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51. Singular Function Enhanced Mortar Finite Element

Xuemin Tu1, Marcus Sarkis 2

1. Introduction. We are interested in solving the following elliptic variational prob-
lem: Find u∗ ∈ H1(Ω), such that

{
a(u∗, v) = f(v) ∀v ∈ H1

0 (Ω)
u∗ = u∗

0 on ∂Ω
, (1.1)

where

a(u∗, v) =

∫
Ω

∇u∗ · ∇v dx and f(v) =

∫
Ω

fv dx.

We assume the function f ∈ L2(Ω). We also assume the function u∗
0 has an extension H2(Ω),

which we denote also by u∗
0. We let the domain Ω to be the L-shaped domain in �2 with

vertices V1 = {0, 0}, V2 = {1, 0}, V3 = {1, 1}, V4 = {−1, 1}, V5 = {−1,−1}, and V6 = {0,−1}.
It is well-known that the solution u∗ of (1.1) does not necessarily belong to H2(Ω) due to
the nonconvexity of the domain Ω at the corner V1, and therefore, standard finite element
discretizations do not give second order accurate schemes. Theoretical and numerical work
on corner singularity are very well-known and several different approaches were proposed
[4, 2, 5, 6, 7, 8, 9, 10]; see the references therein. The main goal of the paper is to design and
analyze optimal accurate finite element discretizations based on mortar techniques [1, 11]
and singular functions [8, 7]. The proposed methods are variation of the methods described
in Chapter 8 of [10] where a smoothed cut-off singular function is added to the space of finite
elements. There, a smoothed cut-off function is applied to make the singular function to
satisfy the zero Dirichlet boundary condition. Here, instead, we use mortar finite element
techniques on the boundary of ∂Ω to force, in a weak sense, the boundary condition. As a
result, accurate and general schemes can be obtained for which they do not rely on costly
numerical integrations and linear solvers.

2. Notations. We next introduce some notations and tools.

2.1. Triangulation. Let T h(Ω) be a standard finite element triangulation of Ω. We
assume the triangulation T h(Ω) to be shape regular and quasi-uniform with grid size of
O(h). Let V h(Ω), also denoted by V h, be the space of continuous piecewise linear functions
on T h(Ω); note that we have not assumed the functions of V h to vanish on ∂Ω.

2.2. Singular Functions and Regularity Results. We note that the solution u∗

of (1.1) does not necessarily belong to H2(Ω) even if f and u∗
0 are very smooth. For instance,

consider the primal singular function defined by ψ+(r, θ) = r
2
3 sin( 2

3
θ). The function ψ+

is smooth everywhere in Ω except near the non-convex corner V1. It is easy to check that
ψ+ ∈ H5/6−ε(Ω) if, and only if, ε is positive and −�ψ+ ≡ 0 on Ω. We note that ψ+ vanishes
on the intervals [V1, V2] and [V6, V1], plus it is smooth on the remaining boundary of ∂Ω.

Another function that will play an important role in our studies here is the dual singular

function ψ− defined as ψ−(r, θ) = r−
2
3 sin( 2

3
θ). We note that −∆ψ− ≡ 0 and ψ− vanishes

on the intervals [V1, V2] and [V6, V1], and it is easy to check that ψ− ∈ H1/3−ε if, and only if,
ε is positive.
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It is well-known [8, 7] that the solution of (1.1) has a unique representation

u∗ = wu∗ + λu∗ψ+, (2.1)

where wu∗ ∈ H2(Ω) and λu∗ ∈ �, and the following regularity estimates hold:

‖wu∗‖H2(Ω) ≤ C
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
, (2.2)

and

|λu∗ | ≤ C‖f‖L2(Ω). (2.3)

2.3. Mortar Functions on the Boundary. The boundary of our domain is
given by ∂Ω =

⋃6
m=1 Dm, where the open segments Dm are given by the intervals D1 =

(V1, V2), D2 = (V2, V3), D3 = (V3, V4), D4 = (V4, V5), D5 = (V5, V6), and D6 = (V6, V1).
For each interval Dm, the triangulation Th(Dm) is inherited from the triangulation Th(Ω).
Let us denote the space Wh(Dm) as the trace of Vh to Dm; i.e.

Wh(Dm) = {v ∈ C(Dm) : v = w(Dm), w ∈ Vh}.

We also denote the space W 0
h (Dm) as the functions of Wh(Dm) which vanish at the two end

points of Dm. Thus, W 0
h (Dm) = Wh(Dm) ∩ H1

0 (Dm). The number of degrees of freedom of
W 0

h (Dm) are the number of interior nodes of Th(Dm) which are equal aslo the number of
degrees of freedom of the Lagrange multiplier spaces Mh(Dm). In this paper, in the numerical
experiments, we adopt the dual biorthogonal functions introduced in [11]. We note that the
theory presented here also holds for the old mortars [1]. For each edge Dm, the mortar
projection operator Πm : C(Dm) −→ Wh(Dm) is defined by

v − Πmv ∈ C0(Dm), and

∫
Dm

(v − Πmv)µmds = 0, ∀µm ∈ Mh(Dm). (2.4)

It can be shown [1, 11] that

‖v − Πmv‖
H

1/2
00 (Dm)

≤ Ch‖v‖H3/2(Dm), ∀v ∈ H3/2(Dm), (2.5)

and

inf
µm∈Mh(Dm)

‖v − µm‖(H1/2(Dm))′ ≤ Ch‖v‖H1/2(Dm), ∀v ∈ H1/2(Dm). (2.6)

3. Singular Function Enhanced Mortar Finite Element. We define the
discrete global space V +

h as follows:

V +
h = {v = w + λψ+ : w ∈ Vh, λ ∈ �, and Πmv = 0, m = 1, · · · , 6}.

Functions of the space V +
h vanish at the vertices Vk, k = 1, · · · , 6 and satisfy zero Dirichlet

boundary condition (in the weak discrete sense) on the intervals Dm. It is easy to see that
the degrees of freedom of the space V +

h are the λ and the nodal values of w at the interior
nodes of Th(Ω); the values of w on the Dm are obtained via w = −λΠmψ+.

We next introduce the new finite element formulation using the primal singular function
ψ+ and mortar techniques in order to obtain an approximation for u∗. We then introduce
two second order accurate approximations for the stress intensive factor (SIF) λu∗ based on
the dual singular function ψ−.
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3.1. Finite Element Formulation. Let us define u0 ∈ Vh as u0 = Πmu∗
0 on Dm,

m = 1, · · · , 6, and zero nodal values at the interior nodes of Th(Ω). We define the singular
function enhanced mortar finite element method as follows:

Find u = wu + λuψ+ such that u − u0 ∈ V +
h and

a(u, v) = f(v), ∀v ∈ V +
h . (3.1)

We prove later in this paper that u is a second order approximation to u∗. We note
however that the λu and wu separately are not second order approximations of λu∗ and wu∗ ,
respectively. So, in the next subsections, we introduce two algorithms for obtaining second
order approximations for the stress intensive factor (SIF) λu∗ .

3.2. Extraction of SIF through a Smoothed Cut-off Function. Define
f = −�u∗ and f− = −�s−, where s− = ρψ−. Here, the smoothed cut-off function ρ(r) is
defined in the polar coordinate system as

ρ(r) =




1 0 ≤ r ≤ 1
4

−192r5 + 480r4 − 440r3 + 180r2 − 135
4

r + 27
8

1
4
≤ r ≤ 3

4

0 3
4
≤ r

.

It is easy to check that the function ρ has two continuous derivatives. By applying Green’s
formula twice [9], we obtain

λu∗ =

∫
Ω
(fs− − f−u∗) +

∫
∂Ω

s−∂ns− − u∗
0∂ns−

π
,

and by using that s− vanishes on ∂Ω we have

λu∗ =

∫
Ω
(fs− − f−u∗) −

∫
∂Ω

s−u∗
0∂ns−

π
. (3.2)

The discrete stress intensity factor is obtained as follows. We first solve (3.1) to obtain
u = wu + λuψ+, and then we plug this u as u∗ in (3.2) to define the discrete stress intensity
factor as

λh
u =

∫
Ω
(fs− − f−u) −

∫
∂Ω

u∗
0∂ns−

π
. (3.3)

3.3. Extraction of SIF without a Smoothed Cut-off Function. Similarly,
we can use the same approach above for ψ− as s−. Using −�ψ− ≡ 0, we obtain

λu∗ =

∫
Ω

fψ− −
∫

∂Ω
(u∗

0∂nψ− − ψ−∂nu∗)
π

. (3.4)

We note that we do not know the value of ∂nu∗ and therefore, the formula (3.4) is not
applicable for defining the discrete stress intensity factor. We remark that an approximation
of ∂nu∗ can be obtained via the saddle point formulation [11] of (3.1) but unfortunately we
cannot prove that this approximation is of second order. We next introduce a new method
that does not require the knowledge of ∂nu∗.

We modify ψ− to ψ̃−, where ψ̃− vanishes on the whole ∂Ω, ψ̃− and ψ− have the same
singular behavior in a neighbourhood of the origin, and −∆ψ̃− ≡ 0. This is done as follows.
We first solve δψ− ∈ H1(Ω) such that

{
a(δψ−, v) = 0 ∀v ∈ H1

0 (Ω)
δψ− = ψ− on ∂Ω.

. (3.5)
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Then, we define ψ̃− = ψ− − δψ−. We note that ψ− has a H2 extension to Ω and therefore,
the solution of (3.5) is in the form of δψ− = wδψ− + λδψ−ψ+, where wδψ− ∈ H2(Ω). Hence,

the singular behavior of ψ̃− near the origin is the same as of ψ−, and we obtain

λu∗ =

∫
Ω

fψ̃− −
∫

∂Ω
u∗

0∂nψ̃−

π
.

In the case the boundary value u∗
0 vanishes on ∂Ω, we have

λu∗ =

∫
Ω

fψ̃−

π
. (3.6)

We note that we do not know ψ̃− and therefore, a numerical approximation for ψ̃− must be
obtained. We first define δψ−

0 ∈ Vh as δψ−
0 = Πmψ− on the Dm and zero nodal values at the

interior nodes of Th(Ω). We solve δψ−
h − δψ−

0 ∈ V +
h such that

a(δψ−
h , v) = 0, ∀v ∈ V +

h .

We let ψ̃−
h = ψ− − δψ−

h , and define the discrete stress intensity factor by

λ̂h
u =

∫
Ω

fψ̃−
h

π
=

∫
Ω

fψ− − fδψ−
h

π
. (3.7)

We remark that λ̂h
u can be obtained without computing the discrete solution u and can be

used only if u∗
0 vanishes on ∂Ω.

4. Analysis. In this section we analyze the proposed methods. We will prove opti-
mality accuracy errors of the discrete solution u on the L2 and H1 norms. We also show that
the two proposed discrete stress intensive factor formulas given by (3.3) and (3.7) are both
second order approximations for λu∗ .

4.1. Uniform ellipticity. We note that v ∈ V +
h implies that v vanishes on D1 and

D6. Therefore, using a standard Poincaré inequality, we have:

Lemma 4.1 There exists a constant C that does not depend on h and v such that

‖v‖H1(Ω) ≤ C|v|H1(Ω), ∀v ∈ V +
h . (4.1)

4.2. Energy Discrete Error. We note that proposed discretization (3.1) is non-
conforming since the space V +

h is not included in H1
0 (Ω); functions in V +

h vanishes on Dm,
m = 2, · · · 5 only in a weak sense. To establish H1 apriori error estimate, we use the Cea’s
lemma (the second Strang lemma) for non-conforming discretization [3]. We obtain

‖u∗ − u‖H1(Ω) ≤ inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) + sup
z∈V +

h

|a(u∗, z) − f(z)|
‖z‖H1(Ω)

=

inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) + sup
z∈V +

h

|
∫

∂Ω
z∂nu∗ds|

‖z‖H1(Ω)

. (4.2)

The first term of (4.2) is the best aproximation error and the second term is the
consistency error.
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4.2.1. Best Approximation Error. We next establish that the best approxima-
tion error in the energy norm is of optimal order.

Lemma 4.2 The best approximation error is of order h,

inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) ≤ Ch
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
. (4.3)

Proof. Let ṽ be defined as
ṽ = Ih(u∗ − λu∗ψ+) + λu∗ψ+,

where Ih is the standard pointwise interpolator on Vh. Note that the interpolation is well
defined since the function wu∗ = u∗ − λu∗ψ+ belongs to H2(Ω) and therefore, wu∗ is a
continuous function. The function ṽ−u∗ belongs to H1

0 (Dm) and does not satisfy the mortar
condition. We next modify ṽ to v to make u∗ − v to satisfy the mortar condition (2.4). This
is done by v = ṽ +

∑6
m=1 HmΠm(u∗ − ṽ), where the operator Hm denote the Vh-discrete

harmonic extension function with boundary values given on Dm and zero on ∂Ω\Dm. In
addition, it is easy to check that v ∈ u0 + V +

h . We have

‖u∗ − v‖H1(Ω) = ‖wu∗ − Ihwu∗‖H1(Ω) + ‖
6∑

m=1

HmQm(u∗ − ṽ)‖H1(Ω). (4.4)

For the first term of (4.4), we use a standard approximation result on pointwise interpolation
and (2.2) to obtain

‖wu∗ − Ihwu∗‖H1(Ω) ≤ Ch‖wu∗‖H2(Ω) ≤ Ch
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
.

For the second term of (4.4), we use properties of discrete harmonic extensions and H
1/2
00 -

norm, and the approximation result (2.5) to obtain

‖
6∑

m=1

HmΠm(u∗ − ṽ)‖H1(Ω) ≤ C
6∑

m=1

‖HmΠm(u∗ − ṽ)‖H1(Ω)

≤ C
6∑

m=1

‖Πm(u∗ − ṽ)‖
H

1/2
00 (Dm)

≤ C
6∑

m=1

‖u∗ − ṽ‖
H

1/2
00 (Dm)

≤ Ch‖u∗
0‖H3/2(Dm) ≤ Ch‖u∗

0‖H2(Ω).

4.2.2. Consistency Error. We next establish that the consistency error is of opti-
mal order.

Lemma 4.3 The consistency error is of order h

sup
z∈V +

h

|
∫

∂Ω
∂nu∗zds|

‖z‖H1(Ω)

≤ Ch
(
‖f‖L2(Ω) + ‖f + ∆u∗

0‖L2(Ω)

)
. (4.5)

Proof. We remark that z ∈ V +
h implies that z vanishes on D1 and D6. Therefore,

∫
∂Ω

z∂nu∗ds =
5∑

m=2

∫
Dm

z∂nu∗ds.
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By the definition of V +
h , we have

∫
Dm

zµmds = 0, µm ∈ Mh(Dm). Thus,

5∑
m=2

∫
Dm

z∂nu∗ds =
5∑

m=2

∫
Dm

z(∂nu∗ − µm)ds, ∀µm ∈ Mh(Dm),

and using duality arguments we obtain

5∑
m=2

|
∫

Dm

z∂nu∗ds| ≤ C‖z‖H1/2(Dm) inf
µm∈Mh(Dm)

‖∂nu∗ − µm‖(H1/2)
′
(Dm).

Let us denote Ω1/4 = Ω ∩ {r2 = x2 + y2 ≤ 1/16}, and Ωc
1/4 = Ω\Ω1/4. Since ψ+ ∈

H2(Ωc
1/4), we have u∗ ∈ H2(Ωc

1/4), and therefore we can use a trace theorem to obtain

∂nu∗ ∈ H1/2(Dm), m = 2, · · · , 5. We then use approximation property (2.6), a trace result,
and the regularity estimates (2.2) and (2.3) to obtain

inf
µm∈Mh(Dm)

‖∂nu∗ − µm‖(H1/2)
′
(Dm) ≤ Ch‖∂nu∗‖H1/2(Dm) ≤ Ch‖u∗‖H2(Ωc

1/4)

≤ Ch(|λu∗ |‖ψ+‖H2(Ωc
1/4) + ‖wu∗‖H2(Ω)) ≤ Ch

(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
.

We finally use that ‖z‖H1/2(Dm) ≤ C‖z‖H1(Ω) to obtain (4.5).

4.3. Error in the L2-norm. We also obtain an optimal error estimates in L2(Ω)-
norm for the problem (1.1).

Lemma 4.4 The L2 discrete error is of order h2

‖u∗ − u‖L2(Ω) ≤ Ch2 (
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
. (4.6)

Proof. The proof follows easily from an Aubin-Nitche trick argument and by the fact that
the enhanced space V +

h is used both as the solution space as well as the test function space
for (3.1).

4.4. Stress Intensive Factor Error. The apriori error estimate for stress intensive
factor errors |λu∗ − λh

u| with λh
u defined on (3.3), and |λu∗ − λ̂h

u| with λ̂h
u defined on (3.7) for

the case u∗
0 ≡ 0, will follow easily from the L2-error estimates.

Lemma 4.5 If f ∈ L2(Ω), then the recovering formula (3.3) gives h2 accuracy

|λu∗ − λu| ≤ Ch2 (
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
.

Proof. We subtract (3.3) from (3.2) and we obtain

|λu∗ − λu| = |
∫
Ω

f−(u − u∗)
π

| ≤ ‖f−‖L2(Ω)‖u − u∗‖L2(Ω).

The lemma follows from the Lemma 4.4 and the smoothing properties of the smoothed cut-off
function ρ.

Using similar arguments we obtain:

Lemma 4.6 If f ∈ L2(Ω) and u∗
0 ≡ 0, then the recovering formula (3.7) gives h2 accuracy

|λu∗ − λh
u∗ | ≤ Ch2‖f‖L2(Ω).
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Table 5.1: Results with f = −�s+ −�s+
2 + 6x(y2 − y4) + (x − x3)(12y2 − 2)

k λk − 1 σk 1 − λ̂k σ̂k ek
2 εk

2 ek
1 εk

1

2 2.967e-1 – 2.698e-3 – 7.512e-2 – 9.032e-1 –
3 9.457e-2 1.6497 6.914e-4 1.9642 2.415e-2 1.6380 5.027e-1 0.8454
4 2.651e-2 1.8349 1.673e-4 2.0474 6.805e-3 1.8275 2.673e-1 0.9115
5 6.862e-3 1.9497 4.083e-5 2.0152 1.764e-3 1.9475 1.361e-1 0.9736
6 1.730e-3 1.9873 1.006e-5 2.0216 4.454e-4 1.9858 6.839e-2 0.9928
7 4.341e-4 1.9952 2.550e-6 1.9832 1.116e-4 1.9958 3.424e-2 0.9980
8 1.085e-5 1.9996 6.290e-7 2.0154 2.794e-5 1.9991 1.713e-2 0.9994

5. Numerical Experiments. An advantage of the proposed methods is in the con-
struction of the stiffness matrix of (3.1). Its construction requires few work on numerical
integrations since we do integrations by parts on a(ψ+, ϕi) or a(ψ+, ψ+). Here the function
ϕi stands for a nodal basis function of Vh. The only integrations that cannot be done exact
are on Dm, m = 2, · · · , 5. There, the singular function is very smooth and therefore easy in
in numerical integrations.

In the set of experiments, we solve the discrete Poisson equation (3.1) with f = −�s+ −
�s+

2 +6x(y2−y4)+(x−x3)(12y2−2). Hence, the exact solution is u = s++s+
2 +(x−x3)(y2−

y4). Here, s+ = ρ(r)ψ+ and s+
2 = ρ(r)ψ+

2 , where ψ+
2 is the next singular function associated

to the problem (1.1); i.e. ψ+
2 = r4/3 sin(4/3θ). The integer k is the level of refinement of

the mesh; k = 0 is a mesh with 2 triangles per quadrant. The L2 norm (H1 semi-norm)
discretization error on the kth level mesh is given by ek

2 = ‖u−u∗‖L2(Ω) (ek
1 = |u−u∗|H1(Ω)).

The discrete stress intensity factor are given by λk = λh
u and λ̂k = λ̂h

u. In our example,
λu∗ = 1. We also measure the rate of convergences for the four discrete errors given by

σk = log2(
|λk−1 − 1|
|λk − 1| ), σ̂k = log2(

|λ̂k−1 − 1|
|λ̂k − 1|

) εk
2 = log2(

ek−1
2

ek
2

), and εk
1 = log2(

ek−1
1

ek
1

).

The numerical experiments confirm the theory showing optimality of the proposed algo-
rithms and show that the recovering formula (3.7) is very accurate.
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