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32. Some new domain decomposition and multigrid methods
for variational inequalities

Xue–Cheng Tai1

1. Introduction. Domain decomposition (DD) and multigrid (MG) methods are
powerful iterative methods for solving some partial differential equations. Some recent
progress has shown that DD and MG methods are also efficient for some nonlinear ellip-
tic problems and some convex minimization problems [15, 14, 18, 17]. Mesh independent
convergence rate has been proved and it is shown that the convergence rate for some non-
linear problems is as good as the convergence rate of the methods when they are used for
the Laplace equation. In many industrial applications, we need to solve nonlinear partial
differential equations and at the same time the solutions of the equations need to satisfy
some constraints. For such problems, the solutions always satisfy some variational inequal-
ities. To apply DD and MG methods for variational inequalities is a difficult task, see
[1, 3, 4, 5, 7, 8, 2, 9, 12] for some literature results. It is even more difficult to analyse the
convergence rate. In this work, we shall propose some new algorithms using DD and MG
methods for variational inequalities and at the same it is shown that the proposed algorithms
have a convergence rate that is as good as DD and MG are used for some linear elliptic
equations. Another feature of our approach is that we interpret DD and MG methods as
space decomposition techniques [19, 18] and our algorithms are proposed for general space
decomposition techniques. Thus, the algorithms and the analysis cover both DD and MG
in the same frame work. The algorithms proposed here are different from the algorithms of
[16, 6, 7].

Algorithms and convergence rate analysis for DD method with a coarse mesh seem still
missing in the literature. When no coarse mesh is used, DD method is essentially a block
relaxation method and some results are available in the literature, see [13] for some reference.
For MG method, the only uniform convergence rate estimate we know is [6, 7] which is valid
in the asymptotic sense and need very special conditions.

2. Some subspace correction algorithms. Consider the nonlinear convex min-
imization problem

min
v∈K

F (v), K ⊂ V , (2.1)

where F is a convex functional over a reflexive Banach space V and K ⊂ V is a nonempty
closed convex subset. The norm of V will be denoted by ‖ · ‖. In order to solve the minimiza-
tion problem efficiently, we shall decompose V and K into a sum of subspaces and subsets of
smaller sizes respectively as in [10] [17]. More precisely, we decompose

V =

m∑
i=1

Vi, K =

m∑
i=1

Ki, Ki ⊂ Vi ⊂ V , (2.2)

where Vi are subspaces and Ki are convex subsets. We use two constants C1 and C2 to
measure the quality of the decompositions. First, we assume that there exits a constant
C1 > 0 and some operators Ri : K �→ Ki, i = 1, 2, · · ·m, which are generally nonlinear
operators, such that the following relations are correct for all u, v ∈ K

u =

m∑
i=1

Riu , v =

m∑
i=1

Riv, and

(
m∑

i=1

‖Riu − Riv‖2

) 1
2

≤ C1‖u − v‖. (2.3)
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We also need to assume that there is a C2 > 0 such that for any wi ∈ V, v̂i ∈ Vi, ṽj ∈ Vj it
is true that

m∑
i=1

m∑
j=1

∣∣〈F ′(wij + v̂i) − F ′(wij), ṽj〉
∣∣ ≤ C2

( m∑
i=1

‖v̂i‖2

) 1
2
( m∑

j=1

‖ṽj‖2

) 1
2

. (2.4)

In the above, F ′ is the Gâteaux differential of F and 〈·, ·〉 is the duality pairing between V
and its dual space V ′, i.e. the value of a linear function at an element of V . We also assume
that there exists a constant κ > 0 such that

〈F ′(v1) − F ′(v2), v1 − v2〉 ≥ κ‖v1 − v2‖2, ∀w, v ∈ V . (2.5)

Under the assumption (2.5), problem (2.1) has a unique solution. For some nonlinear prob-
lems, the constant κ may depend on v1 and v2 and our algorithms and anaylsis are still valid
for such cases [18]. For a given approximate solution u ∈ K, we shall find a better solution
w using one of the following two algorithms.

Algorithm 1 Choose a relaxation parameter α ∈ (0, 1/m]. Find ŵi ∈ Ki in parallel for
i = 1, 2, · · · , m such that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

( m∑
j=1,j �=i

Rju + vi

)
. (2.6)

Set wi = (1 − α)Riu + αŵi and w = (1 − α)u + α
∑m

i=1 ŵi .

Algorithm 2 Choose a relaxation parameter α ∈ (0, 1]. Find ŵi ∈ Ki sequentially for
i = 1, 2, · · · , m such that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

( ∑
j<i

wj + vi +
∑
j>i

Rju

)
(2.7)

where wj = (1 − α)Rju + αŵj , j = 1, 2, · · · i − 1. Set w = (1 − α)u + α
∑m

i=1 ŵi .

Denote u∗ the unique solution of (2.1), the following convergence estimate is correct for
Algorithms 1 and 2 (see Tai [13]):

Theorem 2.1 Assuming that the space decomposition satisfies (2.3), (2.4) and that the func-
tional F satisfies (2.5). Then for Algorithms 1 and 2, we have

F (w) − F (u∗)
F (u) − F (u∗)

≤ 1 − α

(
√

1 + C∗ +
√

C∗)2
, C∗ =

(
C2 +

[C1C2]
2

2κ

)
2

κ
. (2.8)

Algorithms 1 and 2 are written for general space decompositions. In implementation for
a specific space decomposition technique, auxiliary functions may be introduced to make the
implementation simpler and easier. For example, by defining ei = ŵi − Riu, Algorithms 1
and 2 can be written in the following equivalent form:

Algorithm 3 Choose a relaxation parameter α ∈ (0, 1/m]. Find ei ∈ Vi in parallel for
i = 1, 2, · · · , m such that

ei = arg min
vi+Riu∈Ki

vi∈Vi

G(vi) with G(vi) = F

(
u + vi

)
. (2.9)

Set w = u + α
∑m

i=1 ei .
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Algorithm 4 Choose a relaxation parameter α ∈ (0, 1]. Find ei ∈ Vi sequentially for i =
1, 2, · · · , m such that

ei = arg min
vi+Riu∈Ki

vi∈Vi

G(vi) with G(vi) = F

(
u +

∑
j<i

ej + vi

)
(2.10)

Set w = u + α
∑m

i=1 ei .

3. Some Applications. We apply the algorithms for the following obstacle problem:

Find u ∈ K, such that a(u, v − u) ≥ f(v − u), ∀v ∈ K, (3.1)

with

a(v, w) =

∫
Ω

∇v · ∇w dx, K = {v ∈ H1
0 (Ω)| v(x) ≥ ψ(x) a.e. in Ω}.

It is well known that the above problem is equivalent to the minimization problem (2.1)
assuming that f(v) is a linear functional on H1

0 (Ω). For the obstacle problem (3.1), the
minimization space V = H1

0 (Ω). Correspondingly, we have κ = 1 for assumption (2.5).
Later, | · |1 and ‖ · ‖1 are used to denote the semi-norm and norm of H1

0 (Ω). The finite
element method shall be used to solve (3.1). It shall be shown that domain decomposition and
multigrid methods satisfy the conditions (2.3) and (2.4). For simplicity of the presentation,
it will be assumed that

ψ = 0.

3.1. Overlapping domain decomposition methods. For the domain Ω, let
TH be a shape regular quasi-uniform finite element division, or a coarse mesh, of Ω, with
a mesh size H. Further more, assume that {Ωi}M

i=1 is a non-overlapping decomposition
of Ω where each Ωi has a diameter of order H and is the union of several coarse mesh
elements. We further refine TH to get a fine mesh partition Th with mesh size h. We
assume that Th forms a shape regular quasi-uniform finite element subdivision of Ω. We
call this the fine mesh or the h-level subdivision of Ω. We denote by SH ⊂ W 1,∞

0 (Ω) and
Sh ⊂ W 1,∞

0 (Ω) the continuous, piecewise linear finite element spaces over the H-level and
h-level subdivisions of Ω respectively. For each Ωi, we consider an enlarged subdomain Ωδ

i

consisting of elements τ ∈ Th with distance(τ, Ωi) ≤ δ. The union of Ωδ
i covers Ω̄ with

overlaps of size δ. For the overlapping subdomains, assume that there exist m colors such
that each subdomain Ωδ

i can be marked with one color, and the subdomains with the same
color will not intersect with each other. Let Ωc

i be the union of the subdomains with the ith

color, and Vi = {v ∈ Sh| v(x) = 0, x 
∈ Ωc
i}, i = 1, 2, · · · , m. By denoting the subspaces

V0 = SH , V = Sh, we find that

a). V =
m∑

i=1

Vi and b). V = V0 +
m∑

i=1

Vi. (3.2)

Note that the summation index is now from 0 to m instead of from 1 to m when the coarse
mesh is added. For the constraint set K, we define

K0 = {v ∈ V0| v ≥ 0}, and Ki = {v ∈ Vi| v ≥ 0}, i = 1, 2, · · · , m. (3.3)

Under the condition that ψ = 0, it is easy to see that (2.2) is correct both with or without
the coarse mesh. When the coarse mesh is added, the summation index is from 0 to m. Let
{θi}m

i=1 be a partition of unity with respect to {Ωc
i}m

i=1, i.e. θi ∈ Vi, θi ≥ 0 and
∑m

i=1 θi = 1.
It can be chosen so that

|∇θi| ≤ C/δ, θi(x) =

{
1 if x ∈ τ , distance (τ, ∂Ωc

i ) ≥ δ and τ ⊂ Ωc
i ,

0 on Ω\Ωc
i .

(3.4)
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Later in this paper, we use Ih as the linear Lagrangian interpolation operator which uses
the function values at the h-level nodes. In addition, we also need a nonlinear interpolation
operator I�

H : Sh �→ SH . Assume that
{
xi

0

}n0

i=1
are all the interior nodes for TH and let ωi be

the support for the nodal basis function of the coarse mesh at xi
0. The nodal values for I�

Hv
for any v ∈ Sh is defined as (I�

Hv)(xi
0) = minx∈ωi v(x), c.f [13]. This operator satisfies

I�
Hv ≤ v, ∀v ∈ Sh, and I�

Hv ≥ 0, ∀v ≥ 0, v ∈ Sh. (3.5)

Moreover, it has the following monotonicity property

I�
h1

v ≤ I�
h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (3.6)

As I�
Hv equals v at least at one point in ωi, it is thus true that for any u, v ∈ Sh

‖I�
Hu − I�

Hv − (u − v)‖0 ≤ cdH|u − v|1, |I�
Hv|1 ≤ cd|v|1, (3.7)

where d indicates the dimension of the physical domain Ω, i.e. Ω ⊂ Rd, and

cd =




C if d = 1;

C
(
1 +

∣∣log H
h

∣∣ 1
2
)

if d = 2,

C
(

H
h

) 1
2 if d = 3,

With C being a generic constant independent of the mesh parameters. See Tai [13] for a
detailed proof.

3.2. Decompositions with or without the coarse mesh. We first give the
definition for the operators Ri : K �→ Ki for the decomposition (3.2.a), i.e. we consider the
domain decomposition method without using the coarse mesh. For any given v ∈ Sh, we
decompose v as

v =
m∑

i=1

vi, , vi = Ih(θiv), (3.8)

and we define the mapping from v to vi as Ri, i.e. Riv = vi, ∀v ∈ Sh. In case that v ≥ 0, it
is true that vi ≥ 0, i.e. Ri is a mapping from K to Ki. In addition,

m∑
i=1

‖Riu − Riv‖2
1 ≤ C

(
1 +

1

δ2

)
‖u − v‖2

1,

which shows that C1 ≤ C(1 + δ−1). It is known that C2 ≤ √
m with m being the num-

ber of colors. From Theorem 2.1, the following rate is obtained for the one level domain
decomposition method (c.f. (3.2.a)):

F (w) − F (u∗)
F (u) − F (u∗)

≤ 1 − α

1 + C(1 + δ−2)
.

For Algorithm 2, we can take α = 1 .
Numerical experiments and the convergence analysis for the two-level domain decom-

position method, i.e. an overlapping domain decomposition with a coarse mesh, seem still
missing in the literature. To apply our algorithms for the two-level domain decomposition
method , i.e. for the decomposition (3.2.b), the operators Ri are defined as

R0v = I�
Hv, Riv = Ih(θi(v − I�

Hv)), i = 1, 2, · · ·m ∀v ∈ Sh. (3.9)

For a given v ≥ 0, it is true using (3.5) that 0 ≤ R0v ≤ v and so Riv ≥ 0, i = 1, 2, · · · , m,
which indicates that R0v ∈ K0 and Riv ∈ Ki, i = 1, 2, · · · , m for any v ∈ K. It follows from
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(3.7) that for any u, v ∈ K ‖R0u−R0v‖1 ≤ cd‖u− v‖1. Note that Riu−Riv = Ih

(
θi(u− v−

I�
Hu + I�

Hv)
)
. Using estimate (3.7) and a proof similar to those for the unconstrained cases,

c.f. [17], [18], it can be proven that ‖Riu − Riv‖2
1 ≤ cd

(
1 + H

δ

)
‖u − v‖2

1. Thus

(
‖R0u − R0v‖2

1 +
m∑

i=1

‖Riu − Riv‖2
1

) 1
2

≤ C(m)cd

(
1 +

(
H

δ

) 1
2
)
‖u − v‖1.

The estimate for C2 is known, c.f. [17], [18]. Thus, for the two-level domain decomposition

method, we have C1 = C(m)cd

(
1 +

√
H√
δ

)
, C2 = C(m), where C(m) is a constant only

depending on m, but not on the mesh parameters and the number of subdomains. An
application of Theorem 2.1 will show that the following convergence rate estimate is correct
for the two-level domain decomposition method (3.2.b):

F (w) − F (u∗)
F (u) − F (u∗)

≤ 1 − α

1 + c2
d(1 + Hδ−1)

.

3.3. Multigrid decomposition. Multigrid methods can be regarded as a repeated
use of the two-level method. We assume that the finite element partition Th is constructed
by a successive refinement process. More precisely, Th = TJ for some J > 1, and T j for
j ≤ J is a nested sequence of quasi-uniform finite element partitions, see [13], [17], [18]. We
further assume that there is a constant γ < 1, independent of j, such that hj is proportional
to γ2j . Corresponding to each finite element partition T j, a finite element space Mj can be
defined by

Mj = {v ∈ W 1,∞
0 (Ω) : v|τ ∈ P1(τ), ∀τ ∈ Tj}.

let {xk
j }

nj

k=1 be the set of all the interior nodes. Denoted by {φi
j}

nj

i=1 the nodal basis functions
satisfying φi

j(x
k
j ) = δik. We then define a one dimensional subspace V i

j = span(φi
j). Letting

V = MJ and Ki
j = {v ∈ V i

j | v ≥ 0}, we have the following trivial space decomposition:

V =

J∑
j=1

nj∑
i=1

V i
j , K =

J∑
j=1

nj∑
i=1

Ki
j , . (3.10)

Each subspace V i
j is a one dimensional subspace. Let I�

hj
to be the nonlinear interpolation

operator from Mj to MJ . For any v ≥ 0 and j ≤ J −1, define vj = I�
hj

v−I�
hj−1

v ∈ Mj . Let

vJ = v − I�
hJ−1

v ∈ MJ . A further decomposition of vj is given by vj =
∑nj

i=1 vi
j with vi

j =

vj(x
i
j)φ

i
j . It is easy to see that

v =

J∑
j=1

vj =

J∑
j=1

nj∑
i=1

vi
j . (3.11)

We define the mapping from v to vi
j to be Ri

j , i.e. Ri
jv = vi

j . It follows from (3.5) and (3.6)
that vi

j ≥ 0 for all v ≥ 0, i.e. Ri
j is a mapping from K to Ki

j under the condition that ψ = 0.
Define

c̃d =




C, if d = 1;

C(1 + | log h| 12 ), if d = 2;

Ch− 1
2 , if d = 3.

For any given u ∈ Sh, we define uj and ui
j in a similar way as we did for v. The following

estimate can be obtained using approximation properties (3.7) (see [13]):

J∑
j=1

nj∑
i=1

‖Ri
ju − Ri

jv‖2
1 ≤ C

J∑
j=1

h−2
j ‖uj − vj‖2

0 ≤ c̃2
d

J∑
j=1

h−2
j h2

j−1 |u − v|21 ≤ c̃2
dγ−2J |u − v|21 ,
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which proves that

C1
∼= c̃dγ−1J

1
2 ∼= c̃dγ−1| log h|

1
2 .

The estimate for C2 is known, i.e. C2 = C(1 − γd)−1, see Tai and Xu [18]. Thus for the
multigrid method, the error reduction factor for the algorithms is

F (w) − F (u∗)
F (u) − F (u∗)

≤ 1 − α

1 + c̃2
dγ−2J

.

3.4. Numerical experiments. For the implementation of the proposed algorithms,
we need some subroutines to carry out the actions of the decomposition operators and some
other subroutines to solve the sub-minimization problems in the algorithms. If we implement
the algorithms in the form as given in Algorithms 3 and 4, it can be seen the decomposition
operators Ri are only needed to determine the obstacles for the subproblems.

Let us first sketch the implementation for the DD methods with or without the coarse
mesh. Without the coarse mesh, we need to have some subroutines to calculate the θi

functions for the decomposition operators Ri given in (3.8). The construction of the θi

functions are not unique and we just choose one of them. The sub-minimization problems
over the subdomains are solved by the augmented Lagrangian method as stated in [11] (but
without the dimensional splitting). Once the coarse mesh is added, we need a subroutine
to calculate I�

Hv for any given v ∈ Sh and this will give the decomposition operator R0 as
given in (3.9). Once this is done, the other operators Ri can be done using the functions
θi. The sub-minimization problem over the coarse mesh is also solved by the augmented
Lagrangian method, see [16, 11]. The subproblems need more computing time in the first
iteration. From the second iteration, very good intial guess is available and the iterations are
terminated after a few iterations.

For the multigrid decomposition (3.10), we need to calculate I�
hj

to get the actions of

operators Ri
j . The cost for calculating this is very cheap. For any v ∈ Sh and v ≥ 0, we

use a vector zj to store the values minτi
j
v for all the elements τ i

j ⊂ T j. As the meshes are

nested, the vectors zj can be computed recursively starting from the finest mesh and ending
with the coarsest mesh. From the vectors zj , it is easy to compute I�

hj
v on each level. The

value of I�
hj

v at a given node is just the smallest value of zj in the neighboring elements.

The sub-minimization problems are just some minimization problems over a one-dimensional
subspace and explicit formula can be given for these sub-minimization problems and they
can be implemented similarly as for unconstrained problems, see [16]. The operation cost
per iteration for the algorithms is O(nJ).

We shall test our algorithms for the obstacle problem (3.1) with Ω = [−2, 2]× [−2, 2], f =
0 and ψ(x, y) =

√
x2 + y2 when x2 + y2 ≤ 1 and ψ(x, y) = −1 elsewhere. This problem has

an analytical solution [13]. Note that the continuous obstacle function ψ is not even in
H1(Ω). Even for such a difficult problem, uniform linear convergence has been observed in
our experiments. In the discrete case, the non-zero obstacle can be shifted to the right hand
side.

Figure 3.1 shows the convergence rate for Algorithm 2 with different overlapping sizes
for decomposition (3.9). Figure 3.2 shows the convergence rate for Algorithm 2 with the
multigrid method for decomposition (3.11) and J indicates the number of levels. In the
figures en is the H1-error between the computed solution and the true finite element solution
and e0 is the initial error. log(en/e0) is used for one of the subfigures. The convergence rate
is faster in the beginning and then approaches a constant after some iterations.
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