
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

11. Domain Decomposition by Stochastic Methods

Éric PEIRANO and Denis TALAY 1

1. Introduction: Monte Carlo methods for domain decomposition. As
shown by P-L. Lions in [19], stochastic representations of solutions of linear and nonlinear
partial differential equations are useful to analyze the convergence of the Schwarz alternating
method and related decomposition methods. The aim of this note is to show that one can
also deduce simulation algorithms from stochastic representations in view of decomposing do-
mains. To summarize, the Monte Carlo method allows one to compute approximate Dirichlet
conditions on the boundaries of the subdomains of the decomposition without approximating
the solution in the whole domain. One can thus easily localize problems in bounded domains,
or compute the solution outside sub–domains where the solution has strong variations or the
viscosity is small or the coefficients are discontinuous, etc. An advantage of the Monte Carlo
method is that it is extremely easy to program and the simulations can be made in parallel.

We start our discussion by recalling the use of a Monte Carlo method to approximate π.
The method is a variant of Buffon’s needle method. Draw a vertical line in the 2-D space.
Attach the extremity of a needle with one unit length to the line and choose the angle θ
between the needle and an horizontal line at random according to the uniform distribution
on

[
0, π

2

]
.

One has

E cos(θ) =
2

π

∫ π
2

0

cos(z) dz =
2

π
.

The Strong Law of Large Numbers implies that

cos(θ1) + . . . + cos(θN)

N
−−−−−→
N→+∞

2

π
a.e.,

where the θk’s are independent copies of θ, that is, they are independent random variables
and have the same probability distribution as θ (in practice one throws the needle at random
N times, or simulates that game on a computer by using random number generators).

Observe that, in order to construct our Monte Carlo method, we have written the quantity
under consideration, namely 2

π
, as the expectation of a random variable whose law is explicitly

known and easy to simulate. To solve partial differential equations the situation is usually
much more complex. We start by considering a case where the probabilistic representation is
simple, namely the heat equation in the whole space: consider a bounded continuous function
f and 


∂u

∂t
(t, x) =

1

2
∆u(t, x), 0 < t, x ∈ R

d,

u(0, x) = f(x).

Thus
u(t, x) = Gt ∗ f(x),

where Gt is the heat kernel

Gt(y) :=
1

(2π)d/2
exp

(
−|y|2

2t

)
.

Observe that Gt is the density function of the random vector
√

t G where G is a d dimensional
Gaussian vector with zero mean and unit variance. We therefore have

u(t, x) = E f(x +
√

t G). (1.1)

1INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis (France)

132 PEIRANO, TALAY

In view of the Strong Law of Large Numbers it comes

u(t, x) � 1

N

N∑
k=1

f(x +
√

t Gk),

where the Gk’s are independent copies of G. The error corresponding to N trials is

u(t, x) − 1

N

N∑
k=1

f(x +
√

t Gk),

and therefore is random. It may be large but with small probabilities only when N is large,
as shown by the Central Limit Theorem or more precise results such as the Berry–Esseen
theorem:

Theorem 1.1 (Berry–Esseen) Let (Xk)k≥1 be a sequence of independent and identically
distributed random variables with zero mean. Denote by σ the common standard deviation.
Suppose that

E |X1|3 < +∞.

Then

εN := sup
x∈R

∣∣∣∣P
(

X1 + · · · + XN

σ
√

N
≤ x

)
−
∫ x

−∞
e−u2/2 du√

2π

∣∣∣∣
≤ C E |X1|3

σ3
√

N
.

In addition, one has 0.398 ≤ C ≤ 0.8.

For a proof see, e.g., Shiryayev [24]. Using the preceding theorem one can easily estimate
the minimal number N of simulations which allows one to get a prescribed accuracy ε with
a probability larger than a prescribed confidence threshold 1 − δ.

In order to approximate the solution of a general parabolic or elliptic equation by a
Monte Carlo method we have to extend the probabilistic representation (1.1) to cases where
the partial differential equation involves a differential operator different from the Laplace
operator. Then the fundamental solution cannot be related to the law of random variables
so simple as Gaussian laws, and we need to consider the class of stochastic processes which
are solutions to stochastic differential equations. We now shortly introduce that difficult and
widely studied subject.

2. Probabilistic representation of parabolic and elliptic equations. Let
b : R

d → R
d and σj : R

d → R
d (1 ≤ j ≤ r) be smooth vector fields. Denote by σ(x) the

matrix whose column vectors are the σj(x)’s. Consider the elliptic operator

Lψ(x) :=

d∑
i=1

bi(x) ∂iψ(x) +
1

2

d∑
i,j=1

ai
j(x) ∂ijψ(x),

where
a(x) := σ(x) σ(x)t,

and the evolution problem


∂u

∂t
(t, x) = Lu(t, x), t > 0, x ∈ R

d,

u(0, x) = f(x), x ∈ R
d.

(2.1)

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 133

Suppose that (2.1) a smooth solution with bounded derivatives on [0, T] × R
d. We aim to

construct a probabilistic representation of that solution. To this end we introduce stochastic
processes. A stochastic process is a family of random variables indexed by time. The time
index may be (subsets of) R+ or N.

Our basic stochastic process will be the one dimensional Brownian motion (Wt) which
satisfies: for all integer n > 1 and all times 0 ≤ t1 < . . . < tn, the random vector (Wt1 −
Wt0 , , . . . , Wtn − Wtn−1) is Gaussian with zero mean and diagonal covariance matrix; the
diagonal terms of the covariance matrix are

E (Wtj − Wtj−1)
2 = tj − tj−1.

By definition a d dimensional Brownian motion is a process (W 1
t , . . . , W d

t) whose components
are independent one dimensional Brownian motions. Observe that we can rewrite (1.1) as

u(t, x) = E f(Wt(x)),

where W is a d dimensional Brownian motion starting from x at time 0. When the differen-
tial operator L is not the Laplace operator, one needs to consider more complex processes,
namely the solutions of stochastic differential equations. Unfortunately these objects cannot
be rigorously introduced without the heavy machinery of stochastic calculus (see, e.g., the
textbooks by Friedman [13] and Karatzas and Shreve [17]). To avoid too many complexi-
ties we limit ourselves to introduce discrete time processes which approximate the solutions
of stochastic differential equations and, owing to elementary calculations, we establish their
link with the smooth solutions of equations of the type (2.1). Let us thus onsider the Euler
scheme defined as{

Xh
0 (x) = x,

Xh
(p+1)h(x) = Xh

ph + b(Xh
ph(x)) h +

∑r
j=1 σj(X

h
ph(x))

√
hGj

p+1,
(2.2)

where h := T
M

is a discretization step of the time interval [0, T] and (Gj
p) is a family of real

valued independent Gaussian random variables with zero mean and unit variance. As the
function u(t, x) is supposed smooth with bounded derivatives and as u(0, x) = f(x) for all x
a Taylor expansion leads to

E f(Xh
T (x)) − u(T, x) =

M−1∑
p=0

E

[
u(T − (p + 1)h, Xh

(p+1)h(x)) − u(T − ph, Xh
ph(x))

]
= E

[
u(T − (p + 1)h, Xh

ph(x)) − u(T − ph, Xh
ph(x))

]
+ h

M−1∑
p=0

E

[
Lu(T − (p + 1)h, Xh

ph(x))
]

+

M−1∑
p=0

O(h2)

= h

M−1∑
p=0

E

[
Lu(T − ph, Xh

ph(x)) − ∂u

∂t
(T − ph, Xh

ph(x))

]

+

M−1∑
p=0

O(h2)

=

M−1∑
p=0

O(h2)

= O(h).

(2.3)

Thus
u(T, x) = E f(Xh

T (x)) + O(h).

134 PEIRANO, TALAY

Remark 2.1 The Euler scheme is easy to simulate since it requires Gaussian simulations
only. Noticing that

√
h Gj

p has the same Gaussian distribution function as W j
(p+1)h − W j

ph,
one can think the Euler scheme as a time discretization of the stochastic differential equation

Xt(x) = x +

∫ t

0

b(Xs(x)) ds +
d∑

j=1

∫ t

0

σj(Xs(x)) dW j
s , 0 ≤ t ≤ T, (2.4)

where
∫ t

0
σj(Xs(x)) dW j

s denotes the ‘stochastic integral of the process (σj(Xs(x))) with re-

spect to the Brownian motion (W j
s)’ whose construction requires long developments. Equa-

tion (2.4) is shown to have a unique solution (in the appropriate space of stochastic processes)
when the vector fields b and σj are Lipschitz. One can prove that the exact probabilistic rep-
resentation of (2.1) is

u(T, x) = E f(XT (x)). (2.5)

The key point of the proof is the Itô’s formula which one needs to use instead of the above
Taylor expansion: for all real valued function φ of class C1,2([0, T] × R

d) it holds that

φ(t, Xt(x)) = φ(0, x) +

∫ t

0

Lφ(s, Xs(x)) ds +

d∑
i=1

r∑
j=1

∫ t

0

∂iφ(s, Xs) σi
j(s, Xs) dW j

s .

Using that formula and deep notions of stochastic calculus, for a very large class of parabolic
problems it can be shown that, if a smooth solution exists, then it verifies the equality (2.5).
Stochastic calculus techniques may also be useful to prove the existence of smooth solutions:
for example, when the coefficients bi and σi

j are smooth, then (2.4) defines a smooth stochastic
flow of diffeomorphisms, so that the mapping x �→ Xt(x) is almost surely differentiable;
therefore, if the function f itself is smooth and its derivatives satisfy appropriate growth at
infinity conditions, the mapping x �→ E f(Xt(x)) also is differentiable: see, e.g., Kunita [18].

From the preceding consideration one deduces that

u(T, x) � 1

N

N∑
k=1

E f(Xh,k
T (x)), (2.6)

where
(Xh,k

ph (x), p = 0, . . . , M, k = 0, . . . , N)

is a family of independent trajectories of the Euler scheme. Such trajectories can be simulated
as follows: in view of (2.2), owing to d×M calls to the generator of Gaussian random variables
one obtains (Xh,1

ph (x), p = 0, . . . , M). Then time is reset to 0, and d × M new calls to the
generator allow one to obtain the second trajectory, and so on. One finally computes the
right hand side of (2.6) by averaging the end points of the N trajectories. Observe that
the simulations can be done in parallel instead of sequentially if one can distribute the
computations on a set of processors. The number of communications between the processors
is extremely weak. In counterpart one has to ensure that the processors run independent
sequences of random numbers, which may require a clever programming.

The global error of the Monte Carlo method (2.6) is

u(T, x) − 1

N

N∑
k=1

E f(Xh,k
T) = u(T, x) − E f(Xh

T (x))︸ ︷︷ ︸
=:εd(h)

+ E f(Xh
T (x)) − 1

N

N∑
k=1

E f(Xh,k
T)

︸ ︷︷ ︸
=:εs(h,N)

.

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 135

The discretization error is described by the inequality (2.3) and even more accurate estimates.
Indeed, under various sets of hypotheses including cases where f is supposed measurable only,
one has (Talay and Tubaro [27], Bally and Talay [2])

ed(h) = Cf (T, x) h + Qh(f, T, x) h2

and

|Cf (T, x)| + suph|Qh(f, T, x)| ≤ K(T)‖f‖∞
1 + ‖x‖Q

T q

for some real number Cf (T, x) which does not depend on the discretization step h. Thus
Romberg extrapolation techniques are available: for example, simulations with the discretiza-
tion steps h and h

2
lead to a second order accuracy in view of

u(T, x) −
(
2 E f(X

h/2
T (x)) − E f(Xh

T (x))
)

= 2 ed(h/2) − ed(h) = O(h2).

The statistical error s(h, N) is described by the Berry–Esseen theorem 1.1 or its variants.
Notice that (2.3) ensures that the standard deviation of Xh

T (x) and E |Xh
T (x)|3 can be bounded

from above by constants which do not depend on h, so that the time discretization step plays
no role in the choice of the number of simulations corresponding to a desired accuracy and a
prescribed confidence interval.

For parabolic and elliptic equations with Dirichlet boundary conditions (Neumann bound-
ary conditions respectively) probabilistic interpretations, and therefore Monte Carlo meth-
ods, are also available (for various probabilistic interpretations we again refer to, e.g., the
textbooks by Friedman [13] and Karatzas and Shreve [17]). We here give an example of a
parabolic problem with Dirichlet boundary conditions.

Let D be a domain in R
d, and consider


∂u

∂t
(t, x) = Lu(t, x), t > 0, x ∈ D,

u(0, x) = f(x), x ∈ D,

u(t, x) = g(x), t > 0, x ∈ ∂D,

where f(x) = g(x) on ∂D. Under various sets of hypotheses one has

u(T, x) = E [f(XT (x)) IT<τ] + E [g(Xτ (x)) IT≥τ],

where τ is the ‘first exit time of the domain’, that is,

τ := inf{0 ≤ t, Xt(x) ∈ ∂D}. (2.7)

In view of that formula it is natural to numerically approximate u(T, x) by using the Euler
scheme stopped at its ‘first exit time of the domain’ τh, that is,

τh := inf{0 ≤ p ≤ M, Xh
ph ∈ ∂D} × h. (2.8)

If the boundary condition were of Neumann type then the solution u(T, x) would have been
expressed in terms of a process whose trajectories are reflected at the boundary of the domain
and the Monte Carlo method would have involved the ‘reflected Euler scheme’. For the error
analysis of the stopped or reflected Euler scheme we refer to Gobet [14] and [15], Costantini,
Pacchiarotti and Sartoretto [9]. It is worthy to notice that Gobet shows that, to preserve a
rate of convergence of order O(h) one has to define the first exit time of the domain of the
Euler scheme in a more clever way than (2.8), and to add the simulation of random times to
the preceding algorithm; that additional simulation often has a low cost.

136 PEIRANO, TALAY

3. Application to Domain Decomposition. In view of the preceding stochastic
representations it seems interesting to study the following domain decomposition technique:
localize the problem by building artificial boundaries, and compute the solution along these
boundaries by Monte Carlo simulations. More precisely, given points xi on the artificial
boundaries, one simulate N independent trajectories issued from each xi and average the
values of the Xh,k

T (xi)’s. If the original problem is posed in a bounded domain with Dirich-
let (Neumann respectively) boundary conditions, then the simulation needs to involve the
stopped (reflected respectively) Euler scheme.

An important issue consists in estimating the error induced by the ‘stochastic approx-
imations along the artificial boundaries of the decomposed domain’. At the time being
this question is widely open. For parabolic problems corresponding to European options,
Crépey [10] has done a pionneering work. Berthelot [4] is studying the case of the varia-
tional inequalities corresponding to American options. To our knowledge no precise result is
available on the convergence rate of the global error corresponding to the combination of the
Monte Carlo method (along the artificial boundaries) and a classical deterministic method
for the numerical resolution of the original problem in each one of the sub–domains with
approximate Dirichlet conditions obtained from simulation. The Omega research group at
Inria Sophia Antipolis has obtained only very preliminary results in that direction.

4. Stochastic particle methods for nonlinear equations. Stochastic numer-
ical methods have been developed for nonlinear equations. The structure of such methods is
much more complex than for linear problems: for variational inequalities (particularly those
which describe American option prices in finance) one has to consider backward stochastic
differential equations (see, e.g., the review papers by El Karoui, Quenez and Pardoux [11],
Pardoux [21]); for Burgers equation, McKean–Vlasov–Fokker–Planck and Boltzman equa-
tions one has to consider interacting stochastic particle systems and their limits in the
‘propagation of chaos’ sense (see, e.g., Sznitman [25], Bossy and Talay [7], Jourdain [16],
Méléard [20], Fournier and Méléard [12]). For estimates on the numerical methods deduced
from such stochastic representations, see, e.g., Chevance [8], Bally and Pagès [1] for backward
stochastic differential equations; Bossy [5], Bossy and Jourdain [6], Talay [26] for interacting
stochastic particle methods (the reference [6] being a pionneering work in the analysis of the
convergence rate of stochastic particle methods for problems with boundary conditions).

We now give the example of an extension of the Sherman and Peskin [23] method for
convection-reaction–diffusion equations

∂V

∂t
(t, x) = LV (t, x) + f ◦ V (t, x),

V (0, x) = V0(x),


 (4.1)

where L is defined as

Lψ(x) := b(x) ψ′(x) +
1

2
σ(x)2 ψ′′(x),

V0 is a distribution function, and f is a smooth function such that V (t, ·) is a distribution

function for all t > 0. Set u(t, x) :=
∂V

∂x
(t, x). It solves

∂u

∂t
(t, x) =

1

2
σ2(x)

∂2u

∂x2
(t, x) + [b(x) + σ(x)σ′(x)]

∂u

∂x
(t, x) + b′(x)u(t, x)

+ f ′
(∫ x

−∞
u(t, y) dy

)
u(t, x),

u(0, x) = V ′
0 (x),




(4.2)

with, for example (Fisher equation), f(u) := u(u − 1). The numerical method described
below is based on the representation of the measure u(T, x) dx in terms of the limit of the

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 137

empirical distribution of the living particles at time T of a branching interacting particles
system.

The algorithm is as follows.

(i) At time 0, N particles with mass 1/N are located at points V −1
0

(i

N

)
, i = 1, . . . , N − 1,

and at V −1
0

(
1 − 1

2N

)
.

(ii) Let h be the time discretization step; between times kh and (k +1)h each particle living
at time kh moves independently of the other particles; its position at time (k + 1)h is

Y (k+1)h = Y kh +
{
σ
(
Y kh

)
σ′ (Y kh

)
− b

(
Y kh

)}
h + σ

(
Y kh

) (
W(k+1)h − Wh

)
+

1

2
σ
(
Y kh

)
σ′ (Y kh

) {(
W(k+1)h − Wh

)2 − h
}

.

(iii) At each time step one creates and deletes particles according to the following rule. Let
NN

(k+1)h denote the number of particles living at time (k + 1)h, and

V N ((k + 1)h, x) :=
1

N

NN
(k+1)h∑
j=1

H(x − yj
(k+1)h),

where {yj
(k+1)h} is the set of the simulated particles which are living at time (k + 1)h

and H is the Heaviside function. The particle numbered j dies with probability h
∣∣f ′ ◦

V N ((k + 1)h, yj
(k+1)h)

∣∣. If f ′ ◦ V N ((k + 1)h, yj
(k+1)h) ≥ 0, it gives birth to two particles.

Finally, the function V N is our approximation of V (T, x). The corresponding statistical error

is O 1√
N

and discretization error is O
√

h + O 1√
N

: see Régnier and Talay [22].

As the Monte Carlo methods considered in the preceding section for linear problems, the
stochastic particle methods may be used to approximate the solutions to nonlinear problems
on artificial boundaries. However a lot of work still needs to be done in that area, either to
construct probabilistic interpretations or to develop numerical methods based on the proba-
bilistic interpretations. To illustrate that point, consider the 2D Navier-Stokes equation




∂u

∂t
(t, x) = ν∆u(t, x) − (u(t, x) · ∇)u(t, x) −∇p(t, x), 0 < t, x ∈ ∂D,

div u(t, x) = 0, 0 < t, x ∈ ∂D,

u(t, x) = 0, 0 < t, x ∈ ∂D,

u(0, x) = f(x), x ∈ D.

Set ω := rot u. Benachour, Roynette and Vallois [3] have shown that∫
D̄

ω(t, x) f(x) Leb(dx) = E ω0

∫
D̄

f(x) dYt for all f ∈ C∞(D),

where (Yt) is a measure valued branching process with reflected paths. Unfortunately the
law of the branching times is quite complex (much more complex than in the case of the
Sherman and Peskin algorithm discussed above) and, at the time being, there is no efficient
way of simulating the process (Yt).

138 PEIRANO, TALAY

5. A first numerical illustration: an elliptic problem. One seeks the numer-
ical approximation of u(x, y) which satisfies{

L u = f in D, with D = [0, 2] × [0, 1],

u = g on ∂D.
(5.1)

The elliptic operator is defined as

L = Bx(x, y)
∂

∂x
+ By(x, y)

∂

∂x
+

1

2
a(x, y)

∂2

∂x2
+ c(x, y)

∂2

∂x∂y
+

1

2
b(x, y)

∂2

∂y2
. (5.2)

5.1. Problem definition. The diffusion matrix is defined by the following coeffi-
cients: a(x, y), b(x, y) and c(x, y). For b(x, y) one has

b(x, y) = (CB + 1) + (x − 1)2,

and for a(x, y), if x ≤ 1,

a(x, y) =

{
CB − CA

π
arctan[−C(x − 0.8)] +

CB + CA

2

}
b(x, y), (5.3)

else,

a(x, y) =

{
CB − CA

π
arctan[C(x − 1.2)] +

CB + CA

2

}
b(x, y), (5.4)

with CB = (K/(k π))2 and CA = (K/(l π))2. The last coefficient, c(x, y), is defined as

c(x, y) = 0.1 (x − 1)2 + 0.005. (5.5)

The values of the different constants k, l, K and C are listed in Table 5.1.

Table 5.1: Numerical values for the constants in Eqs (5.3) and (5.4).

k l K C
5 20 1 1

The drift vector is defined by its two components Bx(x, y) and By(x, y), that is,{
Bx(x, y) = K c(x, y),

By(x, y) = 0.1.
(5.6)

The function f(x, y) reads

f(x, y) = CE(x) sin(CE(x)πx) exp(−Ky) [c(x, y)K − Bx(x, y)]

+ cos(CE(x)πx) exp(−Ky)[
−KBy(x, y) − 1

2
(CE(x)π)2a(x, y) +

1

2
K2b(x, y)

]
,

with CE(x) = k for x ∈ [0; 0.8] ∪ [1.2; 2] and CE(x) = l for x ∈]0.8; 1.2[. The analytical
solution to system (5.1) is

u(x, y) = 2 + cos(CE(x)πx) exp(−Ky). (5.7)

Figure 5.1 shows the shape of both the function f(x, y) and the analytical solution u(x, y)
for the numerical values indicated in Table 5.1.

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 139

0
0.5

1

0

1

2
1

2

3

yx

u(
x,

y)

0 0.5 1 1.5 2
1

1.5

2

2.5

3
y=0.45

x

u(
x,

y)

0
0.5

1

0

1

2
−5

0

5

yx

f(
x,

y)

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

x

f(
x,

y)

y=0.5

Figure 5.1: Top: shape of the analytical solution u(x, y). Bottom: shape of f(x, y).
The results are given for the numerical values indicated in Table 5.1.

140 PEIRANO, TALAY

5.2. Deterministic method. Here, the elliptic problem is solved by classical dis-
cretisation techniques such as finite difference methods. For example, the second order deriva-
tive is approximated by (second order scheme)

∂2u

∂x2
=

1

(∆x)2
[u(x + ∆x, y) − 2u(x, y) + u(x − ∆x, y)] + o(∆x)2. (5.8)

All other derivatives are also computed with centered schemes. The computational domain
is discretized with a uniform Cartesian mesh, that is{

xi = xm + (i − 1)(xM − xm)/(Nx − 1),

yj = ym + (j − 1)(yM − ym)/(Ny − 1).
(5.9)

The domain is defined by [xm, xM]× [ym, yM] and Nx and Ny represent the total number of
discrete points in the x and y directions, respectively.

Eq. (5.1) can be written in its discretized form as (u(xi, yj) = ui,j)

fi,j = Pimjp ui−1,j+1 + Pijp ui,j+1 + Pipjp ui+1,j+1

+ Pimj ui−1,j + Pij ui,j + Pipj ui+1,j

+ Pimjm ui−1,j−1 + Pijm ui,j−1 + Pipjm ui+1,j−1,

(5.10)

where

Pimjm =
ci,j

4 ∆x ∆y
, Pijm =

bi,j

2 ∆x ∆y
−

By
i,j

2∆y
, Pipjm = −Pimjm,

Pimj =
ai,j

2(∆x)2
− Bx

i,j

2 ∆x
, Pij = − ai,j

(∆x)2
− bi,j

(∆y)2
, Pipj =

ai,j

2(∆x)2
+

Bx
i,j

2∆x
,

Pimjp = −Pimjm, Pijp =
bi,j

2∆x ∆y
+

By
i,j

2∆y
, Pipjp = Pimjm.

The linear non-symmetric (Nx−2)×(Ny−2) system is solved with a preconditioned conjugate
gradient method (NAG library, routine name: F11DEF).

The numerical error (relative error) is computed as follows (where Ou(x, y) is the ap-
proximated value of u(x, y))

e(x, y) = |u(x, y) −Ou(x, y)|, (5.11)

which gives for the maximum error

emax = sup
(x,y)∈ D

e(x, y). (5.12)

The maximum error is given, for different resolutions, in Table 5.2. The results show that (i)
only the resolution along the x axis is important, (ii) the numerical scheme is, in reality, of
first order in space. The CPU time is given for further comparison in execution time with
alternative numerical methods (Monte-Carlo). The computer used to perform the simulations
is a SUN Ultra 5/10 with a 440 MHz sparcv8plus+vis processor.

The shape of the numerical error along the x axis is displayed in Figure 5.2 for two
different resolutions. It is seen, as expected, that the maximum error is obtained in the
regions of steepest gradients.

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 141

Table 5.2: Numerical parameters and results for the deterministic method: spatial
resolution, maximum error and CPU time (in seconds).

Nx 41 401 401 4001
Ny 21 201 21 201
∆x 0.05 0.005 0.005 0.0005
∆y 0.05 0.005 0.05 0.005

emax 0.4164 0.0519 0.0519 0.0052
CPU (s) 0.1 33 0.8 744

0 0.5 1 1.5 2
10

−4

10
−3

10
−2

10
−1

10
0

numerical error, y=0.5

x

 e

 (
x,

y)

0 0.5 1 1.5 2
10

−6

10
−4

10
−2

10
0

numerical error, y=0.5

x

e
(x

,y
)

Figure 5.2: Numerical error along the x axis for y = 0.5. Two different resolutions are
displayed: (Nx, Ny) = (41, 21) (left) and (Nx, Ny) = (401, 201) (right).

5.3. Probabilistic method. The probabilistic interpretation of the solution of (5.1)
is

u(x, y) = −E

[∫ τ

0

f(Xt(x, y)) dt

]
+ E [g(Xτ (x, y))] ,

where the underlying stochastic process solves{
X1

t (x, y) = x +
∫ t

0
Bx(Xs(x, y)) ds +

∫ t

0
σ1

1(Xs(x, y)) dW 1
s +

∫ t

0
σ1

2(Xs(x, y)) dW 2
s ,

X2
t (x, y) = y +

∫ t

0
By(Xs(x, y)) dt +

∫ t

0
σ2

1(Xs(x, y)) dW 1
s +

∫ t

0
σ2

2(Xs(x, y)) dW 2
s .

Here (W 1
t , W 2

t) are two independent Wiener processes, σ is a matrix valued function such
that

σ(x, y)σ(x, y)t =

(
a(x, y) c(x, y)
c(x, y) b(x, y)

)
,

and τ is the first exit time of the domain D as defined in Section 2.

The Euler scheme reads

Xh1

(p+1)h(x, y) = Xh1

ph(x, y) + Bx(Xh
ph(x, y))h + σ1

1(Xh
ph(x, y)) (W 1

(p+1)h − W 1
ph)

+ σ1
2(Xh

ph(x, y)) (W 2
(p+1)h − W 2

ph)

Xh2

(p+1)h(x, y) = Xh2

ph(x, y) + By(Xh(x, y))h + σ2
1(Xh

ph(x, y)) (W 1
(p+1)h − W 1

ph)

+ σ2
2(Xh

ph(x, y)) (W 2
(p+1)h − W 2

ph).

142 PEIRANO, TALAY

The corresponding Monte Carlo approximation is defined as

Ou(x, y) =
1

N

N∑
k=1


−h

τh−1∑
p=0

f(Xh,k
ph (x, y)) + g(Xh,k

τh (x, y))


 .

0 0.5 1 1.5 2

10
−4

10
−3

10
−2

10
−1

numerical error, y=0.5

x

e (
x,

y)

0 0.5 1 1.5 2
1

1.5

2

2.5

3
numerical solution, y=0.5

x

u
(x

,y
)

Figure 5.3: Numerical results for a Monte-Carlo simulation with N = 104 and h =
10−4 s. The resolution is given by (Nx, Ny) = (401, 21) but the results are presented
along the x axis for y = 0.5. Left: numerical error (dashed line for the Monte-
Carlo simulation and continuous line for the deterministic method). Right: numerical
solution (◦ for the Monte-Carlo simulation and continuous line for the exact solution).

Different numerical parameters (time steps and number of trajectories) and numerical pro-
cedures (Romberg extrapolation and treatment of the killed diffusion with Brownian bridges
as proposed by Gobet [14] and [15]) were employed. In the computations presented here,
h = 10−4 and N = 104. The Euler scheme has been used with no specific treatment (the
simulation is stopped at the time step where the point leaves the domain). The numerical
error and the numerical solution are displayed in Figure 5.3. It can be observed that the
numerical error is not too sensitive to the gradients. However, each Monte-Carlo point takes
approximately 120 s of computer time.

Domain decomposition can now be performed. For example, one can consider the fol-
lowing domain: D1 = [0, 0.8] × [0, 1]. The computations can be done with the determinis-
tic method by using the results of the Monte-Carlo simulation as boundary conditions (for
x = 0.8). Figure 5.4 displays the results of such a computation.

The computation is performed for (Nx, Ny) = (81, 21) on D1. The Monte-Carlo points
used as boundary conditions are obtained from the previous results presented in Figure 5.3.

It can be concluded that, even though the domain decomposition is technically feasible,
there is no improvement for the CPU time. Indeed, for a similar precision in the domain of
steep gradients (x ∈ [0.8, 1.2]), the CPU time for one Monte-Carlo point is roughly equal to
the whole computation with the deterministic method and this for roughly 103 points.

6. A second numerical illustration: a parabolic problem. One seeks the
numerical approximation of u(x, y) which satisfies


∂u

∂t
+ L u = 0 in D := [0, T] × R,

u(T, x) = f(x),
(6.1)

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 143

0 0.5 1 1.5 2

10
−4

10
−3

10
−2

10
−1

numerical error, y=0.5

x

e (
x,

y)

0 0.5 1 1.5 2
1

1.5

2

2.5

3
numerical solution, y=0.5

x

u
(x

,y
)

Figure 5.4: Numerical results for a deterministic/Monte-Carlo simulation. For the
deterministic computation in D1, one has (Nx, Ny) = (81, 21). For the Monte-Carlo
simulation N = 104 and h = 10−4 s. The results are presented along the x axis
for y = 0.5. Left: numerical error (dashed line for the Monte-Carlo simulation and
continuous line for the deterministic method). Right: numerical solution (◦ for the
Monte-Carlo simulation and continuous line for the deterministic method).

where the elliptic operator L is defined as

L = D(t, x)
∂

∂x
+

1

2
B(t, x)

∂2

∂x2
. (6.2)

The functions D(t, x) and B(t, x) are given by

D(t, x) = cos(x) sin(x)
{
λ cos(λt) − [cos(x) exp(a(t))]2

}
, (6.3)

and
B(t, x) =

[
cos2(x) exp[a(t)]

]2
, (6.4)

respectively. The function a(t) is defined as a(t) = sin(λt) where λ is a constant (a real
positive number). The final condition, u(T, x) = f(x) is defined as

f(x) = exp

[
cos

(
1

0.1 + λx2

)]
+ exp

[
sin

(
1

0.1 + µx2

)]
, (6.5)

where µ ∈ R
+.

It can be shown that the analytical solution to system (6.1) is

u(t, x) =

∫ +∞

−∞
f
(
arctan

{
exp[a(T) − a(t)] tan(x) + y exp[a(T)]

√
T − t

})
p(y) dy, (6.6)

where p(y) is the normal centered Gaussian law,

p(y) =
1√
2π

exp(−y2/2). (6.7)

The solution can be computed numerically by resorting to a proper numerical procedure (here
a NAG routine, D01AHF, is used). Figure 6.1 shows the shape of u(t, x) for [0, 3]× [1.0, 1.4]
(f(x) is also shown).

144 PEIRANO, TALAY

0
1

2
3

1

1.2

1.4
3

3.5

4

tx

u(
x,

t)

1 1.1 1.2 1.3 1.4
3.76

3.77

3.78

3.79

3.8

3.81

x

f(
x)

Figure 6.1: Left: approximated solution of system (6.1)on [0, 3]×[1.0, 1.4] by numerical
integration of Eq. (6.6). Right: shape of the final condition, f(x).

6.1. Deterministic method. System (6.1) can be solved by a simple deterministic
method. A finite difference method is adopted where a first order approximation is used for
the time derivative and a second order approximation for the space derivatives, that is, for
example,

∂u

∂x
=

1

2∆x
[u(x + h, x) − u(x − h, x)] + o(∆x)2,

∂u

∂t
=

1

h
[u(t, x + h) − u(t, x)] + o(h).

The scheme is explicit and it reads

uk+1
i = − h

2∆x

(
Dk

i +
Bk

i

∆x

)
uk

i+1 +

(
1 +

Bk
i h

2∆x2

)
uk

i − ∆t

2∆x

(
Bk

i

∆x
− Dk

i

)
uk

i−1,

where uk
i is the approximation of u(t, x) for x = i ∆x and t = k h (∆x is the space resolution

and h is the time step). Figure 6.2 shows the result of a computation on [0, T] × [A, B] with
∆x = 2.10−2 and h = 10−3 (it has been checked by Von Neumann analysis that the scheme
is stable for these values of ∆x and h). The values of the different constants µ, λ, A, B
and T are listed in Table 6.1. As in the previous examples, the maximum numerical error is
obtained in the regions of steepest gradients, Figure 6.2.

Table 6.1: Numerical values for the numerical solution of system (6.1) on [0, T]×[A,B].

µ λ A B T
10 10 1.0 1.4 3

6.2. Probabilistic method. The preceding deterministic method requires to know
exact values, or at least good approximations, of the solution u(t, x) along the artificial bound-
aries x = A and x = B. The Monte Carlo method allows one to get good approximations for
all choice of the pair (A, B).

For all 0 ≤ t ≤ T the probabilistic interpretation of the solution to the system (6.1) is

u(t, x) = E
[
f(Xt,x

T)
]

(6.8)

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 145

0 1 2 3
0

1

2

3

4

5

6x 10
−3

t

e(
x,

t)
numerical error for x=1.2

0 1 2 3
3.4

3.5

3.6

3.7

3.8

3.9

4

t

u(
x,

t)

numerical solution for x=1.2

Figure 6.2: Numerical results for a deterministic simulation of system (6.1) on [0, 3]×
[1.0, 1.4]. The time step is h = 10−3 and the space resolution is ∆x = 2.10−2. The
results are presented along the t axis for x = 1.2. Left: numerical error. Right:
numerical solution (◦ for the simulation and continuous line for the ‘exact’ solution).

where the underlying stochastic process is the solution to

Xt,x
θ = x +

∫ θ

t

cos(Xt,x
s) sin(Xt,x

s)
{

a′(s) −
[
cos(Xt,x

s)b(s)
]2}

ds

+

∫ θ

t

cos2(Xt,x
s) b(s) dW (s), t ≤ θ ≤ T.

(6.9)

Here, a′(t) is the time derivative of a(t) and b(t) = exp[a(t)]. Notice that the solution u(t, x)
is expressed in terms of a process starting at time t, whereas in (2.5) the solution u(T, x) is
expressed in terms of a process observed at time T : that difference is due to the fact that,
in (6.1), the initial condition is fixed at time T instead of 0 and one integrates backward in
time instead of forward in time, which leads to a more convenient probabilistic interpretation
when the coefficients of L are time dependent.

The numerical solution is obtained by a Monte-Carlo simulation as done in Section 5.3.
The trajectories of (Xt) are simulated by applying the Euler scheme to Eq. (6.9). Figure
6.3 shows the result of a Monte-Carlo computation for N = 104 and h = 10−4, which gives
a numerical precision of the same order of magnitude as the computation performed with
the deterministic method, see Figure 6.2. However, for such a simulation, each Monte-Carlo
point takes approximately 30 s of computer time whereas the deterministic method requires
2 s for 6000 nodes (the value of 30 s for a Monte-Carlo point is an expected value for several
points in the domain since the computations are faster for points near the boundary), see
Table 6.2.

Table 6.2: CPU time for the deterministic and the Monte-Carlo method.

CPU time: 1 point CPU time: 6000 nodes
Monte-Carlo method 30 s
Deterministic method 2 s

7. Conclusion. It is possible to use Monte-Carlo methods for domain decomposition
problems when solving PDEs with deterministic techniques. However, the CPU time required

146 PEIRANO, TALAY

0 1 2 3
0

0.002

0.004

0.006

0.008

0.01

t

e(
x,

t)
numerical error for x=1.2

0 1 2 3
3.4

3.5

3.6

3.7

3.8

3.9

4

t

u(
x,

t)

numerical solution for x=1.2

Figure 6.3: Numerical results for a Monte-Carlo simulation with N = 104 and h =
10−4 s. The results are presented along the t axis for x = 1.2. Left: numerical error.
Right: numerical solution (◦ for the Monte-Carlo simulation and continuous line for
the ’exact’ solution).

by the Monte-Carlo methods does not make, in this sense, any improvement compared to
full deterministic methods. Monte-Carlo methods are, however, interesting in cases where
they are the only alternative (unknown boundary conditions or high dimensional problems,
for example).

A widely still open problem is to find optimal estimates for the global error of algorithms
combining deterministic methods in sub–domains and Monte Carlo methods to approximate
the solutions along the artificial boundaries produced by a domain decomposition.

REFERENCES

[1] V. Bally and G. Pagès. A quantization algorithm for solving multi-dimensional optimal stopping
problems. Submitted for publication, 2002.

[2] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential equations (I) :
convergence rate of the distribution function. Probability Theory and Related Fields, 104(1),
1996.

[3] S. Benachour, B. Roynette, and P. Vallois. Branching process associated with 2D Navier Stokes
equation. Revista Matematica Iberoamericana, 2002 (to appear).

[4] C. Berthelot. PhD thesis in preparation.

[5] M. Bossy. Optimal rate of convergence of a stochastic particle method to solutions of 1D scalar
conservation laws. Submitted for publication, 2002.

[6] M. Bossy and B. Jourdain. Rate of convergence of a stochastic particle method to solutions of
1D scalar conservation laws in a bounded interval. Annals Prob., 2002. To appear.

[7] M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers
equation. Math. Comp., 66(217):157–192, 1997.

[8] D. Chevance. Numerical methods for backward stochastic differential equations. In L. Rogers
and D. Talay, editors, Numerical Methods in Finance, Publications of the Newton Institute.
Cambridge University Press, 1997.

[9] C. Costantini, B. Pacchiarotti, and F. Sartoretto. Numerical approximation for functionals of
reflecting diffusion processes. SIAM J. Appl. Math., 58(1):73–102, 1998.

[10] S. Crépey. Contribution des Méthodes Numériques Appliquées la Finance et aux Jeux. PhD

thesis, École Polytechnique, 2000.

DOMAIN DECOMPOSITION BY STOCHASTIC METHODS 147

[11] N. El Karoui, E. Pardoux, and M-C. Quenez. Reflected backward stochastic differential equa-
tions and American options. In L. Rogers and D. Talay, editors, Numerical Methods in
Finance, Publications of the Newton Institute, pages 215–231. Cambridge University Press,
1997.

[12] N. Fournier and S. Méléard. A stochastic particle numerical method for 3D Boltzmann equations
without cutoff. Math. Comp., 71:583–604, 2002.

[13] A. Friedman. Stochastic Differential Equations and Applications, volume 1. Academic Press,
New York, 1975.

[14] E. Gobet. Weak approximation of killed diffusion using Euler schemes. Stoch. Proc. Appl.,
87:167–197, 2000.

[15] E. Gobet. Euler schemes and half-space approximation for the simulation of diffusion in a
domain. ESAIM Probability and Statistics, 5:261–297, 2001.

[16] B. Jourdain. Probabilistic characteristics method for a 1D scalar conservation law. Annals Appl.
Prob., 12(1):334–360, 2002.

[17] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, New
York, 1988.

[18] H. Kunita. Stochastic differential equations and stochastic flows of diffeomorphisms. In Ecole

d’Été de Saint-Flour XII, volume 1097 of Lecture Notes in Mathematics. Springer, 1984.

[19] P.-L. Lions. On the Schwarz alternating method. II. In T. Chan, R. Glowinski, J. Périaux,
and O. Widlund, editors, Domain Decomposition Methods, pages 47–70, Philadelphia, PA,
1989. SIAM.

[20] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean–Vlasov and
Boltzmann models. In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear
PDE’s and Numerical Applications, Lecture Notes in Math., Berlin, Heidelberg, New York,
1996. Springer Verlag.

[21] E. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of
semilinear parabolic and elliptic PDEs of second order. In L. Decreusefond, J. Gjerde,
B. Oksendal, and A. Ustünel, editors, Stochastic Analysis and Related Topics : The Geilo
Workshop, pages 79–127. Birkhäuser, 1998.

[22] H. Régnier and D. Talay. Vitesse de convergence d’une méthode particulaire stochastique avec
branchements. Note au C.R.A.S., t. 332(Série I):933–938, 2001.

[23] A. Sherman and C. Peskin. A Monte Carlo method for scalar reaction-diffusion equations. SIAM
J. Sci. Statist. Comput., 7(4):1360–1372, 1986.

[24] A. Shiryayev. Probability. Springer-Verlag New-York, 1984.

[25] A. Sznitman. Topics in propagation of chaos. In P. Hennequin, editor, Ecole d’Eté de Probabilités
de Saint-Flour XIX - 1989, volume 1464 of Lecture Notes in Math., pages 165–251, Berlin,
Heidelberg, New York, 1991. Springer-Verlag.

[26] D. Talay. Probabilistic numerical methods for partial differential equations: elements of analysis.
In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential
Equations, volume 1627 of Lecture Notes in Mathematics, pages 148–196. Springer-Verlag,
1996.

[27] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving stochastic
differential equations. Stoch. Anal. Appl., 8(4):94–120, 1990.

