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Summary. The standard local defect correction (LDC) method has been extended
to include multilevel adaptive gridding, domain decomposition, and regridding. The
domain decomposition algorithm provides a natural route for parallelization by em-
ploying many small tensor-product grids, rather than a single large unstructured
grid. The algorithm is applied to a laminar Bunsen flame with one-step chemistry.

1 Introduction

Partial differential equations (PDEs) with solutions that have highly localized
properties appear in many application areas, e.g. combustion, shock hydro-
dynamics, and transport in porous media. Such problems require a fine grid
only in the region(s) of high activity, whereas elsewhere a coarser grid suffices.
We consider a discretization method for elliptic boundary value problems in-
troduced by Hackbusch [1984]. In this technique, the local defect correction

(LDC) method, the discretization on the composite grid is based on a com-
bination of standard discretizations on uniform grids with different spacings
that cover different parts of the domain. The coarse grid must cover the entire
domain, and its spacing is chosen in agreement with the relatively smooth be-
havior of the solution outside the high activity areas. Apart from this global
coarse grid, one or more local fine grids are used that are also uniform, each
of which covers only a (small) part of the domain and contains a high activity
region. The grid spacings of the local grids are chosen in agreement with the
behavior of the continuous solution in that part of the domain.

The LDC method is closely related to the fast adaptive composite grid

(FAC) method (McCormick [1984a], McCormick and Thomas [1986]). An im-
portant difference with LDC is that an explicit discretization scheme for the
composite grid is proposed, in which special difference stars near the grid inter-
faces are used. The resulting discrete system is solved by an iterative method
which may take advantage of the composite grid structure. This is a crucial
difference with the LDC method, which combines standard discretizations on
uniform grids only and does not use an a priori given composite grid dis-
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cretization. For the FAC method in a variational setting, convergence results
have been given by McCormick [1984b]. The variational theory is extended to
the finite volume element method in McCormick and Rüde [1994]. Xu [1992]
presents an abstract framework and general convergence theory for a wide
range of iterative methods, among which domain decomposition, multigrid
and multilevel methods. He groups the algorithms in parallel and successive

subspace correction methods. Xu shows in particular that FAC is equivalent
to classic multigrid with smoothing in the area of refinement only.

The idea to approximate low frequency components on a coarse grid and
high frequency components on a (local) fine grid forms the basis of multigrid.
McCormick and Ruge [1986] present unigrid, an algorithm based on these
principles and especially suited for testing the feasibility of using multigrid
in a given application. Xu and Zhou [1999, 2000, 2001] use the fact that the
global behavior is dominated by low frequencies and the local behavior by
high frequencies to design discretization schemes in a finite element context.
They study elliptic boundary value problems and prove error estimates for
the finite element solution. Based on these estimates, they develop several
algorithms. The simplest one is to solve a global problem on a locally refined
grid. This algorithm is improved by using a residual correction technique,
in which a global coarse grid problem is solved first. Next the coarse grid
residual is corrected by solving the problem on one or more locally refined
grids that cover the whole domain but are very coarse outside the area of
refinement. Note that the global coarse grid problem needs to be solved only
once and is not coupled with the local problems. This is different from the
LDC method, in which the local problems take artificial boundary conditions
from the coarse grid solution and cover part of the domain only. Xu and Zhou
[1999, 2000] present parallel versions of their algorithms by subdividing the
domain in disjoint subdomains. In Xu and Zhou [2000], further algorithms are
developed by ignoring the lower order terms of the PDE on the local grids,
which can be done because the symmetric positive definite part dominates the
high frequency components. Xu and Zhou [2001] study a solution technique
for nonlinear elliptic PDEs. The full nonlinear problem is first discretized by
a standard finite element technique on a global coarse grid. Next, the residual
is corrected using linearized discretizations on fine grids.

This paper deals with some extensions to the standard LDC method; we
add adaptivity, multilevel refinement, domain decomposition and regridding.
We apply the new algorithm to a Bunsen flame problem previously treated
by Bennett and Smooke [1998].

2 Formulation of the LDC method

Before presenting our extensions to the LDC method, we begin by describing
the standard LDC method. We consider the elliptic boundary value problem

{

Lu = f, in Ω,
u = g, on ∂Ω.

(1)
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In (1), L is a linear elliptic differential operator, and f and g are the source
term and Dirichlet boundary condition, respectively. Other types of boundary
conditions can be used as well, but for ease of presentation we formulate the
method for (1). To discretize (1), we first choose a global coarse grid (grid
spacing H), which we denote by ΩH . An initial approximation uH

0 on ΩH can
be found by solving the system

LHuH
0 = fH , (2)

which is a discretization of (1). In (2), the right-hand side fH incorporates
the source term f as well as the Dirichlet boundary condition g. We assume
LH to be invertible.

Assume that the continuous solution u of (1) has a high activity region in
some (small) part of the domain. We select a subdomain Ωl ⊂ Ω such that
the high activity region of u is contained in Ωl. In Ωl, we choose a local fine
grid (grid spacing h), which we denote by Ωh

l , such that grid points of the
global coarse grid that lie in the area of refinement also belong to the local
fine grid. In order to formulate a discrete problem on Ωh

l , we define artificial
boundary conditions on Γ , the interface between Ωl and Ω \Ωl. We apply an
interpolation operator P h,H that maps function values at coarse grid points
on the interface to function values at fine grid points on the interface. In the
numerical simulations we use linear interpolation. In this way, we find the
following approximation uh

l,i, iteration i = 0, on Ωh
l :

Lh
l uh

l,i = fh
l − Bh

l,Γ P h,H
(

uH
i |

Γ

)

. (3)

In (3), matrix Lh
l (assumed to be invertible) is a discrete approximation to L

on the subdomain Ωl. The first term on the right-hand side incorporates the
source term f as well as the Dirichlet boundary condition g on ∂Ωl \ Γ given
in (1). In the second term, the operator Bh

l,Γ represents the dependence of the
fine grid points on the coarse grid solution at the artificial boundary Γ .

We will now use the local fine grid solution to update the coarse grid
approximation. If we were able to substitute the projection on ΩH of the ex-
act solution u of boundary value problem (1) into the coarse grid discretiza-
tion (2), we would find the local discretization error or local defect dH , given
by LH

(

u|
ΩH

)

= fH + dH . We could then use dH within the right-hand side
of (2) to find a better approximation on the coarse grid. However, as we do
not know u, we instead use the fine grid approximation uh

l,0 to estimate dH at

the coarse grid points inside the area of refinement (x, y) ∈ ΩH
l := ΩH ∩ Ωl.

We define wH
0 as the global coarse grid function of best approximations so far:

wH
0 (x, y) :=

{

uh
l,0(x, y), (x, y) ∈ ΩH

l ,

uH
0 (x, y), (x, y) ∈ ΩH \ ΩH

l ,

and estimate the defect by dH = LH
(

u|
ΩH

)

− fH ≈ LHwH
0 − fH =: dH

0 .
Assuming that the stencil at grid point (x, y) involves (at most) function
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values at (x + iH, y + jH) with i, j ∈ {−1, 0, 1}, dH
0 provides an estimate

of the local discretization error of the coarse grid discretization at all points
of ΩH

l . We apply the coarse grid correction step to find uH
i , i = 1:

LHuH
i+1 =

{

fH(x, y) + dH
i (x, y), (x, y) ∈ ΩH

l ,

fH(x, y), (x, y) ∈ ΩH \ ΩH
l .

(4)

Because (4) incorporates estimates of the local discretization error of the
coarse grid discretization, uH

1 is assumed to be more accurate than uH
0 . Hence

it provides a better boundary condition on Γ , and a better solution on the
local fine grid can be found by solving (3) with i = 1. This leads to an iterative
method: we can solve a new updated coarse grid problem.

Often one or two LDC iterations will suffice to obtain a satisfactory ap-
proximation on the composite grid due to the high rate of convergence of the
method. Typically, iteration errors are reduced by a factor of 10 to 1, 000 in
each iteration step (cf. Ferket and Reusken [1996], Hackbusch [1984], Nefedov
and Mattheij [2002], Anthonissen [2001]). A detailed analysis of the conver-
gence behavior for diffusion equations is given in Anthonissen et al. [2003b].

3 Extensions to the LDC method

We now extend the LDC algorithm by adding adaptivity, multilevel refine-
ment, domain decomposition, and regridding. The result will be a technique
for discretizing and solving (1) on a composite grid found by adaptive grid
refinement, given a code for solving boundary value problem (1) on a tensor-
product grid in a rectangular domain.

Adaptive multilevel refinement

We assume that the continuous solution u has one area of high activity; it is
straightforward to generalize the algorithm to the case where there is more
than one area of high activity. We assume that the initial coarse grid is given
by its x- and y-coordinates xi, yj , and define the boxes Bij formed by grid
points and points on the boundary, viz. Bij = (xi, xi+1) × (yj , yj+1). In or-
der to determine which boxes require refinement, we introduce the positive
weight function of Bennett and Smooke [1998, 1999] as an indicator for solu-
tion roughness. As detailed in Anthonissen et al. [2003a], the weight function
assigns a value to each box Bij and points will be added in regions where
the weight function is large, so it should measure the rapidity of change of u.
Xu and Zhou [2000] give theoretical justification why we may use a global
a posteriori error estimate for equi-distribution of the error, as we do here.
Apart from high activity boxes, we also flag their neighbors for refinement
in order to prevent the solution from being artificially trapped at interfaces
between coarse and fine grids, which can happen if high activity areas move
during recalculation on the finer grid.

For the area of refinement Ωl, we choose the smallest rectangle that en-
closes all flagged boxes; more efficient choices are discussed in the next section.
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In Ωl, we choose a local fine grid Ωh
l by uniform refinement. The integer re-

finement factor σ is typically set to 2. Ideally, σ should be chosen largest at
places where the weight function is largest. However, this approach would lead
to an unstructured composite grid, which we want to avoid. Therefore, we will
use multiple refinement levels.

After adding successive levels of refinement, the fine grid approximations
are used to improve the coarse grid approximations via coarse grid correction
steps. Once we have returned to the base grid, we will solve discrete problems
on finer levels again.

Domain decomposition

In the previous section, we determined the smallest rectangle enclosing all
flagged boxes and chose to refine this rectangle entirely. However, this ap-
proach may refine many boxes that have not been flagged for refinement, es-
pecially when an area of high activity is not aligned with the grid directions.
To remedy this inefficiency as well as to prevent the grids from becoming too
large, we combine the multilevel LDC algorithm with domain decomposition,
in which we use a set of rectangles to cover all flagged boxes. We require
each flagged box to be enclosed in at least one rectangle, and we want the
rectangles to be overlapping. The overlap of the rectangles is necessary in
situations where interfaces between rectangles intersect high activity zones.
We remedy large errors at these interfaces by performing a number of domain
decomposition iterations via a standard multiplicative Schwarz procedure.

To find a set of rectangles satisfying the conditions just stated, a cost func-
tion is defined that states how expensive using a certain set is. The algorithm
evaluates the cost of using a single rectangle (as we did in the previous section),
splitting it horizontally in two smaller rectangles or splitting vertically. This
procedure is performed recursively on the smaller rectangles if splitting has
occurred; see Anthonissen et al. [2003a] for details. The algorithm, including
the Schwarz alternating procedure, is shown in Figure 1.

Level 0

i = 0 i = 1

Level 1

Level 2

create subgrids
interpolation

interpolationinterpolation

interpolation

correction solvesolve

DD solve

DD solve DD solve

create subgrids
interpolation

calculate
defect

calculate
defect

correction
solve

DD
correction
solve

DD

Fig. 1. Solution procedure with domain decomposition.

Regridding

Refining a grid and solving the boundary value problem on the new composite
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grid may cause the region(s) of high solution activity to move. Therefore,
we apply the regridding procedure from Bennett and Smooke [1998] before
proceeding from Level l to Level l + 1.

4 Application to a combustion problem

We now turn our attention to the axisymmetric laminar Bunsen flame with
one-step chemistry. This problem was previously presented by Bennett and
Smooke [1998]. Because almost all of the dependent variables in the Bunsen
flame problem have large gradients in a very small region of the computational
domain, adaptive gridding is a must for this simulation. The physical config-
uration for the Bunsen flame is shown in Figure 2. A mixture of methane and
air flows up from a central jet, which is surrounded by a coflowing air stream.
A steady conical flame forms at the mouth of the cylindrical burner.

r1 r2 r3

z

Lf

r

air

methane/air

mixture

air

Fig. 2. Physical configuration for the axisymmetric Bunsen flame.

The chemical model we consider has five species: methane, oxygen, water,
carbon dioxide, and the abundant inert, nitrogen. There are nine dependent
variables in the Bunsen flame problem: radial velocity, axial velocity, vorticity,
temperature, and five mass fractions. These variables satisfy a set of strongly
coupled nonlinear PDEs, see Anthonissen et al. [2003a] for details. The initial
coarse grid is chosen to be more finely spaced in the region above the inner
jet, because it is known that the flame forms in that area. The exact r- and
z-coordinates of the initial grid are given in Anthonissen et al. [2003a].

Due to the nature of the LDC method, the PDEs need only be discretized
on tensor-product grids. We apply standard finite difference stencils at inte-
rior points. First-order upwinding is used on convective terms. Details can
be found in Anthonissen et al. [2003a]. The discretized governing equations
and boundary conditions form a system of equations, that is linearized by a
damped, modified Newton’s method (Deuflhard [1974], Smooke [1983]) with
a nested Bi-CGSTAB linear algebra solver; the latter is preconditioned using
a block Gauss-Seidel preconditioner.
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(a) lmax = 0. (b) lmax = 1. (c) lmax = 2. (d) lmax = 3.

Fig. 3. Plots of the methane mass fraction on the finest level for the LDC simulations
with various values of the maximum level of refinement lmax.

Four different LDC simulations have been carried out on a 175 MHz SGI
Octane with 1 GB of RAM. Each simulation starts from an already converged
solution on the base tensor-product grid. For each first solve on a local fine
grid, we use as an initial guess the approximation found by interpolating the
approximation on the parent grid. At each level with more than one grid, five
domain decomposition iterations are done to improve the boundary conditions
at the internal interfaces. The flagging of high activity boxes is based on the
methane mass fraction. The refinement factor is 2.

Figure 3 shows the projection of the methane mass fraction on LDC com-
posite grids with increasingly fine resolution. Although the flame structure is
similar in each plot, the flame length increases, with the largest increase occur-
ring when the first refinement level is added. In Anthonissen et al. [2003a], the
LDC results are shown to have excellent agreement with both the local rect-
angular refinement (LRR) results for the same problem as well as with results
found on equivalent tensor-product (ETP) grids with the same resolution pre-
sented by Bennett and Smooke [1998]. In the LRR method, an unstructured
grid is constructed from an initial tensor-product grid by flagging and refining
high activity boxes individually. Unlike tensor-product grids, grid lines in an
LRR grid are not required to extend from one domain boundary to the other.
A Newton solver is subsequently applied to the discretized PDE system on
the complete unstructured grid.

In the LDC simulations, however, the Newton solver is applied to many
small grids individually rather than to one large grid. In the LDC simulation
for lmax = 3, the composite grid consists of the initial tensor-product grid
with three additional refinement levels, that have two, four, and eight subgrids,
respectively. The biggest tensor-product grid in this hierarchy has only 16, 653
points — a substantial memory savings over the ETP grid of 312, 872 points.

5 Conclusions

In this paper, we have extended the standard LDC method by including multi-
level adaptive gridding, domain decomposition, and regridding. We have suc-
cessfully applied this method to a lean axisymmetric laminar Bunsen flame
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with one-step chemistry. In the future, we would like to investigate the in-
clusion of more sophisticated domain decomposition techniques within the
method, so that fewer iterations will be required among grids at a given level.
We would also be interested in the possibility to solve different problems on
the global coarse and local fine grid, using e.g. chemical equilibrium; cf. Xu
and Zhou [2000, 2001] in which only the symmetric positive definite part or a
linearized discretization is solved locally. As there are virtually no conceptual
hurdles in expanding the approach to higher dimensions, our ultimate goal is
to apply the extended LDC method to three-dimensional combustion prob-
lems, for which its low memory usage and parallelization opportunities will
play an important role.
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