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8. Nonlinearly Preconditioned Newton’s Method

S. H. Lui1

1. Introduction. Many challenging problems in science and engineering are large
and nonlinear. Typically they are solved by Newton’s method or its many variations. If
parallel computers are available, the solution process can be sped up by the use of domain
decomposition techniques. The traditional domain decomposition approach for nonlinear
PDEs is to use the classical Newton’s method and apply classical domain decomposition
techniques such as the additive Schwarz preconditioner ([6]) to the resulting linear systems.
This is often referred to as the Newton-Krylov-Schwarz method ([1], [2]). For most nonlinear
equations, this works very well. However, for more difficult problems, the lack of a good
initial guess means that the Newton-Krylov-Schwarz iteration may not converge or may
converge very slowly. Often, the failure may be traced to boundary layers, singularities
(corners/cusps) in the domain, and/or multi–physics domains (fluid–structure interaction
problems for instance). These problematic regions slow down global convergence or cause
stagnation in the iteration. There are of course many papers on the application of domain
decomposition methods to nonlinear problems, especially those in fluid mechanics. Many
references can be found in the proceedings of the annual conference on domain decomposition
methods, starting with [7].

Meanwhile, other workers have begun to look at applying Schwarz methods directly
on the nonlinear subdomain problems: [5], [17], [18], [11], [12], and [13]. These nonlinear
Schwarz methods have the nice property that difficult regions are isolated in a small number
of subdomains where special techniques (finer grid, asymptotics, etc.) may be brought to
bear without interfering with the convergence in other parts of the domain. However, they
still require a good initial guess for convergence and their rate of convergence is usually slow
(linear).

Recently, Cai and Keyes ([3]) have proposed a new method which is a marriage of the
Newton-Krylov-Schwarz and nonlinear Schwarz methods. Their idea is to nonlinearly pre-
condition the given nonlinear equations F (u) = 0 so that the resultant equations F(u) = 0
are closer to linear equations and so amenable to solution by Newton’s method without the
necessity of a good initial guess. The nonlinear preconditioner is a nonlinear additive Schwarz
preconditioner which requires the solution of a nonlinear subdomain PDE. The new system
F(u) = 0 is solved using a modified Newton’s method where the Jacobian has the same
form as in the Newton-Krylov-Schwarz algorithm. In particular, it reduces to the additive
Schwarz algorithm when F is linear. In [3], they illustrate the impressive robustness of this
new method with the driven cavity flow problem where Newton’s method stagnates at a
moderate Reynolds number while the nonlinearly preconditioned method is able to compute
to a considerably larger Reynolds number and still maintain fast quadratic convergence.

In this paper, we carry out some preliminary convergence analysis of this nonlinearly
preconditioned method as well as estimate crudely its radius of quadratic convergence, that
is, the radius of the ball where the iterates converge quadratically. This is compared to the
corresponding quantity for the classical Newton’s method. The discussion is in the context
of semilinear elliptic PDEs which are described in the next section. In section three, we
shall examine two types of convergence theories: classical q-quadratic convergence and r-
quadratic convergence assuming data only at the initial guess. In the last section, we carry
out some numerical experiments on some quasi-linear two-point boundary value problems
and conclude.
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2. Nonlinearly preconditioned PDEs. In this section, we apply the nonlinear
preconditioner to a class of semilinear elliptic PDEs and see its relation with the Newton-
Krylov-Schwarz and nonlinear Schwarz methods.

Let Ω be a bounded domain in RN with a smooth boundary. We consider the PDE

−�u = f(x, u) on Ω (2.1)

for the solution u ∈ H1
0 (Ω). For simplicity, we write f(u) for f(x, u). Throughout this paper,

we assume that this PDE has the unique solution u.
Suppose for some fixed integer m > 1, Ω = Ω1 ∪· · ·∪Ωm, where the subdomains Ωi have

smooth boundaries and are overlapping, meaning that H1
0 (Ω) = H1

0 (Ω1) + · · ·+ H1
0 (Ωm). In

this paper, a function in H1
0 (Ωi) is considered as a function in H1

0 (Ω) by extension by zero.
Let ‖ · ‖ be the norm on H1

0 (Ω), that is,

‖v‖2 =

∫
Ω

|∇v|2

and ‖ · ‖−1 be the norm on the dual space H−1(Ω). Let Pi denote the projection PiH
1
0 (Ω) =

H1
0 (Ωi) in the H1

0 (Ω)–norm.
It is more convenient to express the PDE as the nonlinear operator equation

F (u) ≡ u + �−1f(u) = 0,

where F : H1
0 (Ω) → H1

0 (Ω), and �−1 : H−1(Ω) → H1
0 (Ω) denotes the inverse of the Laplacian

operator on Ω with homogeneous Dirichlet boundary conditions. Define the new nonlinear
equations ([3])

F(u) ≡
m∑

i=1

Ti(u) = 0

where Ti : H1
0 (Ω) → H1

0 (Ωi) satisfies

PiF (v + Ti(v)) = 0, v ∈ H1
0 (Ω).

It is assumed that this solution exists and is unique given v. One can think of Ti(v) as
a correction to the current guess v obtained by solving a nonlinear subdomain PDE. Let
yi = Ti(v) and using the definition of F , we obtain

yi + Pi�−1f(v + yi) = −Piv (2.2)

or
−�iyi − f(v + yi) = �v on Ωi. (2.3)

This nonlinear subdomain PDE is very much like that in nonlinear Schwarz algorithms men-
tioned above.

The nonlinearly preconditioned method solves the new nonlinear equations using New-
ton’s method. That is given u(0), it produces the sequence

u(n+1) = u(n) −F ′(u(n))−1F(u(n)).

In practice, a Krylov subspace method such as GMRES ([15]) is used to solve the above linear
equations. These methods only require that we supply a procedure to compute F ′(u(n))w
for an arbitrary w ∈ H1

0 (Ω). Let us look at this in a little more detail. Let

F ′(u(n))w =
m∑

i=1

zi, zi =
∂Ti(u

(n))

∂v
w ∈ H1

0 (Ωi).
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From (2.2) and abbreviating Ti(u
(n)) by yi,

zi + �−1
i f ′(u(n) + yi)(w + zi) = −Piw

or equivalently
[−�i − f ′(u(n) + yi)] zi = [� + f ′(u(n) + yi)] w. (2.4)

This scheme will be referred to as the nonlinearly preconditioned Newton’s method (NP1).
Other variations are possible. The original scheme of Cai and Keyes (henceforth called NP0)

replaces F ′(u(n)) by ˜F ′(u(n)) whose action on w yields

[−�i − f ′(u(n))] zi = [� + f ′(u(n))] w.

Note that this has the same form as applying the additive Schwarz preconditioner to solve a
linear system for operator F ′(u(n)). While this gives a nice connection to the well-understood
Newton-Krylov-Schwarz algorithm, it does not use the most up-to-date information (Ti(u

(n)))
and this sometimes compromises the robustness of the algorithm. For some examples, see
the section on numerical experiments.

A third variation (NP2) replaces (2.4) by

[−�i − f ′(u(n) + y)] zi = [� + f ′(u(n) + y)] w

where y =

m∑
i=1

yi = F(u(n)). The reasoning here is that y incorporates information from

neighboring subdomains and may lead to a better estimate. We assume that zi exists and is
unique in all three cases.

The following is a version of the partition lemma ([14], [10]) for bounded linear operators.

Lemma 2.1 Let A be a bounded linear operator on a Hilbert space H. Suppose H = H1 +
· · · + Hm and A = A1 + · · · + Am where Hi are Hilbert spaces and Ai are bounded linear
operators on Hi. Then there is some constant Cm such that

‖A‖ ≥ Cm

m∑
i=1

‖Ai‖.

Finally, we collect together the definitions of all constants which will appear later. Let

1. r denote the radius of Br(u), the open ball with center at u;

2. α0(u
(0)) denote the eigenvalue of F ′(u(0)) = I + �−1f ′(u(0)) of smallest magnitude

and α0 = α0(u);

3. γ denote the Lipschitz constant for f ′:

‖f ′(w) − f ′(v)‖−1 ≤ γ ‖w − v‖, w, v ∈ Br(u);

4. αi denote the eigenvalue of I+�−1
i f ′(u) on Ωi of smallest magnitude with correspond-

ing eigenfunction φi ∈ H1
0 (Ωi) and |αmax| = max

1≤i≤m
|αi|;

5. αi(u
(0)) denote the eigenvalue of I+�−1

i f ′(u(0)+Ti(u
(0))) on Ωi of smallest magnitude

and |αmax(u(0))| = max
1≤i≤m

|αi(u
(0))|; note αi = αi(u);

6. ρi = sup
w∈Br(u)

‖ [I + �−1
i f ′(w)]−1Pi[I + �−1f ′(w)] ‖ and ρmax = max

1≤i≤m
ρi;

7. βi = sup
w∈Br(u)

‖ [I + �−1
i f ′(w)]−1‖ and βmax = max

1≤i≤m
βi.

Note that r must be sufficiently small so that the Newton iteration is well defined and all
iterates remain in Br(u).
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3. Convergence Theory. Newton’s method is one of the oldest, simplest and most
efficient methods for solving nonlinear equations. Most of the best algorithms today are
modifications of Newton’s method. It is not surprising that many types of convergence
theories exist, depending on the hypotheses and the convergence result. We shall examine two
such theories. Recall that iterates {e(n)} converge q-quadratically to 0 if ‖e(n+1)‖ ≤ c ‖e(n)‖2

for some constant c while it converges r-quadratically to 0 if ‖e(n)‖ ≤ cn where {cn} converges
q-quadratically to 0.

The first theory is well known and is concerned with the q-quadratic convergence of New-
ton’s method. The second theory is rather special in that all assumptions are at one point,
the initial iterate – there is no Lipschitz condition in a region which is required in the other
theory. It is unfortunate that we are unable to do much analysis for the nonlinearly precon-
ditioned method in regard to this theory and must resort to some numerical experiments.
For the first theory, we attempt to contrast the rate of convergence of the nonlinearly pre-
conditioned method versus that of the classical Newton’s method, and the radii of quadratic
convergence of the two methods.

3.1. q-quadratic convergence. The first convergence theory assumes that F ′(u)
has a bounded inverse with ‖F ′(u)−1‖ ≤ η and ‖F ′(u)−F ′(v)‖ ≤ Γ‖u−v‖ for all v ∈ Br(u).
Then the (classical) Newton iterates {u(n)} for F (u) = 0 are well defined and the error

e
(n)
N = u(n) − u satisfies

‖e(n+1)
N ‖ ≤ ηΓ ‖e(n)

N ‖2

provided the initial iterate u(0) ∈ BεN (u), where

εN = min

(
r,

1

2ηΓ

)
.

See, for instance, [4] or [9]. We use the subscript N to describe the relevant quantity for
the classical Newton’s method. Hence εN is a lower bound of the radius of the ball where
quadratic convergence takes place.

Applying the classical Newton’s method to our semilinear elliptic PDE F (u) = 0, we find
that η = |α0|−1 and for any v ∈ Br(u),

‖F ′(u) − F ′(v)‖ = ‖�−1(f ′(u) − f ′(v))‖
= ‖f ′(u) − f ′(v)‖−1

≤ γ ‖u − v‖.

Thus provided u(0) ∈ BεN (u),

‖e(n+1)
N ‖ ≤ γ

|α0|
‖e(n)

N ‖2, εN = min

(
r,

|α0|
2γ

)
. (3.1)

Now we compute these same quantities for the nonlinear preconditioned Newton’s method
which employs the classical Newton’s method to solve F(u) = 0. By some straightforward
calculations,

‖F ′(u)‖ ≥ Cm |α0|
m∑

i=1

1

|αi|

and for v ∈ Br(u),

‖F ′(u) −F ′(v)‖ ≤ γ
m∑

i=1

(1 + ρi)
2

|αi|
‖u − v‖.
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Putting everything together, we obtain the error relation for the nonlinearly preconditioned
Newton’s method

‖e(n+1)
NP1 ‖ ≤

γ
∑m

i=1
(1+ρi)

2

|αi|
Cm |α0|

∑m
i=1

1
|αi|

‖e(n)
NP1‖

2 ≤ γ

|α0|
(1 + ρmax)2

Cm
‖e(n)

NP1‖
2,

provided that u(0) ∈ BεNP1(u), where

εNP1 = min

(
r,

|α0|
2γ

Cm

(1 + ρmax)2

)
.

These can be compared directly with (3.1), unfortunately to the detriment of NP1. To obtain
a sharper estimate, we believe that it is necessary to restrict the class of PDEs. Note if f ′ ≡ 0,
then ρmax = 1 while if f ′ ≤ 0, then ρmax ≤ C for some constant C. With a suitable finite
element discretization, C is independent of the mesh size but can increase with the number
of subdomains.

It is not difficult to deduce similar estimates for NP0, the original scheme of Cai and
Keyes:

‖e(n+1)
NP0 ‖ ≤ K

(
1 + γ

m∑
i=1

βi(1 + ρi)ρi

)
‖e(n)

NP0‖
2

for some constant K.
We have examined two other r-quadratic convergence theories that are similar to the

first theory above. They differ in the Lipschitz condition ([19], [21]) or the assumption that
F ′(u(0)) is invertible (rather than F ′(u)) ([8], [20]). The results of the analysis are similar to
those of the first theory and will be reported elsewhere.

3.2. r-quadratic convergence. In this theory due to Smale [16], we no longer
assume a Lipschitz condition in a ball. Instead, all assumptions are at the initial point u(0)

of the iteration. However, we need to assume that F is an analytic operator. Define

ω(u(0)) = ‖F ′(u(0))−1F (u(0))‖ sup
j>1

∥∥∥∥F ′(u(0))−1F (j)(u(0))

j!

∥∥∥∥
1

j−1

,

where F (j) denotes the jth derivative of F . If ω(u(0)) < ω0 = .13 · · · which is a universal
constant, then Newton’s method for F (u) = 0 with initial guess u(0) converges quadratically
in the manner

‖u(n) − u‖ ≤
(

1

2

)2n−1
7 ‖u(1) − u(0)‖

4
.

This theory is extremely interesting. It is more practical in the sense that no Lipschitz
condition in a region is necessary. However, the computation of ω can be a daunting task.
For some problems, the nonlinearity is quadratic (Navier-Stokes equations, for instance) and
the supremum in the definition of ω is taken over j = 2 only.

For Newton’s method applied to our semilinear elliptic PDE,

ω(u(0)) ≤ ‖ [I + �−1f ′(u(0))]−1 [u(0) + �−1f(u(0))] ‖ sup
j>1

∥∥∥∥ f (j)(u(0))

|α0(u(0))| j!

∥∥∥∥
1

j−1

−1

which can usually be worked out in practice. However, for the nonlinear preconditioned
Newton’s method,

ω(u(0)) = ‖F ′(u(0))−1F(u(0))‖ sup
j>1

∥∥∥∥F ′(u(0))−1F (j)(u(0))

j!

∥∥∥∥
1

j−1
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N NP0 NP1 NP2
f1 19, 19 5, 7 4, 6 4, 9
f2 F, F 8, F 6, 6 6, 6
f3 12, 12 6, 6 4, 5 4, 5
f4 8, 8 F, F 4, 4 4, 4
f5 40, 40 F, F F, F F, F
f6 15, 15 9, 7 8, 6 8, 5

Table 4.1: Comparison of the number of Newton iterations to convergence. F denotes
not converged after 100 iterations. The first entry of each pair refers to the number
of iterations for an overlap of one point while the second refers to that for an overlap
of 10 points.

and we are unable to give a more explicit expression.
Another related result in [16] states that if

‖e(0)
N ‖ < χ, χ ≡ 3 −

√
7

2


sup

j>1

∥∥∥∥F ′(u)−1F (j)(u)

j!

∥∥∥∥
1

j−1




−1

, (3.2)

then the Newton iteration converges r-quadratically:

‖e(n)
N ‖ ≤

(
1

2

)2n−1

‖e(0)
N ‖.

We shall evaluate χ numerically in the next section.

4. Numerical Experiments and Discussions. We have performed some numer-
ical experiments in MATLAB to solve two-point boundary value problems of the form

−u′′ = f(x, u, u′) on (0, 1) (4.1)

with homogeneous Dirichlet boundary conditions. The ODEs are discretized using the usual
second-order finite difference scheme with step size h = 1/160 and the resultant nonlinear
equations are solved using four methods: classical Newton’s method (N), and the three vari-
ations of the nonlinearly preconditioned Newton’s methods NP0, NP1, and NP2. For the
latter three, the domain is split into two overlapping subdomains. Two domain decompo-
sitions were tested: one with an overlap of one grid point and the other with an overlap of
10 grid points. Throughout, we employ Newton’s method (rather than an inexact Newton’s
method in [3]) and a simple backtracking algorithm where the length of the Newton step
is halved until a sufficient decrease in the residual (Algorithm 6.3.5 in [4]). ([3] uses cubic
backtracking.) For a fair comparison, all methods use the same stopping criteria: the non-
linear residual ‖v′′ + f(x, v, v′)‖L2 < 10−8 and the L2-norm of the Newton step is smaller
than h2 ≈ 4 × 10−5. (It would be more natural for the nonlinearly preconditioned methods
to base the stopping criteria on F rather than on F .) The initial iterate is always the zero
function.

We display the results for six functions

1. f1 = (10 sin(10x) − u3u′)/.02;
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Figure 4.1: Solutions of boundary value problems

2. f2 = 100e.1u/(1+u′2) + 1000 sin(10x);

3. f3 = (10 cos(10x) − uu′ + eu)/.03;

4. f4 = (10 cos(10x) − uu′)/.01;

5. f5 =


u′2 − u + 1 −

(
e

−x√
ε

√
ε

+ e
−1√

ε − 1

)2

+ x(e
−x√

ε − 1)


 /ε, ε = .02;

6. f6 = −106eu;

whose solutions are illustrated in Figure 4.1. Actually we tried other functions too. Most
of them were too easy and all four methods converged rapidly. Table 4.1 shows the number
of Newton iterations for the different methods and functions. Tables 4.2 tabulates the av-
erage number of GMRES iterations to solve each global linear system (ignoring the number
of GMRES iterations in solving nonlinear subdomain problems). The number of Newton
iterations to solve each nonlinear subdomain ODE is typically four or five. Figure 4.2 shows
the convergence history of the methods for f1.

For f2, the Newton iteration failed to converge after 100 iterations. The residuals de-
creased at an extremely slow rate. NP0 also failed to converge here (for an overlap of ten) as
well as failing for f4 due to non-convergence of the nonlinear subdomain ODE solver. Here,
the algorithm neglects the most up-to-date data (Ti(u

(0))) causing one iterate to stray too far
away. For f5, Newton’s method had some difficulty but eventually converged while all three
nonlinearly preconditioned methods failed. The cause of the failures was that the Newton
iteration for the subdomain nonlinear equation did not converge, mainly because the initial
iterate is too far from the exact solution. Note that Newton’s method fails to converge if the
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N NP0 NP1 NP2
f1 3.0, 4.0 3.0, 4.0 3.0, 4.0 3.0, 4.0
f2 F, F 3.0, F 3.0, 4.0 3.0, 4.0
f3 3.0, 4.0 3.0, 4.0 3.0, 4.0 3.0, 4.0
f4 3.0, 4.0 F, F 3.0, 4.0 3.0, 4.0
f5 3.0, 4.0 F, F F, F F, F
f6 2.5, 2.9 2.9, 2.9 3.0, 3.0 3.0, 3.0

Table 4.2: Comparison of the average number of GMRES iterations per Newton step.

constant .02 in f5 is replaced by .01. Except for f5, NP1 and NP2 converge with between
1/2 and 1/4 of the iterations required by Newton’s method.

In general, the number of GMRES iterations increases from three to four as the overlap
increases from one to ten. This can be explained as follows. The matrix approximation of
F ′ has a rather simple structure:



1 *

. . . *
1 *
* 2 *

*
. . . *

* 2 *
* 1

*
. . .

* 1




with non-zero diagonal entries plus two non-zero columns indicated by ∗. Note that the
middle block corresponds to the unknowns in the overlapping region. This matrix has at
most four distinct eigenvalues, including 1 and 2. Thus GMRES converges in at most four
iterations. In the special case that the overlap is one, the the middle block does not appear
and so the matrix has a 2 × 2 block structure and has at most three distinct eigenvalues,
including 1. (Note that some authors ([3]) call this case the non-overlapping case.) We stress
that this is independent of the step size h.

Next, we numerically evaluate the radii of quadratic convergence for the first convergence
theory (q-quadratic convergence). We choose the ODE

−u′′ = f(u), f(u) ≡ −λ(u + 1)(u + 2) (4.2)

to facilitate this calculation. Initially, we take λ = 100. For this nonlinearity, γ can be
evaluated analytically, equal to 200/π2. Thus from (3.1),

εN =
|α0|π2

400
.

Note that r cannot be much larger than 1.7 because the Jacobian for N can become singular
beyond this point. As for NP1, the matrix approximation of F ′(u) is computed explicitly
while the Lipschitz constant is estimated numerically. The interval [0, 1] is divided into
160 subintervals in this calculation and overlaps of two and twenty points are considered.
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Figure 4.2: Convergence history.

The results are shown in the left diagram of Figure 4.3, which indicates that the radius of
quadratic convergence of NP1 is larger than that of Newton’s method. This observation
should be viewed with some caution because these radii are only lower bounds for the true
radii of quadratic convergence. It would be desirable to come up with a sharp upper bound
of these radii for comparison.

We also repeated the calculation for λ = 1 (right diagram in Figure 4.3). Note that for
a small overlap, the radius of quadratic convergence of NP1 is actually smaller than that of
Newton’s method. Any theory must take this into account.

Finally, we report on numerical evaluations of some quantities in Smale’s theory for
(4.2) with λ = 100. The main difficulty is in the computation of the supremum term in χ.
Currently, we compute all terms up to j = 20 in (3.2) and then extrapolate the result (a
least squares fit of a rational function) to infinity, a highly speculative process! We obtain
χ ≈ .3 for NP1 in contrast with the corresponding value of χ for N which is .07. Thus, the
estimated radius of quadratic convergence of NP1 is four to five times larger than that of the
classical Newton’s method. For λ = 1, the results are qualitative similar, in contrast with
the first convergence theory. This may indicate the result of the first theory is not as sharp
as Smale’s.

Based on these limited experiments, the classical Newton’s method does well. Note that
each iteration of a nonlinearly preconditioned method costs about twice as much as one
iteration of a classical Newton’s method in terms of execution time because of the extra
nonlinear subdomain solves. NP1 and NP2 are better than NP0 in terms of both speed and
robustness. Assuming a parallel computing environment where each processor is assigned
to a subdomain, then the addition of yi in (2.4) involves no communication while replacing
yi by y (NP2) entails communications with all adjacent neighbors. This should not be of
much concern since y has to be formed anyway because it is the nonlinear residual F(u(n)).
Clearly, many more numerical experiments on nonlinear PDEs are necessary before any
definitive conclusion can be reached.
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Figure 4.3: Numerical evaluation of εN and εNP1, the radii of q-quadratic convergence
for N and NP1 (with overlap of two, ten, and twenty points) for u(0) ∈ Br(u) and
λ = 100 (left), λ = 1 (right).

While nonlinearly preconditioned Newton’s methods are undoubtedly more robust for
some problems, they can breakdown when the classical Newton’s method works. The main
reason is they require the solution of nonlinear subdomain problems which typically involves
another Newton’s iteration where there is a chance of non-convergence. This can be due to
the lack of a good initial guess or may be the subdomain nonlinear problem has no solution
or multiple solutions! It is not difficult to write down specific examples where NP1 will fail
in the first iteration. This will be discussed in a future report.
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