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Summary. Second order elliptic problems with discontinuous coefficients are con-
sidered. The problem is discretized by the finite element method on geometrically
conforming non-matching triangulations across the interface using the mortar tech-
nique. The resulting discrete problem is solved by a FETI-DP method. We prove
that the method is convergent and its rate of convergence is almost optimal and
independent of the jumps of coefficients. Numerical experiments for the case of four
subregions are reported. They confirm the theoretical results.

1 Introduction

In this paper we discuss a second order elliptic problem with discontinuous
coefficients defined on a polygonal region Ω ⊂ R2 which is a union of many
polygons Ωi. The problem is discretized by the finite element method on ge-
ometrically conforming non-matching triangulations across Γ = ∪i∂Ωi\∂Ω
using the mortar technique, see Bernardi et al. [1994]. The resulting discrete
problem is solved by a FETI-DP method, see Farhat et al. [2001], Klawonn
et al. [2002], Mandel and Tezaur [2001] for the matching triangulation and
Dryja and Widlund [2002], Dryja and Widlund [2003] for the non-matching
one. The method is discussed under the assumption of continuity of the solu-
tion at vertices of Ωi. We prove that the method is convergent and its rate of
convergence is almost optimal and independent of the jumps of coefficients.

The presented results are a generalization of results obtained in Dryja
and Widlund [2002], Dryja and Widlund [2003] for continuous coefficients
and many subregions, and in Dryja and Proskurowski [2003] for discontinu-
ous coefficients and two subregions Ωi. In the first two papers two different
preconditioners, a standard one and a generalized one, are analyzed for the
mortar discretization which is not standard. The mortar condition there is
modified at the vertices of Ωi using the continuity of the solution at these
vertices. In the present paper we consider a standard mortar discretization
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and a standard preconditioner. Numerical experiments for the case of four
subregions are reported. They confirm the theoretical results.

The paper is organized as follows. In Section 2, the differential and discrete
problems are formulated. In Section 3, a matrix form of the discrete problem
is given. The preconditioner is described and analyzed in Section 4. Numerical
experiments are presented in Section 5.

2 Differential and discrete problem

We consider the following differential problems. Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (1)

where a(u, v) = (ρ(x) ▽ u,▽u)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region and Ω = ∪N
i=1Ωi, Ωi are disjoint

polygonal subregions of diameter Hi, ρ(x) = ρi is a positive constant on Ωi

and f ∈ L2(Ω). We solve (1) by the FEM on non–matching triangulation
across ∂Ωi. To describe a discrete problem the mortar technique is used, see
Bernardi et al. [1994].

We impose on Ωi a triangulation with triangular elements and parameter
hi. The resulting triangulation in Ω is non-matching across ∂Ωi. We assume
that the triangulation on each Ωi is quasiuniform and additionally that the
parameters hi and hj on a common edge of Ωi and Ωj are proportional.
Let Xi(Ωi) be a finite element space of piecewise linear continuous functions
defined on the introduced triangulation. We assume that functions of Xi(Ωi)
vanish on ∂Ωi ∩ ∂Ω. Let

Xh(Ω) = X1(Ω1) × . . .×XN (ΩN ). (2)

Note that Xh(Ω) ⊂ L2(Ω) but Xh(Ω) 6⊂ H1
0 (Ω). To formulate a discrete

problem for (1) we use the mortar technique for geometrically conforming
case. For that the following notation is used. Let Γij be a common edge of
two substructures Ωi and Ωj , Γij = ∂Ωi ∩ ∂Ωj . Let Γ = (∪i∂Ωi)\∂Ω. We
now select open edges γm ⊂ Γ , called mortar such that Γ = ∪γm and γm ∩
γn = 0 for m 6= n. Let Γij as an edge of Ωi be denoted by γm(i) and called
mortar (master), and let Γij as an edge of Ωj be denoted by δm(j) and called
non-mortar (slave). The criteria for choosing γm(i) as the mortar side is that
ρi ≥ ρj , the coefficients on Ωi and Ωj , respectively.

Let M(δm(j)) be a subspace of Wj(δm(j)), the restriction of Xj(Ωj) to
δm(j), δm(j) ⊂ ∂Ωj. Functions of M(δm(j)) are constants on elements of the
triangulation on δm(j) which touch ∂δm(j). We say that ui ∈ Xi(Ωi) and
uj ∈ Xj(Ωj) on δm ≡ δm(j) = γm(i) = Γij , an edge common to Ωi and Ωj ,
satisfy the mortar condition if

∫

δm

(ui − uj)ψds = 0, ψ ∈M(δm). (3)
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We are now in a position to introduce V h, the space for discretization
of (1). Let V h(Ω) be a subspace of Xh(Ω) of functions which satisfy the
mortar condition (3) for each δm ⊂ Γ and which are continuous at common
vertices of the substructures. The discrete problem for (1) in V h is defined as
follows.

Find u∗h ∈ V h such that

aH(u∗h, vh) = f(vh), vh ∈ V h (4)

where aH(u, v) =
N
∑

i=1

ai(u, v), ai(u, v) = ρi(▽u,▽v)L2(Ωi). The problem has

a unique solution and the error bound is known, see Bernardi et al. [1994].

3 FETI-DP equation

To derive FETI-DP method we first rewrite the problem (4) as a saddle-point
problem using Lagrange multipliers. For u = {ui}

N
i=1 ∈ Xh(Ω) and ψ =

{ψp}
P
p=1 ∈M(Γ ) =

∏

mM(δm), the mortar condition (3) can be rewritten as

b(u, ψ) ≡

N
∑

i=1

∑

δm(i)⊂∂Ωi

∫

δm(i)

(ui − uj)ψkds = 0, (5)

where δm(i) = γm(j) = Γij , ψk ∈ M(δm(i)). Let X̃h(Ω) denote a subspace of

Xh(Ω) of functions which are continuous at common vertices of substructures.
The problem now consists of finding (u∗h, λ

∗

h) ∈ X̃h(Ω) ×M(Γ ) such that

a(u∗h, vh) + b(vh, λ
∗

h) = f(vh), vh ∈ X̃h(Ω), (6)

b(u∗h, ψh) = 0, ψh ∈M(Γ ). (7)

It can be proved that u∗h, the solution of (6) - (7) is the solution of (4) and
vice versa. Therefore the problem (6) - (7) has a unique solution.

To derive a matrix form of (6) - (7) we first need a matrix formulation

of (7). Using the nodal basis functions ϕ
(l)
δm(i)

∈ Wi(δm(i)), ϕ
(k)
γm(j) ∈ Wj(γm(j))

and ψ
(p)
δm(i)

∈ Mm(δm(i)) (δm(i) = γm(j) = Γij) the equation (7) can be

rewritten on δ̄m(i) as

Bδm(i)
uiδm(i)

−Bγm(j)
ujγm(j)

= 0, (8)

where uiδm(i)
and ujγm(j)

are vectors which represent ui|δm(i)
∈Wi(δm(i)) and

uj |γm(j) ∈Wj (γm(j)), and (nδ(i)
≡ nδm(i)

and nγ(j)
≡ nγm(j)

)

Bδm(i)
= {(ψ

(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))}, p = 1, .., nδ(i), k = 0, .., nδ(i) + 1,

Bγm(j)
= {(ψ

(p)
δm(i)

, ϕ
(l)
γm(j)

)L2(γm(j))}, p = 1, .., nδ(i), l = 0, .., nγ(j)
+ 1.

(9)
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Here nδ(i), nδ(i) + 2 and nγ(j) + 2 are the dimensions of Mm(δm(i)), Wi(δm(i))
and Wj(γm(j)), respectively. Note that Bδm(i)

and Bγm(j)
are rectangular ma-

trices. We split the vectors uiδm(i)
and ujγm(j)

into vectors u
(r)
iδm(i)

, u
(c)
iδm(i)

and u
(r)
jγm(j)

, u
(c)
jγm(j)

, respectively, where u
(c)
iδm(i)

and u
(c)
jγm(j)

represent values

of functions ui and uj at the end points of δm(i) and γm(j), and u
(r)
iδm(i)

and

u
(r)
jγm(j)

represent values of ui and uj at the interior nodal points of δm(i) and

γm(j). Using this notation one can rewrite (8) as

(B
(r)
δm(i)

u
(r)
iδm(i)

+B
(c)
δm(i)

u
(c)
iδm(i)

) − (B(r)
γm(j)

u
(r)
jγm(j)

+B(c)
γm(j)

u
(c)
jγm(j)

) = 0. (10)

Note that

B
(r)
δm(i)

= {(ψ
(p)
δm(i)

, ϕ
(k)
δm(i)

)L2(δm(i))}, p, k = 1, . . . , nδ(i) (11)

is a square tridiagonal matrix nδ(i) × nδ(i), symmetric and positive definite

and cond(B
(r)
δm(i)

) ∼ 1, while the remaining matrices B
(c)
δm(i)

, B
(c)
γm(j) , B

(r)
γm(j)

are rectangular with dimensions nδ(i) ×2, nδ(i) ×2, nδ(i) ×nγ(j), respectively.

Let K(l) be the stiffness matrix of al(. , . ). It is represented as

K(l) =







K
(l)
ii K

(l)
ir K

(l)
ic

K
(l)
ri K

(l)
rr K

(l)
rc

K
(l)
ci K

(l)
cr K

(l)
cc






, (12)

where the rows correspond to the interior unknowns u
(i)
l of Ωl, u

(r)
l to its

edges, and u
(l)
c to its vertices. Let S(l) denote the Schur complement of K(l)

with respect to the second and third rows, i.e. to the unknowns u
(r)
l and u

(c)
l .

This matrix is represented as

S(l) =

(

S
(l)
rr S

(l)
rc

S
(l)
cr S

(l)
cc

)

, (13)

where the first row corresponds to the unknowns u
(r)
l while the second one to

u
(c)
l . Let

S = diag {S(l)}N
l=1, Srr = diag {S(l)

rr }
N
l=1, Scr = (S(1)

cr , . . . , S
(N)
cr ), (14)

and the solution u∗h of (6) - (7) be represented as (u(i), u(r), u(c)) where these

global sub-vectors correspond to the local unknowns u
(i)
l , u

(r)
l , u

(c)
l , respec-

tively. We have taken into account that the values of u
(c)
l at the common

vertices of substructures are equal.

We set λ̃∗ = {B
(r)
δm(i)

λ∗δm(i)
}, δm(i) ⊂ Γ , where λ∗ = {λ∗δm(i)

} is the so-

lution of (6) - (7). The mortar condition is represented by B = (Br, Bc),
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where these global diagonal matrices are represented by the local ones

(I
(r)
δm(i)

, −(B
(r)
δm(i)

)−1B
(r)
γm(j)

) and ((B
(r)
δm(i)

)−1B
(c)
δm(i)

, −(B
(r)
δm(i)

)−1B
(c)
γm(j)

), re-

spectively and I
(r)
δm(i)

is an identity matrix of nδ(i) × nδ(i). The form of these

matrices follows from (10) after multiplying it by (B
(r)
δm(i)

)−1.

To represent (6) - (7) in the matrix form we first eliminate unknowns
corresponding to the interior nodal points of Ωl, then use the assumption
that the unknowns corresponding to the common vertices of Ωl are the same

(the continuity at the vertices) and finally setting λ̃∗ = {B
(r)
δm(i)

λ∗δm(i)
} we get

Srru
(r) + Srcu

(c) +BT
r λ̃

∗ = gr, (15)

Scru
(r) + S̃ccu

(c) +BT
c λ̃

∗ = gc, (16)

Bru
(r) +Bcu

(c) = 0. (17)

Here Srr and Scr (Src = ST
cr) are defined in (14) while S̃cc is defined by S

(l)
cc ,

see (13), taking into account that u
(c)
l at common vertices of substructures

are the same.
Eliminating u(r) and u(c) from (15) - (17) we get

Fλ̃∗ = d, (18)

where F = BS̃−1BT , d = BS̃−1g, B = (Br, Bc), g = (gr, gc)
T and

S̃ =

(

Srr Src

Scr S̃cc

)

. (19)

We check straightforwardly that F and d can be represented as follows:

F = Frr − FrcF
−1
cc Fcr, FT

rc = Fcr, (20)

where
Frr = BrS

−1
rr B

T
r , Frc = Bc −BrS

−1
rr Src, Fcc = S̃cc − ScrS

−1
rr Src,

d = dr − FrcF
−1
cc dc, dr = BrS

−1
rr gr, dc = gc − ScrS

−1
rr gr.

In the next section we analyze the preconditioner for F .

4 FETI-DP preconditioner

The preconditioner M for (18) is defined as

M−1 = BrSrrB
T
r . (21)

An ordering of substructures Ωl is called Neumann-Dirichlet (N-D) order-
ing (a check board coloring) if all sides of a fixed Ωl are mortar while all sides
of the neighboring substructures of Ωl are non-mortar.
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Theorem 1. Let the mortar side be chosen where the coefficient ρi is larger.

Then for λ ∈M(Γ ) the following holds

c0

(

1 + log
H

h

)α

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ c1

(

1 + log
H

h

)2

〈Mλ, λ〉, (22)

where α = 0 for N-D ordering of substructures and α = −2 in the general

case; c0 and c1 are positive constants independent of hi, Hi, and the jumps of

ρi; h = mini hi, H = maxi Hi.

In the proof of Theorem 1 we will need the following lemmas.

Lemma 1. For w ∈ X1(∂Ω1) × . . . ×XN (∂ΩN ) with the same values at the

vertices of Ωi the following holds

||BT
r Brzr||

2
Srr

≤ C(1 + log
H

h
)2||w||2S , (23)

where zr = w − IHw and IHw is a linear interpolant of w on edges of ∂Ωi

with values w at the end points of the edges.

Lemma 2. For λ ∈M(Γ )

C(1 + log
H

h
)α〈Mλ, λ〉 ≤ 〈Frrλ, λ〉, (24)

where α = 0 for the N-D ordering of substructures Ωl and α = −2 in the

general case, C is independent of h,H and the jumps of ρi.

Proofs of these estimates are slight modifications of the proofs of state-
ments in Dryja and Widlund [2002]. The only item one needs to take into
account is that the coefficients ρi are larger on the mortar sides. Therefore
the proofs of these lemmas are omitted.

Proof. To prove the RHS of Theorem 1 we proceed as follows. For −λ ∈M(Γ )
we compute w = (w(r), w(c)) by solving (15) - (16) with gr = 0 and gc = 0.
Note that this problem has a unique solution under the assumption that u(c)

is continuous at the cross points. Using this, after some manipulations we
obtain

〈Fλ, λ〉 = 〈Brw
(r) +Bcw

(c), λ〉 = 〈Bw, λ〉. (25)

Let IHw be a linear interpolant of w on edges with values w at the end points
of each edge. Note that Bw = B(w − IHw) = Brzr since zr ≡ w − IHw = 0
at the end points of the edges. Using that in (25), we get

〈Fλ, λ〉 = 〈Bw, λ〉 = 〈Brzr, λ〉. (26)

On the other hand, using that S̃w = BTλ and 〈S̃w, w〉 = 〈Sw,w〉, see (15)
- (17), we have
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〈Bw, λ〉 =
〈Bw, λ〉2

〈Bw, λ〉
=

〈Brzr, λ〉
2

〈Sw,w〉
≤

||M1/2λ||2||M−1/2Brzr||
2

||w||2S
. (27)

By Lemma 1

||M−1/2Brzr||
2 = ||BT

r Brzr||
2
Srr

≤ C(1 + log H
h )2||w||2S . (28)

Substituting this into (27) we have

〈Bw, λ〉 ≤ C(1 + log
H

h
)2||M1/2λ||2. (29)

Using this in (26) we get the RHS estimate of Theorem 1.
To prove the LHS of Theorem 1 we first note that, F ≤ Frr, see (20), and

then use Lemma 2.

5 Numerical results

The test example for all our experiments is the weak formulation, see (1), of

−div(ρ(x)∇u) = f(x) in Ω, (30)

with the Dirichlet boundary conditions on ∂Ω, where Ω is a union of four
disjoint square subregions Ωi, i = 1, . . . , 4, of a diameter one, and ρ(x) = ρi is
a positive constant in each Ωi. The mortar and non-mortar sides are chosen
such that ργ ≥ ρδ, see Theorem 1. The region Ω is cut into 4 subregions in
a checkerboard coloring way: two equidistant grids (with the ratios 1:1, 2:1,
4:1, etc.) are imposed, one on the black, the other on the white squares. A
random right hand side to f of (30) is chosen. Numerical experiments have
been carried out with different scaling of the coefficients in the preconditioner.
The best results were obtained for the preconditioner with ρδ = ργ = 1. They
are reported in Table 1 and Table 2, and they confirm the theory.
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= 8 : 1 hδ
hγ
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= 8 : 1 hδ
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