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Preface

The annual International Conference on Domain Decomposition Methods for Partial
Differential Equations has been a major event in Applied Mathematics and Engi-
neering for the last fifteen years. The proceedings of the Conferences have become a
standard reference in the field, publishing seminal papers as well as the latest theo-
retical results and reports on practical applications.

The Fourteenth International Conference on Domain Decomposition Methods, was
hosted by the Universidad Nacional Autónoma de México (UNAM) at Hacienda de
Cocoyoc in Morelos, Mexico, January 6-12, 2002. It was organized by Ismael Herrera,
Institute of Geophysics, of the National Autonomous University of Mexico (UNAM).
He was assisted by a Local Organizing Committee headed by Robert Yates, with the
active participation of Gustavo Ayala-Milian, Martin Diaz and Gerardo Zenteno.

This was the sixth of the meetings in this nearly annual conference to be hosted
in the Americas, but the first such outside of the United States. It was stimulating
and rewarding to have the participation of many practicing scientists and graduate
students from Mexico’s growing applied mathematics community. Approximately one
hundred mathematicians, engineers, physical scientists, and computer scientists from
17 countries spanning five continents participated. This volume captures 52 of the 78
presentations of the Conference.

Since three parallel sessions were employed at the conference in order to accommo-
date as many presenters as possible, attendees and non-attendees alike may turn to
this volume to keep up with the diversity of subject matter that the topical umbrella
of “domain decomposition” inspires throughout the community. The interest of so
many authors in meeting the editorial demands of this proceedings volume demon-
strates that the common thread of domain decomposition continues to justify a regular
meeting. “Divide and conquer” may be the most basic of algorithmic paradigms, but
theoreticians and practitioners alike continue to seek — and find — incrementally
more effective forms, and value the interdisciplinary forum provided by this proceed-
ings series.

Domain decomposition is indeed a basic concept of numerical methods for partial
differential equations (PDE’s) in general, although this fact is not always recognized
explicitly. It is enlightening to interpret many numerical methods for PDE’s as do-
main decomposition procedures and, therefore, the advances in Domain Decomposition
Methods are opening new avenues of research in this general area. This is exhibited in
this volume. In particular, using a continuous approach an elegant general theory of
domain decomposition methods (DDM’s) is explained, which incorporates direct and
a new class of indirect methods in a single framework. This general theory interprets
DDM’s as procedures for gathering a target of information, on the internal bound-
ary -’the sought information’-, that is chosen beforehand and is sufficient for defining
well-posed local problems in each one of the subdomains of the partition. There are
two main procedures for gathering the ’sought information’: the direct method, which
applies local solutions of the original differential equation, and the indirect method,
which uses local solutions of the adjoint differential equation. Several advantages of
the ’indirect method’ are exhibited.
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Besides inspiring elegant theory, domain decomposition methodology satisfies the
architectural imperatives of high-performance computers better than methods op-
erating only on the finest scale of the discretization and over the global data set.
These imperatives include: concurrency on the scale of the number of available pro-
cessors, spatial data locality, temporal data locality, reasonably small communication-
to-computation ratios, and reasonably infrequent process synchronization (measured
by the number of useful floating-point operations performed between synchroniza-
tions). Spatial data locality refers to the proximity of the addresses of successively
used elements, and temporal data locality refers to the proximity in time of successive
references to a given element.

Spatial and temporal locality are both enhanced when a large computation based
on nearest-neighbor updates is processed in contiguous blocks. On cache-based com-
puters, subdomain blocks may be tuned for workingset sizes that reside in cache. On
message-passing or cache-coherent nonuniform memory access (cc-NUMA) parallel
computers, the concentration of gridpoint-oriented computations — proportional to
subdomain volume — between external stencil edge-oriented communications — pro-
portional to subdomain surface area, combined with a synchronization frequency of
at most once per volume computation, gives domain decomposition excellent parallel
scalability on a per iteration basis, over a range of problem size and concurrency. In
view of these important architectural advantages for domain decomposition methods,
it is fortunate, indeed, that mathematicians studied the convergence behavior aspects
of the subject in advance of the wide availability of these cost-effective architectures,
and showed how to endow domain decomposition iterative methods with algorithmic
scalability, as well.

Domain decomposition has proved to be an ideal paradigm not only for execu-
tion on advanced architecture computers, but also for the development of reusable,
portable software. Since the most complex operation in a Schwarz-type domain de-
composition iterative method — the application of the preconditioner — is logically
equivalent in each subdomain to a conventional preconditioner applied to the global
domain, software developed for the global problem can readily be adapted to the local
problem, instantly presenting lots of “legacy” scientific code for to be harvested for
parallel implementations. Furthermore, since the majority of data sharing between
subdomains in domain decomposition codes occurs in two archetypal communication
operations — ghost point updates in overlapping zones between neighboring subdo-
mains, and global reduction operations, as in forming an inner product — domain
decomposition methods map readily onto optimized, standardized message-passing
environments, such as MPI.

The same arguments for reuse of existing serial methods in a parallel environ-
ment can be made for Schur-type or substructuring forms of domain decomposition,
although in the substructuring case, there are additional types of operations to be
performed on interfaces that are absent in the undecomposed original problem. Of
course, treatment of the interface problem is where the art continues to undergo de-
velopment, as the overall convergence depends upon this aspect when the subdomain
problems are solved exactly.

Finally, it should be noted that domain decomposition is often a natural paradigm
for the modeling community. Physical systems are often decomposed into two or more
contiguous subdomains based on phenomenological considerations, such as the impor-
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tance or negligibility of viscosity or reactivity, or any other feature, and the subdomains
are discretized accordingly, as independent tasks. This physically-based domain de-
composition may be mirrored in the software engineering of the corresponding code,
and leads to threads of execution that operate on contiguous subdomain blocks, which
can either be further subdivided or aggregated to fit the granularity of an available
parallel computer, and have the correct topological and mathematical characteristics
for scalability.

The organization of the present proceedings differs from that of previous volumes
in that many of the papers are grouped into minisymposia, which provides a finer-
grained topical grouping.

These proceedings will be of interest to mathematicians, computer scientists, and
computational scientists, so we project its contents onto some relevant classification
schemes below.

American Mathematical Society (AMS) 2000 subject classifications
(http://www.ams.org/msc/) include:

65C20 Numerical simulation, modeling

65F10 Iterative methods for linear systems

65F15 Eigenvalue problems

65M55 Multigrid methods, domain decomposition for IVPs

65N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods

65N35 Spectral, collocation and related methods

65N55 Multigrid methods, domain decomposition for BVPs

65Y05 Parallel computation

68N99 Mathematical software

Association for Computing Machinery (ACM) 1998 subject classifications (http://www.acm.org/class/1998/)
include:

D2 Programming environments, reusable libraries

F2 Analysis and complexity of numerical algorithms

G1 Numerical linear algebra, optimization, differential equations

G4 Mathematical software, parallel implementations, portability

J2 Applications in physical sciences and engineering

Applications for which domain decomposition methods have been specialized in
this proceedings include:

fluids Stokes, Navier-Stokes, multiphase flow, dynamics of arteries, pipes, and rivers
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materials phase change, composites

structures linear and nonlinear elasticity, fluid-structure interaction

other electrostatics, obstacle problems

For the convenience of readers coming recently into the subject of domain decom-
position methods, a bibliography of previous proceedings is provided below, along
with some major recent review articles and related special interest volumes. This list
will inevitably be found embarrassingly incomplete. (No attempt has been made to
supplement this list with the larger and closely related literature of multigrid and
general iterative methods, except for the books by Hackbusch and Saad, which have
significant domain decomposition components.)

1. P. Bjørstad, M. Espedal and D. E. Keyes, eds., Proc. Ninth Int. Symp. on
Domain Decomposition Methods for Partial Differential Equations (Ullensvang,
1997), Wiley, New York, 1999.

2. T. F. Chan and T. P. Mathew, Domain Decomposition Algorithms, Acta Nu-
merica, 1994, pp. 61-143.

3. T. F. Chan, R. Glowinski, J. Périaux and O. B. Widlund, eds., Proc. Second Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Los Angeles, 1988), SIAM, Philadelphia, 1989.

4. T. F. Chan, R. Glowinski, J. Périaux, O. B. Widlund, eds., Proc. Third Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Houston, 1989), SIAM, Philadelphia, 1990.

5. T. Chan, T. Kako, H. Kawarada and O. Pironneau, eds., Proc. Twelfth Int.
Conf. on Domain Decomposition Methods for Partial Differential Equations
(Chiba, 1999), DDM.org, Bergen, 2001.

6. N. Débit, M. Garbey, R. Hoppe, D. Keyes, Y. Kuznetsov and J. Périaux, eds.,
Proc. Thirteenth Int. Conf. on Domain Decomposition Methods for Partial
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11. W. Hackbusch, Iterative Methods for Large Sparse Linear Systems, Springer,
Heidelberg, 1993.
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1995.
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Univ. Press, Cambridge, 1996.
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We also mention the homepage for domain decomposition on the World Wide Web,
www.ddm.org, maintained by Professor Martin Gander of McGill University. This site
features links to conference, bibliographic, and personal information pertaining to
domain decomposition, internationally.

Previous proceedings of the International Conferences on Domain Decomposition
were published by SIAM, AMS, John Wiley and Sons and CIMNE. This time the
publisher has been the National University of Mexico (UNAM), with the assistance of
Impretei S.A. de C.V.

We wish to thank the members of the International Scientific Committee, and in
particular the Chair, Ronald H.W. Hoppe, for their help in setting the scientific di-
rection of the Conference. We are also grateful to the organizers of the mini-symposia
for attracting high-quality presentations. The timely production of these Proceedings
would not have been possible without the cooperation of the authors and the anony-
mous referees. We would like to thank them all for their graceful and timely response
to our various demands.

The organizers of the Conference would like to acknowledge the sponsors of the
Conference, namely UNAM through its Institute of Geophysics, the Instituto Nacional
de Tecnoloǵıa del Agua (IMTA) and the newly created Sociedad Mexicana de Métodos
Numéricos en Ingenieŕıa y Ciencia Aplicada (SMMNICA). Thanks are also due to
Roland Glowinski and Yuri A. Kuznetsov, for their participation in the American
Committee of the Conference, and to Alvaro Aldama, Fabian Garcia-Nocetti, Jaime
Urrutia-Fucugauchi, Francisco Sanchez-Bernabe and Carlos Signoret-Poillon, for their
participation in the Local Organizing Committee. Finally, we would like to express
our appreciation to Ms. Marthita Cerrilla, the Secretary of the Conference, who made
all the organizational details run smoothly, together with Martin Diaz and Ernesto
Rubio, the Technical Editors of these Proceedings, who finalized the formatting of the
papers in LATEX and prepared the whole book for printing.
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