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Summary. Domain decomposition techniques provide a powerful tool for the nu-
merical approximation of partial differential equations. We consider mortar tech-
niques with dual Lagrange multiplier spaces to couple different discretization schemes.
It is well known that the discretization error for linear mortar finite elements in the
energy norm is of order h. Here, we apply these techniques to curvilinear boundaries,
nonlinear problems and the coupling of different model equations and discretizations.

1 Introduction

The numerical approximation of partial differential equations is often a chal-
lenging task. When different physical models should be used in different sub-
regions, a suitable discretization scheme has to be used in each region. Mortar
methods yield efficient and flexible coupling techniques for different discretiza-
tion schemes. The central idea of mortar methods is to decompose the domain
of interest into non-overlapping subdomains and impose a weak continuity
condition across the interface by requiring that the jump of the solution is
orthogonal to a suitable Lagrange multiplier space, see Bernardi et al. [1993,
1994]. Here, we work with mortar techniques and dual Lagrange multiplier
spaces. These non-standard Lagrange multipliers show the same qualitative a
priori estimates and quantitative numerical results as the standard ones and
yield locally supported basis functions for the constrained space leading to a
cheaper numerical realization, see Wohlmuth [2001]. This paper is concerned
with applications of mortar methods to couple different physical models in
different simulation regions. In the next section, we apply mortar methods
to couple compressible and nearly incompressible materials in linear elastic-
ity. In Section 3, the linear Laplace operator is coupled with the non-linear
p-Laplace operator. Finally in Section 4, we show an application to an elasto-
acoustic problem, and a generalized eigenvalue problem has to be solved. For
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all our models, we provide numerical results. The weak coupling in terms of
dual Lagrange multipliers results in a diagonal matrix on the slave side. As a
consequence, the Lagrange multiplier can be eliminated locally, and optimal
multigrid methods can be applied to the resulting positive definite system.

2 Compressible and Nearly Incompressible Materials

In this section, we consider a problem in linear elasticity with two different
materials in two subdomains, one of them being nearly incompressible. We
assume that the domain Ω ⊂ R

2 is decomposed into two non-overlapping
subdomains Ω1 and Ω2 with a common interface Γ̄ = Ω̄1 ∩ Ω̄2, and the
subdomain Ω1 is occupied with a nearly incompressible material having a
very large Lamé parameter λ1. It is well-known that standard low order finite
elements for nearly incompressible materials suffer from locking, see Babuška
and Suri [1992], and various approaches have been introduced to improve
the numerical results. Working with a mixed formulation on Ω1, see, e.g.,
Braess [2001], and standard finite element approach on Ω2, we use mortar
techniques with dual Lagrange multipliers to realize the coupling between the
two formulations. On each subdomain, we define the space

H
1
∗(Ωk) := {v ∈ H1(Ωk)2,v|∂Ω∩∂Ωk

= 0}, k = 1, 2,

and consider the constrained product space

V := {v ∈

2
∏

k=1

H
1
∗(Ωk) |

∫

Γ

[v] · ψ dσ = 0, ψ ∈ M},

where M := H
− 1

2 (Γ ) is the Lagrange multiplier space, and [v] is the jump
of v across Γ . Introducing an additional unknown p := λ1divu in Ω1, the
variational problem is given by: find [u, p] ∈ V × L2(Ω1) such that

a(u,v) + b(v, p) = l(v), v ∈ V,

b(u, q) −
1

λ1
c(p, q) = 0, q ∈ L2(Ω1),

where l ∈ V
′ and

a(u,v) :=

2
∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λ2

∫

Ω2

divu divv dx,

b(v, q) :=

∫

Ω1

divv q dx, c(p, q) :=

∫

Ω1

p q dx, and l(v) :=

∫

Ω

f · v dx.

Here, ε(u) is the linear strain tensor. For our example, the domain Ω :=
conv{(0, 0), (48, 44), (48, 60), (0, 44)} is decomposed into two subdomains Ω1
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and Ω2 with Ω1 := conv{(12, 20.25), (36, 38.75), (36, 50.25), (12, 38.75)}, and
Ω2 := Ω\Ω̄1. Here, convξ is the convex hull of the set ξ. The decomposition
of the domain and the initial triangulation are shown in the left picture of
Figure 1. Here, the left boundary of Ω is fixed and the right boundary is
subjected to an in-plane shearing load of 100N along the positive y-direction.
The lower and upper boundaries are set free, and we do not apply any volume
force. The material parameters are taken to be E1 = 250Pa, E2 = 80Pa,
ν1 = 0.4999, and ν2 = 0.35 to get a nearly incompressible response in Ω1,
where Ei and νi are the Young’s modulus and the Poisson ratio onΩi, i = 1, 2,
respectively. The displacement field is discretized with bilinear finite elements,
and the pressure in Ω1 is discretized with piecewise constant functions. The
right picture of Figure 1 shows the vertical displacement at (48, 60) versus the
number of elements. We compare three different numerical schemes. Using
standard conforming finite elements (standard) in Ω does not give satisfying
numerical results, whereas the more expensive mixed formulation (mixed) in
Ω provides good results. Our numerical results show that the mortar approach
(coupled) is almost as good as the mixed formulation and significantly better
than the standard one.
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Fig. 1. Decomposition of the domain and initial triangulation (left), distorted grid
on level 2 (middle), and vertical tip displacement versus number of elements (right)

3 The Laplace and the p-Laplace Operator

In this section, we consider the coupling of a linear and a non-linear model. The
linear model is described by a Poisson equation, and we use the p-Laplacian for
the non-linear model. Here, we decompose the domain Ω := (−1, 1)× (−1, 1)
into four non-overlapping subdomains defined by Ω1 := (−1, 0) × (−1, 0),
Ω2 := (0, 1)× (−1, 0), Ω3 := (−1, 0)× (0, 1) and Ω4 := (0, 1)× (0, 1). We have
given the decomposition of the domain and the initial triangulation in the
left picture of Figure 2. We consider the Poisson equation −∇ · (α∇)u = f in
Ω1 and Ω4 and the p-Laplacian −∇ · (α|∇u|p−2∇u) = f in Ω2 and Ω3. The
p-Laplace equation occurs in the theory of two-dimensional plasticity under
longitudinal shear or in the diffusion problem with non-linear diffusivity, see
Atkinson and Champion [1984], and we are considering here different material
models in different subdomains. For the regularity of the solutions and error es-
timates of the p-Laplacian, we refer to Liu and Barret [1993] and Liu and Yan
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[2001]. Let Thk
be a shape regular simplicial triangulation on Ωk with mesh-
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Fig. 2. Decomposition of the domain and initial triangulation (left), isolines of the
solution (middle) and discretization errors versus number of elements (right)

sizes bounded by hk, and S(Ωk, Thk
) stands for the space of linear conforming

finite elements in the subdomain Ωk associated with the triangulation Thk
sat-

isfying the Dirichlet boundary conditions on ∂Ωk ∩ ∂Ω, k = 1, · · · , 4. Then,
the unconstrained finite element spaceXh is given by Xh :=

∏4
k=1 S(Ωk, Thk

).
The interface Γ := {(0, y),−1 < y < 1} ∪ {(x, 0),−1 < x < 1} inherits its
one-dimensional triangulation SΓ from the mesh on Ω2 and Ω3. We recall that
(0, 0) is a crosspoint, andMh does not have any degree of freedom at this point.
Now, the Lagrange multiplier space Mh is defined on Γ and is associated with
the triangulation SΓ . Assuming q1 := 2, q2 := p, q3 := p, and q4 := 2, we can
write the weak formulation of the problem as: find (uh, λh) ∈ Xh ×Mh such
that

a(uh, v) + b(v, λh) = l(v), v ∈ Xh,

b(uh, µ) = 0, µ ∈Mh,
(1)

where a(u, v) :=
∑4

i=1

∫

Ωi
α|∇u|qi−2∇u · ∇v dx, b(v, µ) :=

∫

Γ
[v]µdσ, and

l(v) :=
∫

Ω
f v dx. If α > 0, and the right hand side function f is sufficiently

smooth, we can show by monotonicity techniques that the problem (1) has a
unique solution, see Liu [1999]. However, the regularity of the solution is not
known. Let uh :=

∑n

k=1 ukφk and λh :=
∑ns

k=1 λkµk, where n and ns are the
dimensions ofXh andMh, respectively. Suppose w = (u1, · · · , un, λ1, · · · , λns

)
be a vector. Now, we define F (w) := (F1(w), F2(w))T with

F1(w) :=







a(uh, φ1) + b(φ1, λh) − l(φ1)
...

a(uh, φn) + b(φn, λh) − l(φn)






, F2(w) :=







b(uh, µ1)
...

b(uh, µns
)






.

The system F (w) = 0 is a non-linear system if p 6= 2, and we apply the
Newton method to solve this system. First, we initialize the solution vector
w0 satisfying the given Dirichlet boundary conditions. Then, we iterate until
convergence with

Jk∆wk = F (wk),

where ∆wk := wk − wk+1, and Jk is the Jacobian of F evaluated at wk.
Working with a dual Lagrange multiplier space has the advantage that the
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Jacobian matrix Jk has exactly the same form as the saddle point matrix
arising from the mortar finite elements with a dual Lagrange multiplier space
for the Laplace operator, see Wohlmuth and Krause [2001]. Hence, we can
apply the multigrid approach introduced in Wohlmuth and Krause [2001]
to solve the linear system on each level. Suppose that Ω̃l := Ω1 ∪ Ω4, and
Ω̃p := Ω2∪Ω3. In our numerical example, we choose α = 0.5 in Ω̃l, and α = 1

in Ω̃p, p = 1.5, and f = 0. For boundary conditions, we set u(−1,−1) =
u(1, 1) = 0, u(−1, 1) = 1 and u(1,−1) = −1, and the Dirichlet boundary
condition on ∂Ω is imposed by taking the linear combination of them in
between. Here, we do not have the exact solution. To get the approximation
of the discretization errors, we compute a reference solution uref at a fine
level and compare it with the solution uh at each level until href ≤ 2h. We
have given the discretization errors in the LM - and HM - norms defined by

‖v‖LM := ‖v‖L2(Ω̃l)
+ ‖v‖Lp(Ω̃p), and ‖v‖HM := |v|W 1,2(Ω̃l)

+ |v|W 1,p(Ω̃p)

in the right picture of Figure 2, and the isolines of the solution are given
in the middle. Although the regularity of the solution is not known, we get
convergence of order h2 in the LM -norm and of order h in the HM -norm.

4 Application to an Elasto-Acoustic Problem

In this section, we show the application of mortar finite element methods
for an elasto-acoustic problem. We consider the situation that the fluid is
completely surrounded by the structure. The problem is described by a linear
elastic structure occupying a subdomain ΩS ⊂ R

2 coupled with an irrotational
fluid in ΩF ⊂ R

2. The interface Γ (= ∂ΩS ∩∂ΩF ) separates the fluid and solid
regions. Given the fluid-density ρF , the solid-density ρS , and the acoustic
speed c, we seek the frequency ω, the velocity-field u, and the pressure p such
that

∇p− ω2ρF uF = 0 in ΩF ,

p+ c2ρF∇ · uF = 0 in ΩF ,

∇ · σ(uS) + ω2ρSuS = 0 in ΩS ,

uS = 0 on ΓD,

σ(uS) · nS = 0 on ΓN ,

σn(uS) + p = 0, σt(uS) = 0, and (uF − uS) · n = 0 on Γ.

Here, σ is the usual stress tensor from linear elasticity, σn = n · (σ · n) is the
normal stress on Γ , and σt = σ ·n−σnn is the tangential traction vector on Γ ,
where n is the outward normal to ΩF on Γ . This problem has become a subject
of different papers, see, e.g., Hansbo and Hermansson [2003], Bermúdez and
Rodŕıguez [1994], Alonso et al. [2001]. We introduce the following function
spaces to formulate our problem in the weak form
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X := H(div, ΩF ) × H
1
ΓD

(ΩS), and V := {(uF ,uS) ∈ X, [u] · n = 0 on Γ},

where

H(div, ΩF ) := {v ∈ L2(ΩF )2, ‖∇ · v‖L2(ΩF ) <∞},

H
1
ΓD

(ΩS) := {v ∈ H1(ΩS)2, v|ΓD
= 0}, and [u] := (uF − uS).

The weak form of the continuous problem is: find u ∈ V and ω ∈ R such that

a(u,v) = ω2m(u,v), v ∈ V, where

a(u,v) := (ρF c
2∇ · uF ,∇ · vF )ΩF

+ (σ(uS), ǫ(vS))ΩS
, and

m(u,v) := (ω2ρF uF ,vF )ΩF
+ (ω2ρSuS ,vS)ΩS

.

Here, ǫ(vS) is the linear strain tensor and is related to the stress tensor by

Hooke’s law, i.e., σij(vS) = 2µǫij(vS)+λ
∑2

k=1 ǫkk(vS)δij , i, j = 1, 2. Let Ths

and Thf
be shape regular simplicial triangulations on ΩS and ΩF , respectively,

and Γ inherits its triangulation SΓ from the side of ΩF . It is a well-known fact
that if standard Lagrangian finite elements are used to discretize the fluid, it
will give rise to spurious eigensolutions with positive eigenvalues interspersed
among the ‘real’ ones, and a possible remedy of this problem is to use Raviart-
Thomas elements in the fluid domain, see Bermúdez et al. [1995]. Therefore,
we discretize the fluid domain with Raviart-Thomas elements of lowest order:

RT0 := {u ∈ H(div, ΩF ) : u|K = (a+ bx, c+ by), K ∈ Thf
, a, b, c ∈ R},

and the solid domain with Lagrangian finite elements of lowest order:

WD
h := SD(ΩS , Ths

) × SD(ΩS , Ths
),

where SD(ΩS , Ths
) is the finite element space on ΩS satisfying the Dirich-

let boundary condition on ΓD. The kinematic constraint can be imposed by
piecewise constant Lagrange multipliers yielding a uniform inf-sup condition.
Suppose Xh := RT0 ×WD

h , and Mh := {µh ∈ L2(Γ ) : µh|e ∈ P0(e), e ∈ SΓ }.
Now the finite element space can be written as

Vh := {(uhF ,uhS) ∈ Xh,

∫

Γ

[uh] · nµh dσ = 0, µh ∈Mh}.

The discrete problem reads: find uh ∈ Vh, and ωh ∈ R such that

a(uh,vh) = ω2
hm(uh,vh), vh ∈ Vh.

Remark 1. We remark that the Lagrange multiplier λh approximates the pres-
sure on the interface Γ . The Lagrange multipliers are associated with the one-
dimensional mesh inherited from the triangulation on the fluid domain. Due
to the special structure of the support of the nodal basis functions of RT0

and Mh, the degree of freedom corresponding to the Lagrange multiplier can
locally be eliminated by inverting a diagonal mass matrix.
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In Alonso et al. [2001], an adaptive finite element scheme is analyzed to solve
the fluid-structure vibration problem, where the kinematic constraint is im-
posed by means of piecewise constant Lagrange multiplier. Following this
technique, we arrive at the same mortar setting as we discuss here. Now,
we consider the domain Ω := {(x, y) ∈ R

2, x2 + y2 < 1} decomposed into
two subdomains ΩS and ΩF with ΩF := {(x, y) ∈ R

2, x2 + y2 < 0.6}, and
ΩS := Ω\Ω̄F . Here, ΓD = {(cos θ, sin θ), 5π

4 ≤ θ ≤ 7π
4 }. We have used the fol-

lowing parameters in our numerical example: ρF = 1000kg/m
3
, c = 1430m/s,

ρS = 7700kg/m3, E = 144GPa, and ν = 0.35. The first three consecutive
eigenmodes along with the pressure in the fluid domain and the distorted
grids in the solid domain are shown in Figure 3. We note that Γ defines a
curvilinear interface. To evaluate the weak coupling, we commit an additional
variational crime by projecting the mesh of the structure side to the mesh on
the fluid side.

Fig. 3. The first, second and the third eigenmodes corresponding to the eigenvalues
809.1481, 1980.7519 and 3606.3907 (rad/s)

The second numerical example is taken from Bermúdez and Rodŕıguez [1994].
The domain Ω := (0, 1.5) × (0, 1.5) is decomposed into two subdomains
ΩS and ΩF with ΩF := (0.25, 1.25) × (0.25, 1.25), ΩS := Ω\Ω̄F , and
ΓD = {(x, 0) ∈ R

2, 0 ≤ x ≤ 1.5}. We have used the same physical parameters
as in the previous example. The computed eigenfrequencies (in rad/s) along
with the extrapolated ones referred to as ‘Exact’ in Bermúdez and Rodŕıguez
[1994] are given in Table 1.

Table 1. The computed eigenfrequencies using mortar techniques compared with
the extrapolated eigenfrequencies (‘Exact’) in Bermúdez and Rodŕıguez [1994]

Eigenmodes Computed Eigenfrequencies ‘Exact’

1 648.1847 641.837
2 2147.3593 2116.398
3 3419.5020 3201.475
4 3885.9022 3804.124
5 4214.0865 4211.620
6 4699.6782 4687.927
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