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13. Algorithms and arteries: Multi-domain spectral/hp
methods for vascular flow modelling

S.J. Sherwin1 and J. Peiró2

1. Introduction. The growing interest in the mathematical and numerical modelling
of biomedical systems and, in particular, the human cardiovascular system is supported by the
numerous works which have appeared on the subject in recent years, for example [2, 9, 16, 21]
and the references therein. Traditionally there has been a strong focus on low dimensional
models [13]. However the association of vascular disease, such as atherosclerosis, with arterial
branching has promoted an interest in the application of computational fluid dynamics (CFD)
to vascular flow modelling. Nevertheless the nature of the flow presents a variety of challenges.
Firstly, the flow is pulsatile and in a Reynolds number regime where the viscous and inertial
effects are both significant. Secondly, the geometric characteristics of the vascular system are
very intricate. Finally, blood is a non-Newtonian fluid and arterial walls are distensible.

A particular focus of the CFD modelling has been to determine the wall shear stress
distribution of the unsteady flow at arterial junctions and bypass grafts. The sensitivity of
the wall shear stress to surface curvature therefore make the geometric representation an
important factor. The flows in and around regions of stagnation and separation are also
of physiological interest. In an incompressible flow we know that the normal derivative of
the wall normal flow is zero near the wall and therefore requires at least a second order
approximation to be resolved. Both these factors and the requirement to reproduce the
unsteady flow and its derivatives in complex geometries make high-order algorithms, such as
the unstructured spectral/hp element method, suitable from the point of view of attaining a
specified error at a lower computational cost. However the problem still poses many numerical
challenges which have motivated a range of developments in spectral/hp element methods
that we shall discuss in this review article.

Furthermore we cannot completely decouple the local branching flow at an arterial junc-
tion from the full vascular system. The flow waveform observed at a given location in the
vascular tree is the result of changes in sectional area of the compliant vessels to accom-
modate the incompressible flow of blood as it is pumped from the heart. Starting at the
heart, the arterial waves are propagated and reflected at each arterial branch [25] leading to
a complex waveform which changes at different locations. Although the wavelengths of these
waves are much larger than the length of local arterial branches, the flow waveform can be
altered by the presence of disease or surgical intervention. Therefore there is an inherent
need to include a multiscale modelling to the localised CFD as discussed in [16]. Within this
context, the application of simplified models has been shown to provide useful information
for practitioners at a reasonable computational cost [7].

In this paper we will briefly review three topics related to the application of spectral/hp
discretisation to vascular flow modelling. In section 2 we review the work in [19] and discuss
the one-dimensional full vascular tree modelling using one-dimensional equations. In section
3 we discuss the problem of generating high-order meshes to consistently model the arterial
geometries based on the work in [22, 14]. Finally in section 4 we overview a recent develop-
ment in elliptic preconditioning for unstructured model spectral/hp methods based on a low
energy numerical basis which relates to the work of [1, 18].

2. Reduced 1D modelling of the human circulation. In this section we focus
on the application of a one-dimensional model of blood flow in compliant vessels to study
wave propagation in the arterial tree as previously detail in [19].
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Figure 2.1: Simple compliant tube.

2.1. Governing equations. We consider a simple compliant tube, illustrated in
figure 2.1, as a model of the artery. Following Brook et al. [3] we write the system of
equations representing continuity of mass and momentum, for a ≤ x ≤ b and t > 0, as
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where the x is the axial direction, A = A(x, t) =
∫

S
dσ is the area of a cross section S,

ρ is the density of the blood which is taken to be constant, p is the internal pressure and
u(x, t) denotes the velocity of the fluid averaged across the section. The term KR is a strictly
positive quantity which represents the viscous resistance of the flow per unit length of tube.
The unknowns in this system are p, A and u. Their number exceeds the number of equations
and a common way to close the system is to explicitly provide an algebraic relationship
between the pressure of the vessel p and the vessel area A. For example, by assuming static
equilibrium in the radial direction of a cylindrical tube, one can derive a pressure relationship
of the form

p = pext + β(
√

A −
√

A0), (2.2)

where

β =

√
πh0E

(1 − ν2)A0
.

Here h0 and A0 = A0(x) denote the vessel thickness and sectional area, respectively, at the
equilibrium state (p, u) = (pext, 0), E = E(x) is the Young modulus, pext is the external
pressure, assumed constant and ν is the Poisson ratio. This ratio is typically taken to be
ν = 1/2 since biological tissue is practically incompressible.

2.2. Discontinuous Galerkin method. The wave propagation speeds in the large
arteries are typically an order of magnitude higher than the average flow speeds. The char-
acteristic speed of the system is also inherently subcritical and does not produce shock under
physiological conditions. Therefore the numerical challenge is to propagate waves for many
periods without suffering from excessive dispersion and diffusion errors. If the solution re-
mains smooth then high-order methods are particularly attractive due to the fast convergence
of the phase and diffusion properties with order of the scheme [17].

Following the work of Cockburn and Shu [4] we initially consider the one-dimensional
hyperbolic system in conservative form (2.1) and assume that RK = 0. To solve this system
in a region Ω = [a, b] discretised into a mesh of Nel elemental non-overlapping regions Ωe =
[xl

e, x
u
e ], such that xu

e = xl
e+1 for e = 1, . . . , Nel. We then proceed by constructing the weak

form of (2.1), i.e. (
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where (u,v)Ω =
∫
Ω

u v dx is the standard L2(Ω) inner product. Decomposing the integral
into elemental regions we obtain
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Integrating the second term in (2.4) by parts leads to
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To form the discrete approximation of our problem we choose U to be in the finite space
of L2(Ω) functions which are polynomials of degree P on each element. Furthermore we
indicate an element of such space using the superscript δ. To attain a global solution in
the domain Ω we need to allow information to propagate between the elemental regions.
Information is propagated between elements by upwinding the boundary flux in the third
term of equation (2.5). Denoting the upwinded flux as F u, the discrete weak formulation
can now be written as

Nel∑
e=1

(
∂U δ

∂t
, ψδ

)
Ωe

−
(

F (U δ),
dψδ

dx

)
Ωe

+
[
ψδ · F u

]xu
e

xl
e

= 0, (2.6)

Following the traditional Galerkin approach, we choose the test function within each element
to be in the same discrete space as the numerical solution U δ. At this point if we defined
our polynomial basis and choose an appropriate quadrature rule we would now have a semi-
discrete scheme. However, from an implementation point of view, the calculation of the
second term can be inconvenient and consequently we choose to integrate this term by parts
once more to obtain
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We note that the information between elements is transmitted by the third boundary term

as the difference between the upwinded and the local fluxes,
[
ψδ · [F u − F (U δ)]

]xu
e

xl
e
.

To complete the discretisation we also require a time integration scheme and in the current
implementation we have adopted a second order Adams-Bashforth scheme. The upwind flux
is calculated using a straightforward upwinding of the characteristic variables as discussed in
[19]. This type of upwinding process is used to impose the characteristic boundary conditions
through the flux at the ends of the global domain Ω.

The 1D model of the compliant tube can be extended to handle the arterial tree by
imposing suitable interface conditions at the bifurcations or branching points of the tree.
At a bifurcation we have six degrees of freedom corresponding to the area and velocity
conditions within each vessel. Therefore we require six equations to determine a unique
solution. Applying the subsonic flow assumption we can determine the three characteristics
entering the junction providing three equations. Finally, continuity of mass flux and total
pressure at the bifurcation provide the three conditions required to close the system, see [19]
for details.

2.3. Simulation of wave propagation in the arterial network. We have
adopted the modifications proposed in [25] to the published models [26, 24] to compute the
pulsatile one-dimensional blood flow through the arterial system using the discontinuous
Galerkin method. The numerical values of the parameters of the arterial tree formed by the
55 main arteries is given in [19]. Figure 2.2 shows the connectivity of the arteries used in our
model of the arterial network. The flow in the 55 arteries is assumed initially to be at rest.
A periodic half sine wave is imposed as an input wave form at the ascending aorta (artery 1).
Figure 2.2 also shows the inflow boundary conditions imposed at the ascending aorta and the
time history graphs over a single cycle for three different arteries in the network: ascending
aorta (artery 1), femoral artery (artery 46) and anterior tibial (artery 49).
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Figure 2.2: Connectivity of the 55 main arteries in the human arterial system.

The inclusion of resistance in the terminal arteries increases the number of waves in the
system due to forward travelling waves being reflected at the terminal vessels and introduces
backward travelling waves which are re-reflected at the bifurcations, hence a complex pattern
of waves occurs in the network. Terminal resistance also creates regions of flow reversal due
to the reflected velocity wave and increases in area as a result of the re-enforcing effect of the
reflected pressure wave. It has also produced a waveform which includes a diacrotic notch
in the ascending aorta (artery 1). These results are qualitatively similar to what we would
expect to see from in-vivo measurements in the human body.

3. Geometric modelling of arterial branching. The ability to construct suit-
able computational meshes is currently a significant limiting factor in the development of
high-order algorithms in very complex geometries. In this section we will address the is-
sues encountered in applying the high-order finite element type approach to vascular flow
modelling as previously discussed in [22, 14].

3.1. Mesh generation of high-order elements. The extension of standard un-
structured mesh generation technology to high-order algorithms is a not trivial exercise.
Complications arise due to the conflicting requirements to generate coarse meshes whilst
maintaining good elemental properties in regions of high curvature. This is shown in figure



ALGORITHMS AND ARTERIES 163

3.1 where we illustrate the type of invalid elements which can arise.

VALID ELEMENT INVALID ELEMENT

(a) Linear elements (b) High-order elements

Figure 3.1: The subdivision of a valid mesh of linear elements (a) to generate a high-
order tetrahedral mesh (b) might lead to elemental regions with singular Jacobian
mappings.

In our approach, the generation of an unstructured mesh of high-order spectral/hp ele-
ments is accomplished through the subdivision of a coarse mesh of linear elements. Given
a surface representation in terms of cubic splines, the surface is initially discretised into a
coarse distribution of linear surface elements. The local topology of these linear elements is
influenced by the desire to include a boundary layer region or by taking into account surface
curvature as described in section 3.3. The mesh generation then proceeds in a manner consis-
tent with standard linear mesh generation process. Our current approach is based upon the
method of advancing layers described in [15] but alternative mesh generation techniques can
also be used. In this method the vertices of the original linear triangulation in the near-wall
regions are assigned a direction and new interior vertices are created in successive layers up
to a prescribed boundary layer thickness. These points are then linked to form a mesh of
tetrahedral or prismatic elements, known as the boundary layer mesh. The rest of the domain
is finally filled with a mesh of linear tetrahedra which, in our case, is generated by means of
the advancing front technique.

A high-order surface discretisation is generated by following a “bottom-up” procedure
where initially the triangular edges are discretised into P +1 points for a P th order polynomial
mesh. Subsequently the (P −3)(P −2)/2 points internal to the triangular faces are generated
to complete the polynomial representation. The high-order point generation is typically
performed in the parametric space of the surface splines which may have a non-isometric
mapping to the physical space. In order to optimise the high-order element point distribution,
a non-linear minimisation procedure is adopted, as discussed in [22], which generates the edge
and face points as geodesics of the surface with a view to minimising the variation in the
surface Jacobian.

3.2. Optimizing surface representation. To address the problem of obtaining
an optimal distribution of points, consider a quadrature with N integration points and as-
sociated normalised weights zi; i = 1, . . . , N (−1 ≤ zi ≤ 1) in a 1D interval a ≤ x ≤ b. It is
known that the optimal positions xi; i = 1, . . . , N of the points are given by

xi =
a

2
(1 − zi) +

b

2
(1 + zi) i = 1, . . . , N. (3.1)

This leads to an isometric mapping and therefore a constant Jacobian. The extension to
elements with straight sides and faces is straightforward. However, a different strategy for
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curved edges and faces is required to account for the distortion introduced by surface curva-
ture.

A parametric surface is a mapping between a 2D parametric space and the 3D space.
Mesh generation is considerably simplified if performed in the parametric space. However,
approximating the element edges using the point distribution (3.1) along straight lines in the
parametric plane might lead to highly deformed or invalid elemental regions if the surface
mapping induces severe distortion.

An “optimal” point distribution can be obtained by recasting the problem as that of
minimising the potential energy of a set of springs linking adjacent points. It is easily shown
that the optimal distribution (3.1) is a minimum of the potential energy of such system of
springs given by

J (x2, ..., xN−1) =

N−1∑
i=1

(xi+1 − xi)
2

zi+1 − zi
=

N−1∑
i=1

δ2
i

zi+1 − zi
. (3.2)

This approach, unlike (3.1), is directly applicable to curved edge and faces on surfaces. A
more detailed description of the procedure could be consulted in [22].

The high-order surface definition implies that the elements adjacent to a deformed wall
will also have curved internal faces. These are constructed as a blend, consistent with the
spectral/hp element expansion, between the internal straight edges and the deformed surface
edge (see [11] for more details). In general, high-order elements allow for all internal face and
edges to be deformed which, as discussed in the work of Dey et al. [5], may be necessary in
very curved domains.

3.3. Curvature based mesh refinement for high-order elements. Mesh
refinement as a function of the curvature has been proposed by several authors [8, 12] as a
way to obtain an accurate piecewise linear approximation of a curved surface. In [22] we
have shown that the use of curvature based refinement enhances the quality of the high-order
meshes generated from linear tetrahedral and prismatic meshes. However, this criterion on
its own is not sufficient to guarantee validity of all high-order elements as it does not account
for the possible intersection of the boundary sides and faces with those on the interior. In
[14] we have proposed an alternative method more suitable for the discretisation of boundary
layers which we detail below.

A curve is locally approximated by a circle of radius R, the radius of curvature. We
assume that the mesh spacing can be represented by a chord of length c in the circle and a
spacing δ in the normal direction. In the modelling of viscous flows, the value of δ is usually
prescribed to achieve a certain boundary layer resolution. The value of c is therefore chosen
to guarantee that the osculating circle representing the curve does not intersect the interior
sides of the elements, i.e. θ ≥ 90o for the triangular element. The value of c, which should
be considered as a maximum mesh spacing, can now be obtained as a function of R and δ.
Its value ct for triangular elements is

ct ≤ R

√
2δ

R + δ
. (3.3)

The corresponding value cq for quadrilateral elements is

cq ≤ 2Rδ

R + δ

√
1 +

2R

δ
, (3.4)

where the boundary displacement is assumed to be the same on either side of the rectangle.
It is interesting to notice that, for a given δ, the quadratic element allows for a mesh spacing
cq which is about twice the value of spacing ct for the triangular element.
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The extension of this method to surfaces is straightforward. The refinement criterion
given by formulas (3.3) and (3.4) is used for the two principal directions and the corresponding
mesh spacings, c1 and c2, are calculated from the values of the principal curvatures k1,2 =
1/R1,2.

An example of a hybrid mesh generated for the geometry previously considered in figure
3.1 and using the criterion (3.4), is shown in figure 3.2(a). This high-order mesh does not
contain singular elements. However, the refinement applied here does not account for the
sign of the surface curvature and the use of criterion (3.4) to ensure element validity is too
restrictive in those regions where the domain is locally convex. For a convex region, the less
restrictive criterion δ < R suffices to guarantee element validity. This is highlighted in figure
3.2(b) where the refinement criterion (3.4) has been selectively applied to concave regions
only. The result is a valid mesh with fewer elements.

(a) Curvature refinement (b) Selective refinement

Figure 3.2: Curvature based mesh refinement for prismatic elements: (a) Refinement
according to equation (3.4), (b) Refinement is applied to concave regions only.

As previously discussed our area of interest is the surgical intervention required when an
artery becomes blocked, typically due to vascular disease, and the blockage is circumvented
by an anastomosis. This procedure typically requires the construction of an alternative path
normally using an autologous vein. A high percentage of long term failures of arterial bypass
grafts are observed at the downstream, or distal, end of the bypass loop. Understanding the
nature of this failure has made the geometric features of the bypass junction a particular
focus of three-dimensional computational modelling. An example of a high-order mesh for
an anatomically realistic geometry is shown in figure 3.3. This mesh has 1624 prismatic
elements and 3545 tetrahedral elements. Also shown is the distribution of wall shear stresses
calculated using a fourth-order polynomial approximation.

4. Low energy preconditioning for spectral/hp discretisations. To solve
the fluid flow problem at arterial branches, as shown in figure 3.3 we have applied a three-
dimensional unstructured spectral/hp element solver [20] with a high order splitting scheme
of the Navier-Stokes equations [10]. The splitting scheme requires the solution of a Pressure
Poisson equation and three Helmholtz problems. The iterative inversion of the discrete elliptic
problems is currently the limiting factor in computational speed.

Building on the work of Bica [1], we have developed an efficient preconditioning strategy
for substructured solvers based on a transformation of the closed form expansion basis to a
“low energy” basis [18]. Following this approach, the strong coupling in the matrix system
between two different degrees of freedom of the original basis is significantly reduced by



166 SHERWIN, PEIRO

High−order mesh

CFD surface shear stresses

GRAFT

OCCLUDED

FLOW

HOST VESSEL

Figure 3.3: High-order mesh and distribution of surface shear stresses obtained using
a fourth-order polynomial approximation in the spectral/hp CFD solver. The values
of the shear stress have been normalized so that the inflow wall shear stress (Hagen-
Poiseuille flow) is 1.

introducing a degree of orthogonality between degrees of freedom. The transformed matrix
system is then amenable to block diagonal preconditioning.

The efficiency of the preconditioner is maintained by developing a new low energy basis
on a symmetric reference element and ignoring, in the preconditioning step, the role of the
Jacobian of the mapping from the reference to a global element. By applying an additive
Schwarz block preconditioner to the low energy basis combined with a coarse space linear
vertex solver we have observed up to six fold reductions in execution time for our complex
geometry Navier-Stokes solver.

4.1. Overview. In this section we outline the key concepts behind the preconditioner.
Full details of the formulation can be found in [18]. A representative elliptic boundary value
problem is

∇2u(x, y, z) + λu(x, y, z) = f(x, y, z) (4.1)

which is discretised into spectral/hp elements by decomposing the solution domain into non-
overlapping subdomains within which a polynomial expansion is applied [11]. The Galerkin
formulation of equation (4.1) leads us to a matrix problem of the form

Hû = f

where H is the weak Helmholtz operator, f is the inner product of the forcing term and û
represent the expansion coefficients of the original closed form basis. In a spectral/hp element
approach the expansion basis is normally decomposed into interior and boundary modes
where the interior modes have zero support on the element boundaries and the boundary
modes make the expansion complete. Such a decomposition lends itself to substructuring
[23] where we construct the boundary degrees of freedom Schur complement S of H . This is
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essentially an orthogonalisation of the boundary degrees of freedom from the interior degrees
of freedom and may also be considered as a basis transformation. This is attractive because it
leaves a block diagonal matrix corresponding to the interior modes which is easily invertible.
At this stage we still need to invert the positive definite Schur Complement S and this can
be achieved using a preconditioned conjugate gradient technique.

(a) (b)

Figure 4.1: Projected mode shape of vertex 4 (a) original and (b) low energy basis.
The polynomial order was P = 5.

The choice of the preconditioner therefore defines the efficiency of the numerical algo-
rithm. For two-dimensional hierarchical spectral/hp type discretisations the block diagonal
preconditioner proposed by Dryja et al [6] leads to the attractive property of polylogarithmic
conditioning. However for a three-dimensional hierarchical expansion this approach is not so
effective [1, 18]. A significant factor is the coupling between the face expansions modes (i.e.
the modes which have zero support on all edges and vertices) with the “wire-basket” space
containing expansion modes which have support along the edges and at the vertices. The low
energy preconditioning strategy transforms the original closed form bases to a numerically
defined basis which decouples the degrees of freedom associated with each face from the ver-
tex and edge degrees of freedom. In doing so the new basis has low energy in the sense that
the inner product in the bilinear energy norm of two boundary modes is small or at least
significantly reduced.

The formal details of transforming the basis are dealt with in [18]. However to illustrate
the concepts we consider the shape of a vertex mode in the original and low energy basis at
a polynomial order of P = 5 as shown in figure 4.1. The closed form original vertex mode
is identical to the standard linear finite element mode and it can be appreciated that the
energy associated with the inner product of this mode with any other mode in the energy
norm will be reasonably high due to its high magnitude throughout the subdomain. Not too
surprisingly, the shape of the low energy vertex modes decays rapid away from the vertex
where it is required to have the same magnitude as the original basis. The rapid decay is
consistent with the concept of low energy in the energy norms.

From an implementation point of view the numerical orthogonalisation of each of the face
boundary modes from the wire-basket modes would be as difficult as inverting the full matrix.
Nevertheless the important feature of the low energy basis can be captured by defining the
new basis on a rotationally symmetric region. This inherently ignores the mapping from the
symmetric region to the local element within the computational domain but maintains the
computational efficiency of the standard implementation.
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(a)

S1 =

(b)

S2 =

Figure 4.2: Scatter plot of Schur complement matrices of a P = 5 polynomial expan-
sion: (a) Original basis (b) Low energy basis (scaled by a factor of 4).

We conclude the summary by considering a scatter plot of the Schur complement systems
arising from the original and low energy basis disretisation of a Poisson equation as shown
in figure 4.2. In this figure the boundary modes were ordered so that the vertex modes were
followed by the edges modes which, in turn, were followed by the face boundary modes. From
this plot we see that original basis has a high magnitude/energy in the vertex modes even in
the off-diagonal component. There is also a significant energy between the edges and vertices.
Furthermore, we see that the coupling between the face and wire-basket modes is larger than
the coupling between the face modes with themselves. The low energy basis on the other
hand has a more diagonally dominated structure which makes it suitable for block diagonal
preconditioning.

4.2. Result. Tests of regular elements [18], where the effect of ignoring the mapping
of the elements is not significant, have demonstrated that a polylogarithmic scaling of the
condition number is recovered when using the low energy basis preconditioner.

In figure 4.3(a) we shown a geometrically complex computational domain of practical
interest. This problems originated from the reconstruction of the downstream junction of
a porcine arterial bypass [14]. The domain consists of an unstructured triangular surface
discretisation from which prismatic elements are constructed by extruding the triangular
surface elements in the surface normal direction. The interior region is then discretised using
tetrahedral subdomains. The discretisation shown in figure 4.3 consists of 749 prismatic and
1720 tetrahedral elements.

In this domain, we have solved a Poisson equation with Dirichlet boundary conditions
corresponding to the solution u(x, y, z) = sin x sin y sin z. The condition number of the diag-
onal and low energy preconditioned systems are shown in figure 4.3(b). This improvement in
the condition number also reflected in the speed up of the back solve of the low energy pre-
conditioner over the diagonal preconditioner. We have observed speed-ups of approximately
6 at a polynomial order of P = 8 and the break-even polynomial order was approximately
P = 3.

5. Acknowledgments. This work was partially supported by the Smiths’ Charity,
and the Clothworkers’ Foundation. The Imperial College centres for Biomedical Visualization
and Parallel Computing provided computational resources.

The authors would like to thank Prof. Kim Parker of the Department of Bioengineering



ALGORITHMS AND ARTERIES 169
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Figure 4.3: (a) Hybrid domain of a downstream arterial bypass graft. (b) Condition
number as a function of polynomial order of the diagonal and low energy basis for a
Poisson problem.
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[22] S. J. Sherwin and J. Peiró. Mesh generation in curvilinear domains using high-order elements.
Int. J. Numer. Meth. Engng., 53:207–223, 2002.

[23] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[24] N. Stergiopulos and D. Young. Computer simulation of arterial flow with applications to arterial
and aortic stenoses. J. Biomech., 25(12):1477–1488, 1992.

[25] J. Wang and K. Parker. Wave propagation in a model of the arterial circulation. Submitted to
J. Biomech., 2002.

[26] N. Westerhof, F. Bosman, C. D. Vries, and A. Noordergraaf. Analog studies of the human
systemic arterial tree. J. Biomech., 2:121–143, 1969.


