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26. Parallel Implementation of Collocation Methods

R. Yates1, I. Herrera2

1. Introduction. Domain decomposition methods (DDM) have received much atten-
tion in recent years3 in that they offer very effective means for parallelizing computational
models of continuous systems. Combining collocation procedures with domain decomposition
methods, however, presents complications which must be overcome in order to profit from
the advantages of parallel computing. Such methods can in fact be derived using a variety of
approaches. One possibility involves the use of Steklov-Poincaré operators [7] while another
is to apply an indirect formulation [3],[4],[6],[1]. In this paper, a method is derived based
upon the application of collocation together with an indirect formulation which is suitable for
parallel computation. As a first approach, we shall consider the case of a symmetric, elliptic
differential operator which will allow for the utilization of the conjugate gradient method in a
novel manner - where successive iterations involve the (parallel-computed) solutions of local
problems.

2. Formulation. We shall use the indirect or Trefftz-Herrera formulation [5] for a
boundary-value problem with prescribed jumps (BVPJ) for the case of a symmetric, elliptic
operator L as follows:

Let Ω be a domain in R
n with external boundary ∂Ω together with a partition Π =

{Ω1, ..., ΩE} and internal boundary Σ (Fig. 2.1). Let

Lu = −∇ ·
(
a · ∇u

)
+ cu (2.1)

be a symmetric, elliptic operator with c ≥ 0 and

Lu = f on Ωi for i = 1, ..., E (2.2)

u(x) = g(x) on ∂Ω (2.3)

[u] = j0 and [an · ∇u] = j1 on Σ (2.4)

Then u is said to be a solution of the BVPJ. Here, as in the general theory, the notation
[u] = u+ − u− and u̇ = 1

2
(u+ + u−) is used for the jump of a function and average value

across a (possibly discontinuous) internal boundary Σ.
The Green-Herrera formula [2] for this problem is given as

P − B − J = Q∗ − C∗ − K∗; (2.5)

where

〈Pu, w〉 =

∫
Ω

wLudx, 〈Q∗u, w〉 =

∫
Ω

uL∗wdx, (2.6)

〈Bu, w〉 =

∫
∂Ω

uan · ∇wds, 〈C∗u, w〉 =

∫
∂Ω

wan · ∇uds, (2.7)

〈Ju, w〉 =
〈
(J0 + J1)u, w

〉
= −

∫
Σ

j0 ˙an · ∇wds +

∫
Σ

j1wds, (2.8)
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Figure 2.1: Partition of the domain Ω

〈K∗u, w〉 = 〈(R∗ − S∗)u, w〉 = −
∫

Σ

[w] ˙an · ∇uds +

∫
Σ

u̇[an · ∇w]ds (2.9)

In the indirect formulation, the test functions w are chosen so that w ∈ Ñ ≡ NQ∩NC∩NR,
or equivalently:

L∗w = 0, w = 0 on ∂Ω and [w] = 0 on Σ (2.10)

In this case, the resulting formula reduces to

〈S∗u, w〉 = 〈(P − B − J)u, w〉 (2.11)

which is a variational formulation of the problem. A straightforward calculation shows that

〈S∗u, w〉 = −
∫

Σ

u̇ [an · ∇w] =

∫
Ω

(∇u · a · ∇w + cuw) ∀u, w ∈ Ñ (2.12)

so that S∗ is symmetric, positive-definite when L is.
In order to obtain the formulation suitable for parallelization, the notion of a particular

solution must be introduced.
Definition 2.1.- A function up is said to be a particular solution of the BVPJ provided

(P − B − J0)up = f − g − j0 (2.13)

or equivalently, if

Pup = Lup = f in each Ωi (2.14)

up = g on ∂Ω (2.15)

and
[up] = j0 on Σ (2.16)

A particular solution is therefore a function which satisfies the differential operator locally,
the external boundary conditions and the jump conditions of the function values on the
internal boundary. Nothing is specified regarding the jump conditions of the normal derivative
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(or flux) of a particular solution. As will be shown later, particular solutions can be obtained
readily from solutions of the local problems only. Clearly, a particular solution up of the
BVPJ is a solution of the BVJP if and only if J1up = j1.

From this last remark, the following result is easily derived:

Theorem 2.1 A function u is a solution of the BVPJ if and only if, for any particular
solution up we have

〈S∗v, w〉 =
〈
J1up − j1, w

〉
; ∀w ∈ Ñ where v = u − up (2.17)

3. The Numerical Algorithm. To derive a numerical procedure for the BVPJ in a
parallel processing environment, we first obtain a matrix equation from the above variational
principle and then develop an iterative solution process using the conjugate gradient method
in which each iteration involves the solution of local problems in the subregions Ωi; these
local problems can be effectively solved in parallel.

We first assume that we have a particular solution up of the BVPJ and, as above, let
v = u − up where u is the desired solution. Since the differential operator L is symmetric
and [v] = v|∂Ω = 0, then we have v ∈ Ñ . From the above result Eq. (2.17), we have:

〈S∗v, w〉 =
〈
J1up − j1, w

〉
; ∀w ∈ Ñ (3.1)

A more explicit form of the above equation is

−
∫

Σ

v[an · ∇w]ds =

∫
Σ

w([an · ∇up] − j1)ds (3.2)

To obtain the matrix equation, we will use a system of weighting functions {w1, ..., wN}
of Ñ whose restrictions to the internal boundary Σ form a suitable subspace of L2(Σ). These
restrictions, w1|Σ , ..., wN |Σ will be used as basis functions to represent v:

v =
N∑

j=1

cjwj (3.3)

In this case we have:

−
N∑

j=1

cj

∫
Σ

[an · ∇wi]wjds =

∫
Σ

wi([an · up] − j1)ds (3.4)

which can be rewritten as:

A · c = b (3.5)

where Aij = −
∫
Σ

[an · ∇wi]wjds and bi =
∫
Σ

([an · ∇up] − j1)wids. It should be noted that

the matrix A is both symmetric and positive definite from Eq. (2.12) as wi, wj ∈ Ñ .
The solution of this matrix equation will provide the solution u = up + v to the BVPJ on

the interior boundary Σ. The solution on Ω can then be obtained by obtaining local solutions
in each subregion Ωi with boundary values supplied by u.

However, a direct computation of the matrix A and the obtention of the solution vector
c is expensive since the subdomains can be quite large. An alternative approach involves the
use of the conjugate gradient method, included in Appendix A, which requires the calculation
of the matrix product A · c once for each iteration. In fact, this method does not require the
calculation or storage of the components of the matrix A. Rather, the product is derived
from the local solutions of homogeneous BVPs in the subregions Ωi. To this end, we make
use of the following theorem:
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Theorem 3.1 Let p = (p1, ..., pn) be a vector and let ϕ be the solution to the homogeneous
boundary value problem in Ωi defined by:

L∗ϕ = 0 on Ωi for each i = 1, ..., E (3.6)

ϕ = 0 on ∂Ω ∩ ∂Ωi (3.7)

ϕ =
N∑

j=1

pjwj on Σ (3.8)

then

(A · p)i =

∫
Σ

wi[an · ∇ϕ]ds (3.9)

Proof. Since ϕ is continuous and vanishes on the exterior boundary ∂Ω, then ϕ ∈ Ñ . Then

we must have ϕ ≡
N∑

j=1

pjwj in each Ωi so that
N∑

j=1

pj [an · ∇wj ] = [an · ∇ϕ] which is essentially

the statement of the theorem.

4. The Numerical Procedure. Implementation of the above algorithm requires
both the construction of a particular solution up and the test function basis {w1, ..., wN}.
One way to obtain a particular solution is by setting u̇p = 0 on Σ ie. by solving local problems
ui

p on each Ωi such that:

Lui
p = f in each Ωi (4.1)

ui
p = g on ∂Ω ∩ ∂Ωi (4.2)

ui
p = ± 1

2
j0 on Σ ∩ ∂Ωi (4.3)

where the sign is chosen according the outward normal.
The resulting up will satisfy the differential equation, the external boundary conditions

and the internal jump operator J0. An alternative way of deriving a up is to solve first
the global BVPJ on the coarse grid and then solve the problem locally on each of the local
domains Ωi using boundary values supplied by the coarse solution. This latter method would
tend to give an approximate solution ”closer” to the desired solution.

To obtain the test functions, the discretization of the local subdomains gives rise to a
discretization of the internal boundary Σ. For each such node point ni ∈ Σ a test function
wi can be constructed s.t.

L∗wi = 0 (4.4)

wi = 0 on ∂Ω ∩ ∂Ωj for all j (4.5)

and

wi(nj) = δij (4.6)

so that a function φ(x) on Σ can be approximated as φ(x) 	
N∑

j=1

φ(nj)wj(x) .

Techniques for such constructions using both linear and cubic polynomials on can be
found in [5]. It should be stressed that in the computations of the required integrals of the
form
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∫
Σ

wi[an · ∇u]ds =

∫
Σ

wiā
∂u

∂n
ds where ā = n · a · n (4.7)

that care must be taken to evaluate ∂u
∂n

with consistent precision.

5. Conclusions. The method presented above defines a procedure for parallelizing
the numeric solution for second order symmetric elliptic equations. As the solution matrix
obtained is symmetric and positive definite, direct application of the conjugate gradient
metod is utilized to insure adequate convergence; no preconditioning techniques are required.
Moveover, the method is applicable to problems with prescribed jumps (BVPJ) as well as
to the case of discontinuous coefficients with no additional complications to the numerical
procedure. Finally, it should be stressed that in the solution of the local problems, any
numerical procedure can be successfully employed.

Appendix A: The Conjugate Gradient Algorithm

To solve A · v = b where A is an N × N symmetric, positive definite matrix.

v0 = 0

r0 = b

p0 = r0

k = 0

while
∥∥rk

∥∥
∞ ≥ ε

u = A · pk[Singlematrixmultiplication/iteration]

αk+1 = rk · rk/(pk · u)

vk+1 = vk + αk+1pk

rk+1 = rk − αk+1u

βk+1 = rk+1 · u/(pk · u)

pk+1 = rk+1 − βk+1pk

k = k + 1
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