
Parallel Distributed Object-Oriented

Framework for Domain Decomposition

S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov1

UB RAS, Institute of Applied Mechanics kopyssov@udman.ru

Summary. The aim of this work is to reduce the development costs of new domain
decomposition methods and to develop the parallel distributed software adapted to
high performance computers. A new approach to development of the domain de-
composition software system is suggested; it is based on the object-oriented analysis
and middleware CORBA, MPI. In this paper, the main steps of domain decom-
position are determined, the object-oriented framework is described, and then it
is extended for parallel distributed computing. The given examples demonstrate
that the software developed in such a way provides mathematical clarity and rapid
implementation of the parallel algorithms.

1 Introduction

The idea of domain decomposition (DD) used not to be applied to parallel
algorithms and it gave rise to substructuring (Przemieniecki [1968]), subcon-
struction, macroelement, superelement, fragment, module-element, reduced
element, Schwartz (Sobolev [1936]), capacity matrix and other methods. Usu-
ally these methods have been applied to reduce an initial problem in the do-
main with a complex boundary to the sequence of problems in the subdomains
with sufficiently simple boundaries. Nowadays the parallel implementations of
DD allow improving the computational performance.

The most of DD software is based on one or another approach to the
approximation of a differential problem, mostly on the finite element (FE)
method. The complexity of FE models results in the necessity of using suit-
able programming techniques such as the object-oriented (OO) analysis. At
present, there are many publications on the FE OO models (Zimmermann
et al. [1992]), but OO analysis is rarely applied to the DD. There are some
references to the OO scientific software: Diffpack, PETSc, SPOOLES, Over-
ture. Diffpack (Cai [1998]) is an OO environment aimed at solving partial
differential equations (PDE). Overture (Brown et al. [1999]) provides the
OO framework for solving PDE on overlapping grids. The fundamental ab-
stractions are divided into functionality groups: data structures, linear and

606 S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov

nonlinear solvers, PDE, utilities. Recently, DD and multigrid methods have
been included. The MPI-based libraries PETSc (Portable Extensible Toolkit
for Scientific computation) and SPOOLES (Sparse Object-Oriented Linear
Equations Solver) use the OO style for matrix representation of PDE. In this
work the fundamental OO framework consisting of the general FE and DD
entities is suggested, and then it is extended by introducing new objects that
implement specific algorithms including parallel ones.

For parallel distributed implementation of the DD framework, it is appro-
priate to apply the existing techniques and middleware. MPI and CORBA
are the most commonly used ones. MPI (Message Passing Interface) is used
in massively parallel systems. An MPI-based program describes one of the
identical processes handling its own portion of the data (SIMD). MPI pro-
vides blocking/nonblocking communications between the groups of processes.
C++ can be used to implement a parallel distributed object; for that, it is
necessary to implement dynamic creation of an object and remote method
invocation. The main shortcomings from the point of view of flexibility are
the following: the procedure orientation and the primitiveness of the program
starting system.

CORBA (Common Object Request Broker Architecture) is used to cre-
ate OO distributed applications. CORBA provides synchronous/asynchronous
remote method invocations and allows creating complex, high performance,
cross platform applications. The performance measurements of TAO (CORBA)
and MPICH (MPI) middleware were taken on Gigabit Ethernet; they showed
the same throughput, with MPICH giving lower latency. The recently pub-
lished results of comparison of OmniORB and MPICH on Myrinet and SCI
communications (Denis et al. [2003]) prove ours. CORBA is an interesting al-
ternative to MPI for flexible and high performance implementation of complex
models.

2 Representation of the main steps of DD in the OO

framework

The OO analysis was applied for creating an abstract software model, the
C++ language was used for programming. Inheritance and polymorphism
provided the flexibility of the framework. Data encapsulation brought about
creating three subsystems: modeling classes, numerical classes, and analysis
classes. The OO model of analysis is shown in Figure 1. Let us determine the
main steps of DD and consider them from the point of view of OO program-
ming.

1. Building the finite element model. The DomainBuilder class is
the base class of design model editors. It provides the methods to create and
edit the domain represented by the Domain class, which contains a geome-
try and a FE mesh consisting of nodes (Node), different types of elements
(Triangle, Tetrahedron, Hexahedron and others), and boundary conditions

Parallel Distributed Object-Oriented Framework for DD 607

-End1

*

-End2*

-End1

*

-End2*

-End1

*

-End2*

-End1

*

-End2*

-End1

*

-End2*

-End1

*

-End2*

-End1

*

-End2*

AdaptiveAnalysis

SolutionAlgorithm DOFNumberer

GraphNumberer

ConstraintHandler Integrator

DDSolutionAlgorithm

AnalysisModel

DOFGroup

Element -End1

*

-End2

*

-End1

*-End2

*

-End1

*

-End2

*

-End1

*-End2

*

StaticAnalysis DDAnalysis

Analysis Domain

DomainSolver

Subdomain

AdaptiveDDAnalysis

AnalysisElement

Node

SubstructuringSolver

-Ko e 1

*

-Ko e 2

*

LinearSOE LinearSolver

Fig. 1. The object-oriented model of analysis

(Nodal/ElemanalLoad, SP/MPConstraint and others). The DomainBuilder

derived classes operate the data from files and CAD systems.
2. Partitioning the domain into subdomains. It is appropriate to rep-

resent a FE mesh as a graph of the element connectivity and then to apply any
graph partitioning algorithm. The object of the DomainPartitioner class gets
the element graph Graph built by the object of the PartitionedDomain class
and divides it by any graph partitioning algorithm represented by the object of
the GraphPartitioner class. The GraphPartitioner subclasses are based on
the algorithms implemented in METIS and ParMETIS libraries (Karypis and
Kumar [1998]). The Subdomain class extends the Domain interface to make
distinction whether the nodes in the subdomain are internal or external. The
PartitionedDomain and Subdomain derived classes are designed to partition
the domain into both non-overlapping and overlapping subdomains. For ad-
ditive Schwartz methods, the best of all would be the synchronous handling
of the objects in the intersection; in this case the objects are instantiated
once. For multiplicative Schwartz methods, it is the other way round; in each
Subdomain object the copies of the objects that are included into the intersec-
tion are created to be independently calculated and periodically synchronized.

3. Assignment of both local and global equation numbers to nodal

degrees-of-freedom. To make such a mapping there is a need to apply any
graph numbering algorithm to the mesh node graph. The mapping can have
a significant influence on the amount of computation required to solve the
system of equations and on the amount of memory required to store it.

The AnalysisModel is a container for storing and providing access to the
objects of the DOFGroup and AnalysisElement classes. The DOFGroup objects
represent the degrees-of-freedom at the nodes and new degrees-of-freedom in-
troduced into the analysis to enforce the constraints. The AnalysisElement

608 S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov

objects represent the elements and subdomains or they are introduced to add
stiffness and/or load to the system of equations in order to enforce the con-
straints. The DOFGroups and AnalysisElements remove from the Node and
Element objects the need to worry about the mapping between the degrees-
of-freedom and equation numbers. They also have the methods for forming
tangent and residual vectors that are used to form the system of equations.
Besides, they handle the constraints.

The DOFNumberer is responsible for mapping the numbers of equation to
the degrees-of-freedom in the DOFGroup objects.

4. Assembling the systems of equations using elemental and

nodal contributions determined by the integration scheme chosen.

Assembling the systems of equations is also based on the FE graphs and on
defining the contributions for the different types of element as well. According
to the integration scheme, the local systems of equations are formed by the
FE contributions. For the DD methods that need assembling the global sys-
tem of equations, it seems efficient to represent all subdomains as the graph
of special-purpose elements (superelements) in order to apply the approach
stated above. Different FE contributions and various integration schemes give
a wide range of assembling methods for DD. On multiprocessors the contri-
butions from internal elements of the subdomain can be calculated on the
processor that handles the subdomain; to determine them from external ones
it is necessary to use different approaches to distributed computing.

The Integrator is responsible for defining the contributions of the DOF-
Group and AnalysisElement objects to the system of equations and for up-
dating the response quantities in the DOFGroup objects with the appropriate
values given the solution to the system of equations.

5. Imposing boundary conditions. Applying the constraints may in-
volve transformation of the elemental and nodal contributions or adding new
terms and unknowns to the matrix equations.

The ConstraintHandler class is responsible for handling the constraints
by creating appropriate DOFGroup and AnalysisElement objects. It also al-
lows to introduce the multiple constraints arising from adaptive refinement.

6. Solving the system of equations. Different DD methods are similar
in the presence of the local and possibly, global systems of equations and in
the performance of the local and sometimes, global matrix-vector operations
according to the solution algorithm.

The Analysis class is a container for all of the analysis objects men-
tioned above. It is responsible for starting the analysis steps specified in the
SolutionAlgorithm class. The Analysis class is associated with either a do-
main or a subdomain and allows describing either a global solution or one
branch of the solution in the subdomain. In the second case, several sets of
analysis objects are executed simultaneously.

The LinearSOE class stores the matrix, the right hand side and the solu-
tion of a linear system of equations. LinearSOE derived classes correspond
to the systems with different types of matrices (band, profile, etc). The

Parallel Distributed Object-Oriented Framework for DD 609

LinearSolver class is responsible for performing the numerical operations on
the equations. LinearSolver subclasses encapsulate linear algebra libraries
LAPACK, PETSc, SuperLU.

7. Update of nodal degrees-of-freedom with the appropriate re-

sponse quantities.

8. Determining the rated conditions in finite elements.

Nowadays it is generally accepted that the effective solution of applied
problems is almost impossible without using an adaptive process when the
obtained solution is examined to determine the strategy of further calcula-
tions: mesh refinement with the same connectivity (r -version of FEM), local
mesh refinement (h-version), increase of the degree of approximation basis
functions (p-version) or whatever combinations (h-p, h-r versions). The best
choice gives the maximum precision with the minimum computational costs.
The OO model for adaptive analysis allows to build the optimal computational
model with the given precision and minimum computational costs.

9. A-priori error estimation. The additional data included in the
AdaptiveAnalysis class are the following: error estimation ErrorEstimation,
error indicator ErrorIndicator, refinement strategy Refinement. Error-
Estimation subclasses represent a-priori and a-posteriori error estimations
based on: residual, interpolation, projection, extrapolation, dual method.

10. Determining the objects to be more precise. The ErrorIndica-
tor subclasses provide the selection of the part of the domain to refine: global
refinement, strategy of maximum, equidistribution, guaranteed error reduc-
tion.

11. Repartitioning the mesh in accordance with the criterion of

refinement. Mesh repartitioning gives rise to redistributing the work among
the processors, with each processor busy in actual loading as long as possible,
in other words, to load balancing. The main difference between the dynamic
load balancing and static one is the necessity to redistribute the work among
the processors; it brings about considerable computational costs (Kopyssov
and Novikov [2001]).

Different improvements of the solution are inherited from the Refinement

class: relocation of the nodes in 2D/3D area (r -version), local refinement and
coarsening for 2D triangle meshes (h-version), increasing the degree of in-
tegrated Legendre polynomials for 3D hierarchical hexahedral elements (p-
version).

The dynamic load balancing is implemented by including the Refinement

object to DomainPartitioner. Using them on every iteration, one could ef-
ficiently redistribute the FE mesh objects, with Refinement providing graph
weights handling, and GraphPartitioner partitioning the graph.

610 S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov

3 Extension for parallel distributed computing

To provide the interprocess communication between objects on multiproces-
sor computers, it is necessary to implement the remote method invocation. In
addition, it is required to implement the migration of the objects representing
the distributed data and the asynchronous invocation of the methods of the
objects representing parallel functions. Some parallel distributed implementa-
tions of objects were examined on MPI and CORBA middleware (Kopyssov
et al. [2003]). A new approach is suggested to develop parallel distributed OO
software for DD. It is based on CORBA, the AMI (Asynchronous Method
Invocation) callback model (Schmidt and Vinoski [1999]) and integration of
MPI applications.

End1

End2

End3

End4
End5

End6

-End7

*

-End8

*

Server SideClient Side

Subdomain

-End1

*

-End2

*

-End3

*

-End4

*

PortableServer::ServantBase

Object_ServantObject_Server

Subdomain_Server Subdomain_Servant

-End9 1-End10 * -End11 1-End12 *

-End5

*

-End6

*

CORBA::Object PortableServer::ServantBase

Object_Client

Object_AMIClient Object_ReplyHandler

Subdomain_Client

Subdomain_AMIClient Subdomain_ReplyHandler

Subdomain_Stub

Subdomain

Fig. 2. CORBA implementation of Subdomain class

The CORBA implementation of data and function objects consists of:
IDL interface. The objects to be called remotely are specified as IDL

interfaces (interface), with the migrated objects specified as IDL structures
(struct). According to the IDL interface CORBA generates the C++ tem-
plates (stubs, servants, AMI handlers) designed to develop parallel distributed
objects. Figure 2 shows the interface and the client-server (gray filled) tem-
plates for the Subdomain class.

Client-server library. It is based on the C++ library for the DD and
CORBA client-server templates. The client classes are inherited from the DD
ones and aggregate the stubs of the CORBA interfaces, with the virtual func-
tions of the DD objects overloaded: the input parameters are converted from
the DD types to those of CORBA, the method of the remote CORBA ob-
ject is invoked, the output parameters are converted backward and returned
as the result of the remote invocation. The server classes are inherited from
the DD ones and aggregate the CORBA servants, with the pure virtual func-
tions of servants implemented: the input parameters are converted from the
CORBA types to those of DD, the method of the DD object is called, the

Parallel Distributed Object-Oriented Framework for DD 611

output parameters are converted backward to be sent to the client side. The
asynchronous method invocation is implemented with the help of the AMI
templates: the client objects send the object reference to the aggregated AMI
handlers within asynchronous invocation and return control to the main pro-
cess. Having addressed to the result objects, the main process is blocked until
the remote methods finish and return their results to the AMI handlers. Fig-
ure 2 shows the base client-server classes (denoted by Object_ prefix) and the
example of their use for implementing the client-server classes Subdomain.

Components. The components are the executable modules that include
the CORBA objects for DD. It is available to launch the components with the
help of MPI as the set of identical CORBA servers, which provide distributed
data and carry out the operations in parallel via MPI communications; the
server with a null identifier synchronizes all others.

The parallel distributed OO model for DD is the extension of the original
model, of several objects in particular: Subdomain (Figure 2), Node, Element,
Nodal/ElementalLoad, SP/MPConstraint and some others. There are some
development principles.

Remote method invocation. The DomainBuilder subclass creates the
server finite-element objects on the governing computing node. On other nodes
the Subdomain_Server objects are launched, with an array of Subdomain_-
Client objects, that aggregates the stubs to them, being created on the gov-
erning node. Thus, without any modifications of the C++ library, the DD
steps could be performed in the distributed address space through the _Client
and _Server objects.

Object migration. In the initial OO model for DD the DomainPartition-
er handles the pointers to the C++ objects when it is called to distribute the
data among the subdomains. The object migration is more complicated; it
includes creating the destination remote server object, copying the data of
the source object and removing the source one. For that, it is necessary to
modify the DomainPartitioner class: it has to include virtual functions with
an empty body to collect garbage; the Partition method has to include the
calls to them. The DomainPartitioner subclass overloads these functions and
thus, it removes all the transferred objects in the end of partitioning.

Asynchronous method invocation. The principal operations to be
performed simultaneously in the subdomains are forming the blocks of the
global system of equations (if it is need) and solving the local systems of
equations. For that, the Subdomain_AMIClient object is instantiated; it ag-
gregates the AMI handler Subdomain_ReplyHandler for this methods. Invok-
ing the remote method, the Subdomain_AMIClient object does not wait for its
completion and returns control to the main process. As the main process needs
the results, it calls the Subdomain_AMIClient object that, in its turn, blocks
the main process until the Subdomain_ReplyHandler receives the result from
the remote Subdomain_Servant object.

612 S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov

4 Examples

The parallel distributed OO framework for DD is intended for representation
of a wide range of DD methods by using different: types of FE; mesh par-
titioning algorithms; ordering, storage and solution methods for the system
of equations; means of handling of boundary conditions; error estimations;
refinement strategies. Let us consider the substructuring method as an ex-
ample of usage of the framework. It is suited to demonstrate the features of
the analysis classes for both a partitioned domain and a subdomain, and the
scope for the parallel distributed computing as well.

Form Tangent
Form Unbalance

Create Model

AdaptiveAnalysis

Create Model

Response Quantity

SolutionAlgorithm

Form Tangent
Form Unbalance

Solve External
Update

Integrator

DOFNumberer

SubdomainN

PartitionedDomain

Subdomain

SOE

Matrix Vector

AnalysisElementNDOFGroupN

AnalysisModel

DOFGroup AnalysisElement

Integrator

AdaptiveDDAnalysis

DDSolutionAlgorithm

Integrator

DOFNumberer

Integrator

Subdomain Response Quantity

ElementNNodeN

Subdomain

ElementNode

SOE

Matrix Vector

AnalysisElementNDOFGroupN

AnalysisModel

DOFGroup AnalysisElement

Form Tangent
Form Unbalance

 Set External
 Solve Internal
 Update

Create Model

ConstraintHandler

ConstraintHandler

SubstructuringSolver

Solver

Fig. 3. The object-oriented model of substructuring

After the initial partitioning of the domain, analysis classes are used twice
(see Figure 3): to solve the problem in the subdomains and on the interface. In
the subdomain the objects aggregated by the DDAnalysis cooperate under the
DDSolutionAlgorithm control in the following way: ConstraintHandler and
DOFNumberer take Subdomain as the input data to create the AnalysisModel.
The Integrator performs static condensation and forms the matrix and the
right hand side for the Schur complement system block LinearSOE from the
AnalysisModel.

After that, the interface problem is solved by the AdaptiveAnalysis ob-
ject with its own SolutionAlgorithm, PartitionedDomain, AnalysisModel,
DOFNumberer, ConstraintHandler, Integrator, LinearSOE, LinearSolver

Parallel Distributed Object-Oriented Framework for DD 613

Fig. 4. Initial partition: 8 subdomains,
5959 nodes, 11740 elements

Fig. 5. Partition after 5 adaptive re-
finements: 42470 nodes, 84621 elements

objects. In that case, the AnalysisModel includes the AnalysisElement ob-
jects corresponding to the subdomains; the Integrator forms the system of
equations from the interface. The LinearSolver object solves the global in-
terface problem.

The Subdomain objects get the equations numbers from the response quan-
tities obtained in the previous calculations on the whole AnalysisModel. The
SubstructuringSolver objects solve the internal systems of equations. The
Integrator objects update the response quantities.

The results of numerical experiments are presented in Figure 4-6. It is
2D/3D strain stress analysis; iterative/direct substructuring method is used;
solution is adaptively refined by h-version/p-version of FEM.

5 Conclusions and Further research directions

The analysis allowed us to represent the main steps of DD in the form of
objects and their relations. The main features of the OO framework for DD
have been described. The framework was extended on CORBA middleware
for parallel distributed computing. The given examples demonstrated its ex-
pressiveness and flexibility.

Further research directions are as follows:

1. extension of the OO framework for DD by new algorithms
2. inclusion of geometrical data and encapsulation of CAD systems
3. implementation of parallel algorithms of mesh generation; integration of

existing mesh generators
4. development of the visual editor for DD

Acknowledgement. The work is supported by Russian Foundation for Basic Research
(grants 02-07-90265, 03-07-06119, 03-07-06120, and 03-07-90002) and UB of RAS.

614 S.P. Kopyssov, I.V. Krasnopyorov, A.K. Novikov, and V.N. Rytchkov

Fig. 6. Domain partition for p-version of FEM based on substructuring

References

D. Brown, W. Henshaw, and D. Quinlan. Overture: An object-oriented frame-
work for solving partial differential equations on overlapping grids. In SIAM

conference on Object Oriented Methods for Scientfic Computing, UCRL-JC-
132017, 1999.

X. Cai. Domain decomposition in high-level parallelization of PDE codes.
In Eleventh International Conference on Domain Decomposition Methods,
pages 388–395, Greenwich, England, 1998.

A. Denis, C. Perez, T. Priol, and A. Ribes. Parallel CORBA objects for
programming computational grids. Distributed Systems Online, 4(2), 2003.

G. Karypis and V. Kumar. A parallel algorithm for multilevel graph par-
titioning and sparse matrix ordering. Journal of Parallel and Distributed

Computing, 48(1):71–95, 1998.
S. Kopyssov, I. Krasnopyorov, and V. Rytchkov. Parallel distributed CORBA-

based implementation of object-oriented model for domain decomposition.
Numerical Methods and Programming, 4(1):194–206, 2003.

S. Kopyssov and A. Novikov. Parallel adaptive mesh refinement with load
balancing for finite element method. Lecture Notes in Computer Science,
2127:266–276, 2001.

J. Przemieniecki. Theory of Matrix Structural Analysis. McGaw-Hill, N.Y.,
1968.

D. Schmidt and S. Vinoski. Programming asynchronous method invocations
with CORBA messaging. C++ Report, SIGS, 11(2), 1999.

S. Sobolev. Schwartz algorithm in elasticity theory. RAS USSR, 4(6):235–238,
1936.

T. Zimmermann, Y. Dubois-Pelerin, and P. Bomme. Object-oriented finite el-
ement programming: I. governing principles. Computer Methods in Applied

Mechanics and Engeneering, 98(2):291–303, 1992.

