diagonal subdomain stiffness matrix restricted to the remaining,
r, points, Krc the block column vector of r-c coupling stiffness matrices, fr the block column
vector of subdomain force vectors, Kcc the global corner stiffness matrix and using the ”rc”
notation, we can rewrite the equilibrium compatibility equations in the more compact form: Krr Krc BT

r

KT
rc Kcc 0

Br 0 0

  ur

uc

λ

 =

 fr

fc

0

 (2.5)

In this formulation, the FETI-DP operator is a schur-complement obtained by eliminating the
ur and uc degrees of freedom. The elimination of the ur degrees of freedom is a subdomain per
subdomain operation, while the elimination of the uc degrees of freedom is a global operation
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that provides the FETI-DP operator with a coarse problem, coupling all the subdomains
together.

Though this approach is scalable for two-dimensional problems and for plates and shells,
it was shown that for second order three-dimensional problems, an augmented coarse problem
is necessary.

The augmented FETI-DP system is obtained by adding new coarse degrees of freedom
in the form of new Lagrange multipliers µ that are used to guarantee that at each iteration,
the residual is orthogonal to a subspace Q:

QT Bur = 0 (2.6)

Thus leading to the system of equations:
Krr Krc BtQ Bt

Kcr Kcc 0 0
QtB 0 0 0

B 0 0 0




ur

uc

µ

λ

 =


fr

fc

0

0

 (2.7)

In this set of equations, the first line is the set of subdomain by subdomain equations while
the second and third lines represent the coarse problem which is global. By doing the Schur
complement of the ur equations, we obtain the coarse matrix:

K̃cc =

(
Kcc − KcrK

−1
rr Krc −KcrK

−1
rr BtQ

−QtBK−1
rr Krc −QtBK−1

rr BtQ

)
(2.8)

3. Preliminary Observations. There are two essential conditions that the corner
selection should satisfy:

1. Each subdomain stiffness matrix should be non singular.

2. The resulting coarse problem matrix should be non singular.

Additionally, as they do not contribute significantly to the convergence rate, keeping the
number of corner nodes low reduces the overall cost of the computation and improves its
scalability.

3.1. Non-Singular K
(s)
rr . The non singularity of each subdomain K

(s)
rr can be guar-

anteed simply by making sure that every subdomain has either 3 non-colinear corner nodes
in 3 dimensions or 2 non-coincidental corner nodes in 2 dimensions.

3.2. Non-Singular K̃cc and Pivoting. As presented here, the FETI-DP method
only requires that K̃cc be non singular for the corner degrees of freedom. However this
matrix is not positive and without pivoting, zero diagonal terms could appear during the
factorization on one of the corner degree of freedom. It is to be noticed that a singularity
on one of the augmentation degree of freedom can be dealt with simply by eliminating the
augmentation degree of freedom. Such an occurrence only affects the convergence rate but
does not otherwise adversely affect the method. However it is imperative that no singularity
appears on the corner degrees of freedom.

We note that is is always possible to deal with the occurrence of a zero pivot in the
factorization of K∗

cc, the corner node portion of K̃cc by using pivoting if we assume the
global coarse matrix to be non-singular. However pivoting solver are generally complex and
usually have a slightly lower performance when compared with non-pivoting solver. Moreover,
guaranteeing that the augmentation correctly addresses the singularity in K∗

cc is by no means
a trivial task.
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Figure 4.1: Coarse Problem Mechanism

Fortunately, it can be guaranteed that no zero pivot will appear on the corner degree of
freedoms if K∗

cc is non singular. Because of this simple remark, we propose to build our corner
selection algorithm to guarantee that K∗

cc is non singular. This choice will make pivoting
unnecessary and consequently simplify the implementation and improve the performance of
the code.

3.3. Subdomains as Super-Elements. In order to facilitate the discussion of the
non-singularity of K∗

cc, we first notice that

K∗
cc =

Nsub∑
s=1

K(s)
cc − K(s)

cr K−1
rr(s)K

(s)
rc (3.1)

is an assembly of subdomain as Super-Elements where only the corner nodes are kept for
attaching subdomains together. We will assume in what follows that every subdomain created
by the decomposer is free of any internal mechanism. This is to say that in three dimensions,
each subdomain, before the application of any boundary condition has exactly 6 rigid body
modes, while in two dimensions, each subdomain has exactly 3 rigid body modes.

4. An Ad-Hoc Algorithm. In our early implementation of the FETI-DP algo-
rithm, we extended the two-dimensional view of corners to three-dimensions by using the
following algorithm:

1. Pick nodes with more than 4 neighbors as corner nodes

2. Post-guarantee the non singularity of Krr

Unfortunately this algorithm generally leads to a large number of corners and more impor-
tantly, it does not offer any guarantee as to the non-singularity of the K̃cc matrix. Figure 4.1
shows a two dimensional example. In this problem there are no points where three or more
subdomains meet. Therefore, the corners have been chosen to guarantee the non singularity
of all the subdomains – i.e. in this case, at least two corner nodes per subdomain. It can be
seen that the resulting system has a spurious mechanism.

5. A Robust Algorithm. To keep the following discussion clear, let us introduce
two important definitions:

Mechanism-Free entity: a set of elements such that when combined together, there is no
mechanism between any part of the set
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Subdomain to Subdomain Face: the set of nodes shared by two given subdomains

Under our assumption about the decomposer, every subdomain is a Mechanism-Free
entity.

It is easy to check that, using only corner nodes to attach subdomains together, two
Mechanism-Free entities can be combined into a single composite Mechanism-Free entity if
they share at least 3 non colinear corner nodes in three dimensions or 2 non colocated nodes
in two dimensions.

We also note that when a subdomain is merged with any Mechanism-Free entity, it will
guarantee that its local K

(s)
rr matrix is non singular.

Thus, by recursively combining pairs of Mechanism-Free entities until the whole set of
subdomains has been merged into a single entity, we can attain our goals, thus leading to:

Corner Selection Algorithm

1. Mark Corner Candidates on Each Subdomain Face

2. Declare Each Subdomain a Mechanism-Free Entity

3. Iterate Until all Subdomain are Assembled into a Single Entity:

(a) For each Entity, Choose 2 Preferred Neighboring Entities by:

i. Favoring Already Picked Corners.

ii. Maximizing the Area Formed by the Corner Nodes Joining the 2 En-
tities.

(b) Check if Previous Choices of Corner Create a Tie between Entities

(c) Merge Entities, Favoring Pre-Existing ties, then Paring

In the first step of the algorithm, we pick candidate corner nodes from which all corner
nodes will be chosen. In most three-dimensional problems, the faces between neighboring
subdomain are two-dimensional and therefore if we have at least three non-colinear corner
nodes on such faces, we can guarantee that we can tie each subdomain to a neighbor as a
Mechanism-Free Entity, guaranteeing by the same operation that the subdomain K

(s)
rr will

be non-singular.
We will note that there are some special cases to deal with. It is possible to have a

structure in which subdomains are attached by faces that are all two dimensions lower than
the dimension of the problem –i.e. single nodes in 2 dimensions. This means that even
when use all the potential corner nodes, it is not possible to tie two subdomains into a
single Mechanism-Free entity just by one face. In such a case, the algorithm may end up
with a final set of Mechanism-Free entities that it cannot guarantee can be tied into a single
one. In such a case, we will take all the remaining corner candidates shared by at least two
entities as corners. Assuming the global problem was mechanism-free, the resulting choice
will guarantee the non singularity of K∗

cc. If the resulting K∗
cc remains singular however, we

will conclude that the global problem was singular and an error can be generated for the
user.

6. Numerical Results. We present two numerical examples of large three-dimensional
structures. The first model is of a car engine component and has 985,340 degrees of freedom.
It is made of four noded tetrahedra (see Figure 6). The second model, illustrated in Figures 6
has 2,437,104 degrees of freedom. Both models were run first with the Ad-Hoc algorithm and
secondly with new algorithm. The results show the number of corners generated, the total
number of degrees of freedom of the coarse problem, the memory used by the K̃cc matrix,
the number of iterations and the total elapsed time for the solution.
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Figure 6.1: Engine Gas Collector Geometry

Algorithm Number of Coarse Memory Iteration Solution
Corners Pb Size Usage Count Time

Old 2,285 15,692 60MB 38 501s
New 1,571 13,679 44MB 41 490s

Table 6.1: Results for the Engine Gas Collector

Figure 6.2: Wheel Carrier Geometry
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Algorithm Number of Coarse Memory Iteration Solution
Corners Pb Size Usage Count Time

Old 3,163 28,572 154MB 104 1272s
New 2,210 25,095 118MB 104 1218s

Table 6.2: Results for the Wheel Carrier Problem

The engine component was run using 8 CPUs on an SGI Origin 2000 machine. The
results show that the number of corner nodes was reduced by roughly 30% while the total
number of degree of freedom in the coarse problem is reduced by 12.5% This reduction leads
to a saving of memory of 27% We observe a slight but increase in the number of iterations
to reach the solution, however the smaller coarse problem leads to a lower cost per iteration
and a shorter factorization of the coarse matrix. As a result, the overall timing is about 2%
faster.

The wheel carrier shows similar effects. The reduction in number of corner is again
roughly one third while the reduction in number of coarse degrees of freedom is lower. In this
case, the number of iterations remains unaffected by the number of corners and the overall
execution time is faster with the smaller coarse problem.

7. Conclusions. We have presented an algorithm for the selection of corner nodes
for three-dimensional problems for the FETI-DP algorithm. This algorithm offers the benefit
over the previous Ad-Hoc algorithm of guaranteeing that no zero pivot will appear during
the factorization of the coarse problem.

With two large examples of three-dimensional problems, it was shown that the improved
algorithm leads to a reduction of number of corners by roughly one third and is accompanied
by a very small decrease of convergence rate. However, the coarse problem matrix is smaller
and the resulting reduction in factorization cost as well as a reduction in the cost for the
solution of the coarse problem at each iteration results in a slight reduction of the overall
solution time.
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