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10. Direct simulation of the motion of settling ellipsoids in
Newtonian fluid

T.-W. Pan1, R. Glowinski2, D.D. Joseph3, R. Bai4

1. Introduction. In this article we first discuss the generalization of a Lagrange
multiplier based fictitious domain method [7, 10] to the simulation of the motion of particles
of general shape in a Newtonian fluid. Unlike the cases where the particles are spheres, we
attach two points, besides the center of mass, to each particle of general shape and move
them according to the rigid-body motion of the particle in order to track this motion. The
equations describing the motion of these two points are solved by a distance preserving
scheme so that rigidity can be maintained. We then apply it to simulate ellipsoids settling
in a narrow channel filled with a Newtonian fluid. In the simulations, when there is only one
ellipsoid it turns its broadside orthogonal to the stream as expected; for the two ellipsoid
case they interact with each other as observed in experiments.

2. A model problem and fictitious domain formulation for three dimen-
sional particulate flow. To perform the direct numerical simulation of the interaction
between particles and fluid, we have developed a methodology which is a combination of
a distributed Lagrange multiplier based fictitious domain (also called domain embedding)
method and operator splitting methods [6, 8, 7, 9, 10], this approach (or closely related ones
derived from it) has become the method of choice for other investigators around the world
(refs., Baaijens in [2] and Wagner et al. in [21]). In the following we are going to recall
the ideas at the basis of the above methodology, but with generalization to the motion of
a single particle of general shape in a Newtonian viscous incompressible fluid (of density ρf

and viscosity νf ) under the effect of gravity. For the situation depicted in Figure 2.1 below,
the flow is modeled by the Navier-Stokes equations, namely, (with obvious notation)

ρf

[∂u

∂t
+ (u · ∇)u

]
− νf∆u + ∇p = ρf g in (Ω \ B̄) × (0, T ), (2.1)

∇ · u = 0 in (Ω \ B̄) × (0, T ). (2.2)

u(0) = u0(x), (with ∇ · u0 = 0) (2.3)

u = g0 on Γ × (0, T ), with

∫
Γ

g0 · n dΓ = 0, (2.4)

where Γ = ∂Ω, g is gravity and n is the unit normal vector pointing outward to the flow
region. We assume a no-slip condition on γ(= ∂B) The motion of particle B satisfies the
Euler-Newton’s equations, namely

v(x, t) = V(t) + ω(t) ×
−−−→
G(t)x, ∀{x, t} ∈ B(t) × (0, T ), (2.5)

dG

dt
= V, (2.6)

Mp
dV

dt
= Mp g + FH + Fr, (2.7)
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Figure 2.1: The flow region with one particle

d(Ip ω)

dt
= TH +

−−→
Gxr × Fr, (2.8)

with hydrodynamical forces and torques given by

FH = −
∫

γ

σn dγ, TH = −(

∫
γ

−→
Gx × σn dγ), (2.9)

completed by the following initial conditions,

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.10)

Above, Mp, Ip, G, V and ω are the mass, inertia, center of mass, translation velocity of the
center of mass and angular velocity of particle B, respectively. In (2.8) we found preferable to
deal with the kinematic angular momentum Ip ω making the formulation more conservative.
In order to avoid particle-particle and particle-wall penetration which can happen in the
numerical simulation, we have introduced an artificial force Fr in (2.7) (for more details, see,
e.g., [7] and [10]) and then a torque in (2.8) acting on the point xr where Fr applies on B.

To solve system (2.1) – (2.10) we can use, for example, Arbitrary Lagrange-Euler (ALE)
methods as in [12, 14, 17], or fictitious domain methods, which allow the flow calculation on
a fixed grid, as in [6, 8, 7, 9, 10]. The fictitious domain methods that we advocate have some
common features with the immersed boundary method of Ch. Peskin (see, e.g., refs. [18, 19])
but also some significant differences in the sense that we take systematically advantage of
distributed Lagrange multipliers to force the rigid body motion inside the particle, which
seems still to be a relatively novel approach in this context, and whose possibilities have not
been fully explored yet. As with the methods in [18, 19], our approach takes advantage of
the fact that the flow can be computed on a grid which does not have to vary in time, a
substantial simplification indeed.

The principle of fictitious domain methods is simple. It consists of

• Filling the particles with a fluid having the same density and viscosity as the surround-
ing one.

• Compensating the above step by introducing, in some sense, an anti-particle of mass
(−1)Mp ρf/ρs and inertia (−1)Ip ρf/ρs, taking into account the fact that any rigid
body motion v(x, t) verifies ∇ · v = 0 and D(v) = 0 (ρs : particle density).

• Finally, imposing the rigid body velocity on B(t), namely

v(x, t) = V(t) + ω(t) ×
−−−→
G(t)x, ∀x ∈ B(t), ∀t ∈ (0, T ), (2.11)
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via a Lagrange multiplier λ supported by B(t). Vector λ forces rigidity in B(t) in the
same way that ∇p forces ∇ · v = 0 for incompressible fluids.

We obtain then an equivalent formulation of (2.1)–(2.10) defined on the whole domain, namely
For a.e. t > 0, find {u(t), p(t),V(t),G(t), ω(t), λ(t)} such that

u(t) ∈ Wg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R

3, G(t) ∈ R
3, ω(t) ∈ R

3, λ(t) ∈ Λ(t) (2.12)

and 


ρf

∫
Ω

[
∂u

∂t
+ (u · ∇)u

]
· vdx −

∫
Ω

p∇ · vdx + νf

∫
Ω

∇u : ∇vdx

+(1 − ρf

ρs
)[Mp

dV

dt
· Y +

d(Ip ω)

dt
· θ] − Fr · Y −−−→

Gxr × Fr · θ

=< λ,v − Y − θ × −→
Gx >Λ(t) +(1 − ρf

ρs
)Mp g · Y + ρf

∫
Ω

g · vdx,

∀v ∈ (H1
0 (Ω))3, ∀Y ∈ R

3, ∀θ ∈ R
3,

(2.13)

∫
Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.14)

dG

dt
= V, (2.15)

< µ,u(t) − V(t) − ω(t) ×
−−−→
G(t)x >Λ(t)= 0, ∀µ ∈ Λ(t), (2.16)

V(0) = V0, ω(0) = ω0, G(0) = G0, (2.17)

u(x, 0) = ũ0(x) =

{
u0(x), ∀x ∈ Ω\B(0),

V0 + ω0 ×
−−→
G0x, ∀x ∈ B(0),

(2.18)

with the following functional spaces

Wg0(t) = {v|v ∈ (H1(Ω))3, v = g0(t) on Γ},

L2
0(Ω) = {q|q ∈ L2(Ω),

∫
Ω

q dx = 0}, Λ(t) = (H1(B(t)))3.

In (2.12) – (2.18), only the center of mass, the translation velocity of the center of mass and
the angular velocity of the particle are considered. Knowing these two velocities and the
center of mass of the particle, one is able to translate and rotate the particle in space by
tracking two extra points x1 and x2 in each particle, which follow the rigid body motion

dxi

dt
= V(t) + ω(t) ×

−−−−→
G(t)xi, xi(0) = xi,0, i = 1, 2. (2.19)

In practice we shall track two orthogonal normalized vectors rigidly attached to the body B
and originating from the center of mass G.

3. Time and space discretization. For simplicity, we assume that Ω ⊂ R
3 is a

rectangular parallelepiped. Concerning the space approximation of problem (2.12)–(2.19) by
a finite element method, we have

Wh = {vh|vh ∈ (C0(Ω))3, vh|T ∈ (P1)
3, ∀T ∈ Th}, (3.1)

W0h = {vh|vh ∈ Wh, vh = 0 on Γ}, (3.2)

L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h}, L2

0h = {qh|qh ∈ L2
h,

∫
Ω

qh dx = 0} (3.3)
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Figure 3.1: An example of grids covering the surface of B(t)

where Th is a tetrahedrization of Ω, T2h is twice coarser than Th, and P1 is the space of
the polynomials in three variables of degree ≤ 1. A finite dimensional space approximating
Λ(t) is as follows: let {ξi}N

i=1 be a set of points from B(t) which cover B(t) (uniformly, for
example); we define then

Λh(t) = {µh|µh =
∑N

i=1
µiδ(x − ξi), µi ∈ R

3, ∀i = 1, ..., N}, (3.4)

where δ(·) is the Dirac measure at x = 0. Then we shall use < ·, · >h defined by

< µh,vh >h=
∑N

i=1
µi · vh(ξi), ∀µh ∈ Λh(t), vh ∈ Wh. (3.5)

A typical choice of points for defining (3.4) is a collection of grid points for velocity field
covered by the interior of the particle B(t) and selected points from the surface of B(t). An
example of choice of surface points is shown in Figure 3.1

Using the above finite dimensional spaces leads to the following approximation for problem
(2.12)–(2.19):

For a.e. t > 0, find u(t) ∈ Wh(t), ph(t) ∈ L2
0h(Ω), V(t) ∈ R

3, G(t) ∈ R
3, ω(t) ∈ R

3,
λh(t) ∈ Λh(t) such that



ρf

∫
Ω

[
∂uh

∂t
+ (uh · ∇)uh

]
· vdx −

∫
Ω

ph∇ · vdx + νf

∫
Ω

∇uh : ∇vdx

+(1 − ρf

ρs
)[Mp

dV

dt
· Y +

d(Ip ω)

dt
· θ] − Fr · Y −−−→

Gxr × Fr · θ

=< λh,v − Y − θ × −→
Gx >h +(1 − ρf

ρs
)Mpg · Y + ρf

∫
Ω

g · vdx,

∀v ∈ W0h, ∀Y ∈ R
3, ∀θ ∈ R

3,

(3.6)

∫
Ω

q∇ · uh(t)dx = 0, ∀q ∈ L2
h, (3.7)

uh = g0h on Γ, (3.8)

dG

dt
= V, (3.9)

dxi

dt
= V(t) + ω(t) ×

−−−−→
G(t)xi, xi(0) = xi,0, i = 1, 2, (3.10)

< µ,uh(t) − V(t) − ω(t) ×
−−−→
G(t)x >h= 0, ∀µ ∈ Λh(t), (3.11)

V(0) = V0, ω(0) = ω0, G(0) = G0, (3.12)

u(x, 0) = ũ0h(x). (3.13)
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In (3.8), g0h is an approximation of g0 belonging to γWh = {zh|zh ∈ (C0(Γ))3, zh =

z̃h|Γ with z̃h ∈ Wh} and verifying

∫
Γ

g0h · ndΓ = 0.

3.1. An operator-splitting scheme à la Marchuk-Yanenko. Many operator-
splitting schemes can be used to time-discretize (3.6)–(3.13). One of the advantage of
operator-splitting schemes is that we can decouple difficulties like (i) the incompressibil-
ity condition, (ii) the nonlinear advection term, and (iii) a rigid-body-motion projection, so
that each one of them can be handled separately, and in principle optimally. Let �t be a time
discretization step and tn+s = (n + s)�t. By an operator-splitting scheme à la Marchuk–
Yanenko as in [16], we have the following scheme after dropping some of the subscripts h
(similar ones are discussed in [6, 8, 7, 9, 10]):

u0 = ũ0, G0 = G0, V0 = V0, ω0 = ω0, x0
1 = x1,0, x0

2 = x2,0 given; (3.14)

for n ≥ 0,un(� u(tn)), Gn, Vn, ωn, xn
1 and xn

2 being known, we compute un+1/5, pn+1/5

via the solution of


ρf

∫
Ω

un+1/5 − un

�t
· vdx −

∫
Ω

pn+1/5∇ · vdx = 0, ∀v ∈ W0h,∫
Ω

q∇ · un+1/5dx = 0, ∀q ∈ L2
h,

un+1/5 ∈ Wh, un+1/5 = gn+1
0h on Γ, pn+1/5 ∈ L2

0h.

(3.15)

Next, compute un+2/5 via the solution of


∫
Ω

∂u

∂t
· vdx +

∫
Ω

(un+1/5 · ∇)u · vdx = 0,

∀v ∈ Wn+1,−
0h , a.e. on (tn, tn+1),

u(tn) = un+1/5,

u(t) ∈ Wh, u(t) = gn+1
0h on Γn+1

− × (tn, tn+1),

(3.16)

and set un+2/5 = u(tn+1).

Then, compute un+3/5 via the solution of
ρf

∫
Ω

un+3/5 − un+2/5

�t
· vdx + ανf

∫
Ω

∇un+3/5 : ∇vdx = ρf

∫
Ω

g · vdx,

∀v ∈ W0h; un+3/5 ∈ Wh, un+3/5 = gn+1
0h on Γ.

(3.17)

Now predict the motion of the center of mass and the angular velocity of the particle via

dG

dt
= V(t), (3.18)

dxi

dt
= V(t) + ω(t) ×

−−−−→
G(t)xi, for i = 1, 2, (3.19)

(1 − ρf/ρs)Mp
dV

dt
= (1 − ρf/ρs)Mpg + Fr, (3.20)

(1 − ρf/ρs)
d(Ip ω)

dt
=

−−→
Gxr × Fr, (3.21)

G(tn) = Gn, V(tn) = Vn, (Ip ω)n = (Ip ω)(tn), (3.22)

x1(t
n) = xn

1 , x2(t
n) = xn

2 ,
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for tn < t < tn+1. Then set Gn+4/5 = G(tn+1), Vn+4/5 = V(tn+1), (Ip ω)n+4/5 =

(Ip ω)(tn+1), x
n+4/5
1 = x1(t

n+1), x
n+4/5
2 = x2(t

n+1), and un+4/5 = un+3/5.

With the center Gn+4/5, x
n+4/5
1 and x

n+4/5
2 obtained at the above step, we enforce the rigid

body motion in the region B(tn+4/5) occupied by the particle




ρf

∫
Ω

un+1 − un+4/5

�t
· v dx + βνf

∫
Ω

∇un+1 : ∇v dx

+(1 − ρf

ρs
)Mp

Vn+1 − Vn+4/5

�t
· Y + (1 − ρf

ρs
)
(Ip ω)n+1 − (Ip ω)n+4/5

�t
· θ

=< λn+4/5, v − Y − θ ×
−−−−−−→
Gn+4/5x >h, ∀v ∈ W0h,Y ∈ R

3, θ ∈ R
3,

un+1 ∈ Wh,un+1 = gn+1
0h on Γ, λn+4/5 ∈ Λ

n+4/5
h ,Vn+1 ∈ R

3, ωn+1 ∈ R
3,

(3.23)

< µ, un+1 − Vn+1 − ωn+1 ×
−−−−−−→
Gn+4/5x >h= 0, ∀µ ∈ Λ

n+4/5
h . (3.24)

In (3.14)–(3.24), Γn+1
− = {x|x ∈ Γ, gn+1

0h (x) · n(x) < 0} and Wn+1,−
0h = {v|v ∈ Wh, v =

0 on Γn+1
− }, Λn+s

h = Λh(tn+s), and α+β = 1. In the numerical simulation, we usually choose
α = 1 and β = 0.

3.2. On the solution of subproblems (3.15), (3.16), (3.17), (3.18)-(3.22),
and (3.23)-(3.24). The degenerated quasi-Stokes problem (3.15) is solved by an Uzawa
preconditioned conjugate gradient algorithm as in [11], where the discrete elliptic problems
from the preconditioning are solved by a matrix-free fast solver from FISHPAK due to Adams
et al. in [1]. The advection problem (3.16) for the velocity field is solved by a wave-like
equation method as in [4, 5]. Problem (3.17) is a classical discrete elliptic problem which can
be solved by the same matrix-free fast solver.

System (3.18)-(3.22) is a system of ordinary differential equations thanks to operator
splitting. For its solution one can choose a time step smaller than �t, (i.e., we can divide
�t into smaller steps) to predict the translation velocity of the center of mass, the angular
velocity of the particle, the position of the center of mass and the regions occupied by each
particle so that the repulsion forces can be effective to prevent particle-particle and particle-
wall overlapping. At each subcycling time step, keeping the distance as constant between
the pair of points x1 and x2 in each particle is important since we are dealing with rigid
particles. We have applied the following approach to satisfy the above constraint:

• Translate x1 and x2 according to the new position of the mass center at each subcycling
time step.

• Rotate Gx1 and Gx2, the relative positions of x1 and x2 to the center of mass G, by
the following Crank-Nicolson scheme (a Runge-Kutta scheme of order 2, in fact):

Gxnew
i − Gxold

i

τ
= ω × Gxnew

i + Gxold
i

2
(3.25)

for i = 1, 2 with τ as a subcycling time step. By (3.25), we have |Gxnew
i |2 = |Gxold

i |2
for i = 1, 2 and |Gxnew

2 −Gxnew
1 |2 = |Gxold

2 −Gxold
1 |2 (i.e., scheme (3.25) is distance

and in fact shape preserving).

Remark 3.1 In order to activate the short range repulsion force, we have to find the shortest
distance between two ellipsoids. Unlike the cases for spheres, it is not trivial to locate the point
from each surface of the ellipsoid where the distance is the shortest between two ellipsoids.
There is no explicit formula for such distance. In practice, we first choose a set of points
from the surface of each ellipsoid. Then we find the point among the chosen points from each
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surface at which the distance is the shortest We repeat this (kind of relaxation) process in the
neighborhood of the newly located point on each surface of ellipsoid until convergence, usually
obtained in very few iterations.

For the shortest distance between the wall and ellipsoid, there exists an explicit formula.
To check whether two ellipsoids overlap each other, there exists an algorithm used by people
working on computer graphics and in robotics (e.g., see, [20]).

After solving (3.18)-(3.22), the rigid body motion is enforced in B(tn+4/5), via equation
(3.24). At the same time those hydrodynamical forces acting on the particles are also taken
into account in order to update the translation and angular velocities of the particles. To
solve (3.23)-(3.24), we use a conjugate gradient algorithm as discussed in [7]. Since we take
β = 0 in (3.23) for the simulation, we actually do not need to solve any non-trivial linear
systems for the velocity field; this saves a lot of computing time. To get the angular velocity
ωn+1, computed via

ωn+1 = (In+4/5
p )−1(Ip ω)n+1, (3.26)

we need to have I
n+4/5
p , the inertia of the particle B(tn+4/5). We first compute the inertia

I0 in the coordinate system attached to the particle. Then via the center of mass Gn+4/5

and points x
n+4/5
1 and x

n+4/5
2 , we have the rotation transformation Q (QQT = QT Q = Id,

detQ=1) which transforms vectors expressed in the particle frame to vectors in the flow
domain coordinate system and In+s

p = QI0Q
T . Actually in order to update matrix Q we

can also use quaternion techniques, as shown, in the review paper [3].

4. Numerical experiments.

4.1. One settling ellipsoid. The orientation of symmetric long body (loosely, a
long body is a body where one dimension is much prevailing upon the other two) in liquids
of different nature is a fundamental issue in many problems of practical interest (see [15],
and references therein). In the first test case, we consider the simulation of the motion of
a settling ellipsoid in a narrow channel of infinite length filled with a Newtonian fluid. The
computational domain is Ω = (0, 1) × (0, 0.25) × (0, 4) initially, then it moves down with the
center of the ellipsoid (see, e.g., [13] for adjusting the computational domain according to
the position of the particle). The fluid density is ρf = 1 and the fluid viscosity is νf = 0.01.
The flow field initial condition is u = 0. The three semi-axes of the ellipsoid are 0.2, 0.1
and 0.1. The initial velocity and angular velocity of the ellipsoid are 0. The density of the
ellipsoid is ρs = 1.25. Its vertical axis is the longest semi-axis (see Figure 4.1). The mesh
size for the velocity field (resp., pressure) is hv = 1/80 (resp., hp = 2hv). The time step
is �t = 0.001. The positions of the ellipsoid at different times in the channel are shown in
Figure 4.1. (The computation was performed in a moving frame of reference, so the ellipsoid
appears not moving downward.) The motion of the ellipsoid is very violent at the beginning,
it moves very close to the side wall after release from its initial position. Later on the motion
becomes periodic (see Figures 4.1 and 4.2). As expected, the ellipsoid turns its broadside to
the stream while oscillating as shown in the last three snapshots of Figure 4.1. The averaged
particle speed at the end of the simulation is about 4.256 so the particle Reynolds number
with the long axis as characteristic length is 170.24.

4.2. Two ellipsoids sedimenting side-by-side. It had been observed experi-
mentally by Joseph and Bai that when two ellipsoid-like long bodies sedimente side-by-side in
a narrow channel filled with a Newtonian fluid, they interact each other periodically as shown
in Figures 4.3. The particle Reynolds number is about 120. To reproduce this phenomenon,
we consider the following test case. The computational domain is Ω = (0, 1) × (0, 0.25) ×
(0, 4) initially, then it moves down with the lower center of two ellipsoids. The initial positions
of the centers are (0.22, 0.125, 0.75) and (0.78, 0.125, 0.75), respectively. The frames rigidly
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Figure 4.1: Position of the ellipsoid at t = 0, 0.41, 0.46, 0.56, 0.66, 0.75, 18.1, 18.18,
and 18.28 (from left to right and from top to bottom).
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Figure 4.2: Histories of the x-coordinate of the center (left) and the y-component of
the angular velocity of the ellipsoid (right) .
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Figure 4.3: Snapshots of a period of the motion of two ellipsoid-like long bodies
sedimenting in a narrow channel filled with a Newtonian fluid.

attached to the ellipsoids initially are {(cos π/3, 0, sin π/3), (0, 1, 0), (cos 5π/6, 0, sin 5π/6)}
and {(cos(−π/3), 0, sin(−π/3)), (0, 1, 0), (cos π/6, 0, sin π/6)}, respectively (see Figure 4.4).
All others parameters are as in the previous case. Averaged terminal speed is about 2.497
obtained from last 300 time steps, so the averaged particle Reynolds number is 99.88 based
on the length of the long axis (which is 0.4). In the simulation, we obtained result as seen in
Figure 4.4 similar to the one in Figure 4.3 (the computation was performed in a moving frame
of reference, so the ellipsoids appear not moving downward), which is in good agreement with
experimental results qualitatively. In Figure 4.5, we can see very strong interaction between
two ellipsoids of long axes 0.4. We also have tested the case with two ellipsoids of long axes
0.36 and found that they settle in the channel with very weak interaction between each other
(see Figure 4.5).
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