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21. Experiences with FETI-DP in a Production Level Finite
Element Application

K.H. Pierson1, G.M. Reese2, P. Raghavan3

Introduction The need for predictive, qualified models of very complex structures
drives the requirements for large scale structural analysis. Reduced testing in the nuclear
weapons program is a driving factor at the DOE labs. In addition, more detailed models
reduce the need for engineering approximation, improve accuracy and often simplify model
construction. Uncertainty in model parameters (for example, variations in joint preloads)
can require multiple analyses for evaluation of a structure. Salinas was designed to meet the
needs of a very large scale, general purpose, structural dynamics analysis ([1] and [14]).

Salinas was implemented with the goal of providing predictive modeling of complex struc-
tural systems. This necessitates a full suite of structural elements and solution methods which
must perform reliably on serial and distributed memory machines. Robust solution methods
and platform portability are critical. Sensitivity analysis and optimization capabilities are
also required for application to the design and uncertainty quantification communities.

Salinas is implemented on a variety of Unix(tm) and Unix-like platforms. The core
libraries are written in C++ using MPI communications. This facilitates extensibility to
a full range of solvers, solution methods and element libraries. Scalability to thousands of
processors is achieved through application of Finite Element Tearing and Interconnecting
(FETI) methods ([2], [7], [6]). Recently, FETI-DP, the Dual-Primal Finite Element Tearing
and Interconnecting method has been implemented as the replacement to the one-level FETI
method previously used (see discussion below). High performance over a range of platforms
is obtained through effective use of optimized BLAS routines. The BLAS routines are the
building blocks for the sparse serial and parallel direct solvers used within Salinas/FETI-DP
([11], [13]).

Salinas has been used for production solutions of linear and nonlinear statics and implicit
transient dynamics, and for eigen analysis and modal superposition solutions (such as fre-
quency response, modal transient and random vibration). Extremely complex models have
been analyzed utilizing combinations of beams, shells and solids. The models contain hun-
dreds of different materials which may differ in modulus by ratios greater than 106. Models
larger than 100M degrees of freedom (dof) have been solved with demonstrated scalability
above 3000 processors. Salinas is limited to small deformation analysis, but some nonlinear
elements have been added, and more are under development.

FETI-DP Overview We present an overview of the FETI-DP method to keep this
paper self-contained. Let the global domain Ω be partitioned into a set of Ns, non-overlapping
subdomains Ωs. Select a set of corner points for each subdomain such that all zero energy
modes are suppressed if Dirichlet boundary boundary conditions are applied to the set of
corner points. The selected corner points remain primal unknowns which are used to define a
sparse coarse grid matrix for FETI-DP. See [9] and more recent work by Lesoinne appearing
in these proceedings about optimal corner point selection. Define us as the unknown solution
vector associated with subdomain s. Split the global solution vector, u, into two sub-vectors
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such that:
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where uc is a primal unknown vector over all selected corner dof and us
r is the unknown

vector for all remaining subdomain dof on subdomain s. The subdomain operator can be
partitioned into the following 2x2 block matrix.
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Global equilibrium can be written by introducing unknown Lagrange multipliers exactly like
the classical one-level FETI method.


K1
rr . . . 0 K1

rcB
1
c B1T

r

...
. . .

...
...

...

0 . . . KNs
rr KNs

rc BNs
c BNs

T

r

B1T

c K1T

rc . . . BNs
T

c KNs
T

rc

Ns∑
s=1

BsT

c Ks
ccB

s
c 0

B1
r . . . BNs

r 0 0







u1
r

...
uNs

r

uc

λ


 =




f1
r

...
fNs

r
Ns∑
s=1

BsT

c fs
c

0




(0.3)
where Bs

c maps the local corner equation numbering to global corner equation numbering,
fs

c is the external force applied on the corner dof, fs
r is the external force applied on the

remaining dof, BsT

r is a boolean matrix that extracts the interface of a subdomain, and λ are
the Lagrange multipliers. Let Krr denote the block diagonal matrix of subdomain operators
restricted to the remaining, r, points, Krc the block column vector of subdomain coupling
operator matrices and fr the block column vector of subdomain force vectors. Using the same
corner/remaining degrees of freedom matrix partitioning, we can rewrite the equilibrium
equations compactly. 
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The first equation can be solved for ur since Krr is a symmetric positive definite matrix if the
selected corner points remove all of the local singularities. Then substitute the result into the
compatablity equation (last equation in 0.4). The FETI-DP interface problem can be derived
with some algebraic manipulation where the unknowns are λ, the Lagrange multipliers and
uc, the global corner degrees of freedom.[
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the following symmetric positive definite Dual-Primal FETI interface problem which we solve
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using a preconditioned conjugate gradient method. For a detailed derivation of this equation,
please see [3]. Because of the preconditioning, the number of cg iterations (or FETI iterations)
required for the solution is independent of model size. This scaling is demonstrated in the
following sections. [

Frr + FrcK
∗−1

cc F T
rc

]
λ = dr − FrcK

∗−1

cc f∗
c (0.6)

The FETI operator defined above has an embedded coarse grid problem which can be written
in the following form.
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This new coarse problem has some highly beneficial properties over the previously defined
two-level FETI coarse problem ([5]). First, this new coarse problem is symmetric positive
definite sparse matrix. Secondly, only one forward/backward substitution has to be per-
formed per FETI iteration. The original FETI algorithms required two forward/backward
substitution operations per iteration. For a detailed derivation of FETI-DP see [9], [3], [4]
and [12]. For a detailed mathematical analysis of the dual-primal FETI method one can
review [8] and [10].

Scaled Problem Size Scalability We generate a series of model cube problems to
assess scalability of Salinas and the underlying FETI-DP linear solver. The target platforms
for assessing the scaled problem scalability of Salinas and FETI-DP are ASCI-Red, ASCI-
Cplant and ASCI-White. The model cube problem is 13x13x13 hex elements per subdomain
on ASCI-Red and ASCI-Cplant. On ASCI-White, we increased the model cube problem to
18x18x18 hex elements per subdomain to utilize the additional memory available. We scale
the model cube problem with the number of processors keeping the size of the subdomains
fixed. The number of subdomains is equal to the number of processors for all of our scalability
experiments. The eight processor model cube problem is shown in figure 0.4.

For each of the platforms we evaluate the number of FETI iterations, the solver time,
and the total time. The solver time (or FETI-DP time) represents the total time spent in
the solver. This includes setup, factorization and solve time. The total time represents the
time it takes to read the input geometry files, generate the subdomain matrices, solve a
single Ax = b problem and output the solution. The right hand side vector in all cases was a
pressure load applied to the face opposite of the face where the Dirichlet boundary conditions
were applied. The convergence tolerance was 0.001 for all platforms.

ASCI-Red The ASCI Option Red supercomputer, also known as the Intel Teraflops
machine, is the first large-scale supercomputer built mostly of commodity, commercial, off-
the-shelf (COTS) components. It has 4,536 compute and 72 service nodes each with 2
Pentium Pro processors. The system was delivered with 128 Mbytes of memory per node,
but has been upgraded to 256 Mbytes of memory per node. The Pentium Pro processor runs
at 333 MHz and has a peak floating-point rate of 333 Mflops. The system has over 1 Terabyte
of real memory, and two independent 1-Terabyte disk systems. The system’s 9216 Pentium
Pro processors are connected by a 38x32x2 custom interconnect mesh with a bandwidth of
800 MB/s.

We show scalability results for up to 1000 nodes on ASCI-Red. Scaling the problem from
sixty-four processors to one-thousand processors saw the number of iterations increase from
45 to 53. In figure 0.1 the total execution time is plotted for Salinas and FETI-DP running
on ASCI-Red.

ASCI-Cplant CPlant is a large-scale massively parallel computer built from commod-
ity computing and network computing components with a theoretical peak performance of
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Figure 0.1: Performance on ASCI-Red for the following linear system sizes (proces-
sors): 446631 (64), 1479117 (216), 3472875 (512) and 6744273 (1000)
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Figure 0.2: Performance on ASCI-Cplant for the following linear system sizes (pro-
cessors): 446631 (64), 1479117 (216), 3472875 (512) and 6744273 (1000)

1.5 Tflops. The project goal of CPlant is to develop an architecture similar to the ASCI Red
machine with entirely off-the-shelf commodity parts. Cplant uses the same partition model
as the ASCI Red machine where pools of nodes can be divided into different categories, such
as service, compute, and IO nodes.The compute processors are Compaq XP1000 worksta-
tions each containing a 500 MHz EV6 21264 microprocessor with 256 MB ECC SDRAM.
The memory subsystem includes a 64KB instruction L1 cache and 4 MB L2 cache. The EV6
can issue four instructions per clock cycle and has two floating point units which amounts
to a theoretical peak performance of 1 Gigaflops. The compute nodes are connected using
Myrinet gigabit network.

We show scalability results for up to 1000 nodes on ASCI-Cplant. Scaling the problem
from sixty-four processors to one-thousand processors saw the number of iterations increase
from 45 to 53, identical to the ASCI-Red results. In figure 0.2 the total execution time is
plotted for Salinas and FETI-DP running on ASCI-Cplant. The same model cube problem
was tested on ASCI-Red and ASCI-Cplant. Therefore, one can directly compare the scal-
ablity results for ASCI-Red in figure 0.1 versus the scalability results for ASCI-Cplant shown
in figure 0.2. Based on these results, one can conclude that the total analysis time is ap-
proximately three times faster on ASCI-Cplant compared to ASCI-Red. This can be readily
explained by the faster processors available on ASCI-Cplant. As expected, communication
affects the overall scalability for large number of processors.
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Figure 0.3: Performance on ASCI-White for the following linear system sizes (proces-
sors): 1167051 (64), 3885087 (216), 9145875 (512), 17789223 (1000), 30654939 (1728),
59707533 (3375)

ASCI-White ASCI White, the third step in a five step computational platform ladder,
is currently the world’s fastest computer with a peak speed slightly greater than 12 Tflops.
The final ASCI platform has a goal to reach 100 Tflops peak performance by 2004. ASCI
White is based upon IBM’s latest SP technology. It comprises 512 symmetric multi-processor
(SMP) machines, each possessing 16 processors, for a total of 8192 processing units. Each
node consists of IBM’s RS/6000 POWER3 symmetric multiprocessor (64 bit) architecture
and this Nighthawk-2 SMP node is a stand-alone system with its own memory, operating
system, local disk and 16 CPUs. POWER3-II processors are super-scalar pipelined 64 bit
RISC chips with two floating point units and three integer units, capable of executing up to
eight instructions per clock cycle and up to two floating point operations per cycle. At 375
Mhertz this processor is capable of producing a peak performance of 750 Mflops peak. The
one cycle latency L1 cache is 128-way set associative and consists of 64KB data cache and
a 32 KB instructions cache. The 4 MB L2 cache runs typically at half the processor speed
and uses a direct mapped approach. Each processor has 1 GigaByte of available memory.
All nodes are interconnected by the internal SP switch network, which has a bidirectional
bandwidth of 300MB/second.

We show scalability results for up to 3375 nodes on ASCI-White. Scaling the problem
from sixty-four processors to 3375 processors saw the number of iterations increase from 58
to 71. In figure 0.3 the total execution time is plotted for Salinas and FETI-DP running on
ASCI-White.

Coarse Grid Solution Options We describe two FETI coarse grid solver technolo-
gies which are implemented in Salinas. The FETI-DP coarse grid as described above is a
sparse matrix that couples all of the subdomains. This coarse sparse matrix has to be factored
during the FETI-DP initialization step. During the FETI-DP solve step, one coarse matrix
forward/backward solve is performed per iteration. The two coarse grid solver technologies
are listed below.

• Redundant storage, factorization and forward/backward solves on each Salinas proces-
sor. In this option, a distributed inverse is computed and the relevant columns are
stored on each processor. Solves are accomplished with local matrix-vector products.

• Distributed storage, parallel factorization and parallel forward/backward solves on a
subset of the Salinas processors.
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,

Figure 0.4: Engine block finite element model and Model cube

Np = Ns N coarse
eqn Serial Sparse Parallel Sparse Memory

25 831 8.3 sec. 7.9 sec. (8 processors) 1.7 MB
115 3999 9.7 sec. 5.9 sec. (16 processors) 14.6 MB
137 4815 14.0 sec. 8.4 sec. (32 processors) 19.9 MB
222 7425 25.8 sec. 11.4 sec. (32 processors) 34.0 MB
276 9339 36.4 sec. 12.8 sec. (32 processors) 45.6 MB

Table 0.1: Coarse grid setup and factorization time for engine block on ASCI-Red

For the redundant storage case, we choose a sparse matrix solver based on a multiple mini-
mum degree ordering ([11]). The parallel factorization case is accomplished by the Domain
Separator Cholesky package (DSCpack) ([13]).

Parallel Sparse Solver Experiments We experiment with solving large scale
problems using large numbers of processors which results in increasingly larger FETI-DP
coarse grid problems. A comparision is done between the redundant factorization and subse-
quent coarse grid matrix inverse technique versus using a parallel distributed memory sparse
solver. At each iteration of FETI-DP, the parallel sparse solver does forward/backward solves
in parallel. In the future, further studies will be conducted to determine if the parallel sparse
solver in conjunction with the coarse grid matrix inverse technique will result in optimal CPU
time.

Coarse Grid Scalability A finite element model of an engine block was chosen for
coarse grid scalability studies. A picture of the engine block finite element model is shown
in figure 0.4. This model is available in three increasing larger sizes. We choose the smallest
model to illustrate the affect of increasing the number of subdomains for a fixed size prob-
lem on the FETI-DP coarse grid matrix. The small engine block model has 28498 nodes,
24363 elements and approximately 75000 degrees of freedom. This problem contains hex,
wedge and triangular shell elements. We partition this model into 25, 115, 137, 222 and
276 subdomains respectively. We then solve an eigenvalue using Salinas and FETI-DP. In
this Salinas solution method, FETI-DP is employed as the linear solver inside of a Lanzcos
based parallel eigensolver. Table 0.1 shows the factorization times of the two coarse grid
options on an increasing number of processors. Table 0.1 also shows the memory require-
ments of the serial sparse solver. The parallel sparse solver distributes the coarse grid LDLT

factor over the number of coarse solver processors. This effectively reduces the per proces-
sor memory requirements. For small coarse grid sizes, the redundant sparse direct method
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outperforms the parallel sparse solver. Please note that this is mainly due to the calcula-
tion of the coarse grid inverse (a detailed description can be found in [6]) and subsequent
replacement of sparse forward/backward substitution by matrix-vector multiplication during
the FETI-DP iterations. For a sufficiently large problem, the factorization of the coarse grid
becomes the dominant time and the parallel sparse solver begins to out-perform the serial
sparse direct method. More importantly, the coarse grid eventually becomes too large to
store on every processor and the only option is to use the parallel sparse distributed solver.
Future studies will investigate tiling the parallel sparse solver on Np/Ncs = Ntiles while Ncs

equals the number of processors solving the coarse grid matrix. This approach leaves an
integer number of processors, Nrem = mod(Np/Ncs) idle while the current parallel sparse
solver implementation leaves Np − Ncs processors idle during coarse grid factorization and
subsequent forward/backward solves required during FETI-DP iterations.

Conclusion We have shown that FETI-DP performs well in a production finite element
application on a variety of massively parallel platforms. Scalablity was demonstrated on
ASCI-Red, ASCI-Cplant and ASCI-White. We are actively pursuing parallel factorization of
the FETI-DP coarse grid to enable further improvements in scalability.
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