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Summary. We investigate the performance of domain decomposition methods for
solving the Poisson equation on the surface of the sphere. This equation arises in a
global weather model as a consequence of an implicit time discretization. We consider
two different types of algorithms: the Dirichlet-Neumann algorithm and the optimal
Schwarz method. We show that both algorithms applied to a simple two subdomain
decomposition of the surface of the sphere converge in two iterations. While the
Dirichlet-Neumann algorithm achieves this with local transmission conditions, the
optimal Schwarz algorithm needs non-local transmission conditions. This seems to
be a disadvantage of the optimal Schwarz method. We then show however that for
more than two subdomains or overlapping subdomains, both the optimal Schwarz
algorithm and the Dirichlet Neumann algorithm need non-local interface conditions
to converge in a finite number of steps. Hence the apparent advantage of Dirichlet-
Neumann over optimal Schwarz is only an artifact of the special two subdomain
decomposition.

1 Introduction

Numerical efficiency is very important when modeling the atmosphere, see
Côté et al. [1998]. This is particularly true of operational weather forecasts
that must be run in real-time during a given time window, and weather be-
ing a global phenomenon, one must use a global model to accurately forecast
or analyze data. Furthermore, fast waves, which carry little energy, propa-
gate many times faster than the local wind speed, by a factor three or more
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depending on the application, and these waves restrict the time-step of ex-
plicit Eulerian integration schemes. The restrictions are particularly severe
for global finite-difference models, due to the convergence of the meridians
at the poles. This motivates the use of an implicit (or semi-implicit) time
treatment of the terms that govern the propagation of these oscillations in
order to greatly retard their propagation and permit a much larger time-step.
This approach results in the need to solve an elliptic problem on the sphere.
For a time-implicit scheme to be computationally advantageous, it must be
possible to integrate with a sufficiently-large time-step to offset the overhead
of solving the elliptic-boundary-value problem. This is often the case, even for
non-hydrostatic flows, as discussed in Skamarock et al. [1997].

Meteorological operational centers have recently acquired new high-per-
formance significantly-parallel computers. In order to reap the benefits af-
forded by those systems, parallel algorithms need to be designed for solving
the models used in numerical-weather-prediction and data assimilation sys-
tems. This motivates the present study, where the parallel solution based on
domain-decomposition methods on the surface of the sphere is analyzed. We
investigate two domain decomposition methods in this paper: the Dirichlet-
Neumann and the optimal Schwarz method. The Dirichlet-Neumann method
is a well studied method on the plane, see for example Bjørstad and Wid-
lund [1986], Bramble et al. [1986], Marini and Quarteroni [1989], and refer-
ences therein. The choice of the optimal relaxation parameter in the Dirichlet-
Neumann method on the plane is also well understood: for the case of two
subdomains with special symmetry, it is 1

2 . In more general situations, the
parameter of relaxation needs to be in a specific interval to obtain a fast
algorithm. The key idea underlying the optimal Schwarz method has been
introduced in Hagstrom et al. [1988] in the context of non-linear problems. A
new class of Schwarz methods based on this idea was then introduced in Char-
ton et al. [1991] and further analyzed in Nataf and Rogier [1995] and Japhet
[1998] for convection diffusion problems. For the case of the Poisson equation,
see Gander et al. [2001], where also the terms optimal and optimized Schwarz
were introduced. Optimal Schwarz methods have in general non-local trans-
mission conditions at the interfaces between subdomains, and are therefore
not as easy to use as classical Schwarz methods. Optimized Schwarz methods
use local approximations of the optimal, non-local transmission conditions at
the interfaces and are therefore as easy to use as the classical Schwarz method,
but have a greatly enhanced performance.

In Section 2, we introduce the Poisson equation on the sphere and the tools
of Fourier analysis, on which our results are based. In Section 3, we present
the Dirichlet-Neumann algorithm for the Poisson equation on the surface of
the sphere with possible overlap. We show that convergence in two iterations
can be achieved with an appropriate choice of the relaxation parameter. In the
case of two subdomains without overlap, this optimal parameter is a constant,
but with overlap, and in the case of three subdomains, convergence in a finite
number of steps is only possible with a non-local convolution relaxation pa-
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rameter. In Section 4, we present the optimal Schwarz algorithm for the same
configuration. We prove convergence in two iterations for the two subdomain
case and in three iterations for the three subdomain case, in both cases with
non-local transmission conditions. In Section 5 we illustrate our findings with
numerical experiments.

2 The Poisson Equation on the Sphere

We consider the solution of the Poisson problem

Lu = ∆u = f, in S ⊂ R
3, (1)

where S is the unit sphere centered at the origin. Using spherical coordinates,
the equation (1) can be rewritten in the form

Lu =
1

r2
∂

∂r

(

r2
∂u

∂r

)

+
1

r2sin2ψ

∂2u

∂θ2
+

1

r2sinψ

∂

∂ψ

(

sinψ
∂u

∂ψ

)

= f, (2)

where ψ stands for the colatitude, with 0 being the north pole and π being
the south pole, and θ is the longitude. For our case on the surface of the unit
sphere, we consider solutions independent of r, which simplifies (2) to

Lu =
1

sin2ψ

∂2u

∂θ2
+

1

sinψ

∂

∂ψ

(

sinψ
∂u

∂ψ

)

= f. (3)

Our results are based on Fourier analysis. Because u is periodic in θ, it can
be expanded in a Fourier series,

u(ψ, θ) =

∞
∑

m=−∞

û(ψ,m)eimθ, û(ψ,m) =
1

2π

∫ 2π

0

e−imθu(ψ, θ)dθ.

Equation (3) then becomes a family of ordinary differential equations; for any
positive or negative integer m, we have

−
m2

sin2ψ
û(ψ,m) +

1

sinψ

∂

∂ψ

(

sinψ
∂û(ψ,m)

∂ψ

)

= f̂(ψ,m). (4)

For m fixed, the homogeneous problem, f̂(ψ,m) = 0 in (4), has the two
fundamental solutions

g±(ψ,m) =

(

sin(ψ)

cos(ψ) + 1

)±|m|

. (5)

Remark 1. g+ has a singularity at the south pole and g− has a singularity at
the north pole.

Remark 2. The function sinx/(cosx + 1) is monotonically increasing on the
interval [0, π), which can be seen by taking a derivative.
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3 The Dirichlet-Neumann Algorithm

We first decompose the surface of the sphere into two overlapping subdomains
as shown in Figure 1-(i), where a ≤ b. The Dirichlet-Neumann method to
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Fig. 1. (i) Two overlapping subdomains (ii) Three nonoverlapping subdomains.

solve (1) solves iteratively the Poisson equation on Ω1 and Ω2 and exchanges
Dirichlet and Neumann conditions respectively on the interfaces a and b. In its
classical form, the algorithm is defined without overlap, but here we are also
interested in the influence of overlap on the algorithm. By linearity, it suffices
to consider only the homogeneous case in the convergence analysis, f = 0.
For an initial guess λ0(θ) on the interface b, the algorithm then performs the
iteration

Luk+1
1 = 0 in Ω1, uk+1

1 (b, θ) = λk(θ),

Luk+1
2 = 0 in Ω2,

∂
∂ψ
uk+1

2 (a, θ) = ∂
∂ψ
uk+1

1 (a, θ),
(6)

where the new function λk+1(θ) is defined by the linear combination

λk+1(θ) := γuk+1
2 (b, θ) + (1 − γ)λk(θ). (7)

Here γ is a relaxation parameter which is assumed to be non-negative. Ex-
panding the iterates in a Fourier series and taking into account Remark 1 for
bounded solutions on the subdomains, we obtain the subdomain solutions

ûk+1
1 (ψ,m) = λ̂k(m)g+(ψ,m)

g+(b,m) ,

ûk+1
2 (ψ,m) = −λ̂k(m) g+(a,m)

g+(b,m)g
−

(a,m)g−(ψ,m).
(8)

Letting σ(m) = g+(a,m)g−(b,m), the iteration on λ in (7) becomes

λ̂k+1(m) = (1 − γ̂(1 + σ2(m)))λ̂k(m). (9)

Proposition 1. The Dirichlet-Neumann iteration (6) with the two overlap-
ping subdomains on the surface of the sphere converges in two iterations,
provided the relaxation parameter is

γ̂ = γ̂opt(m) :=
1

1 + σ2(m)
. (10)
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Remark 3. The optimal relaxation parameter depends on m, which implies a
non-local convolution operation in real space. Without overlap however, a = b,
we have σ(m) = 1, and the optimal relaxation parameter becomes γopt = 1/2,
which is now independent of m and thus a simple local operation in real space.

To see if the optimal result for the non-overlapping two subdomain case
can be generalized to more subdomains, we consider a decomposition of the
surface of the sphere into three non-overlapping subdomains, see Figure 1-(ii),
where α < β. In this case the Dirichlet-Neumann algorithm for (1) with initial
guesses λ0

1(θ) and λ0
2(θ) is

Luk+1
1 = 0 in Ω1, uk+1

1 (α, θ) = λk1(θ),

Luk+1
2 = 0 in Ω2,

∂
∂ψ
uk+1

2 (α, θ) = ∂
∂ψ
uk+1

1 (α, θ),

uk+1
2 (β, θ) = λk2(θ),

Luk+1
3 = 0 in Ω3,

∂
∂ψ
uk+1

3 (β, θ) = ∂
∂ψ
uk+1

2 (β, θ),

(11)

where the new functions λkj (θ), j = 1, 2, are defined by

λk+1
1 (θ) = γ1u

k+1
2 (α, θ) + (1 − γ1)λ

k
1(θ),

λk+1
2 (θ) = γ2u

k+1
3 (β, θ) + (1 − γ2)λ

k
2(θ),

(12)

and γ1 and γ2 are non-negative relaxation parameters. Using Fourier series as
before, we arrive at the matrix iteration

[

λ̂k+1
1

λ̂k+1
2

]

= A

[

λ̂k1
λ̂k2

]

, A :=

[

γ̂1
∆

−

∆+
+ (1 − γ̂1) 2 γ̂1

∆+

−2 γ̂2
∆+

γ̂2
∆

−

∆+
+ (1 − γ̂2)

]

, (13)

where ∆± := η(m) ± η−1(m) and η(m) := g+(α,m)/g+(β,m).

Proposition 2. The Dirichlet-Neumann iteration with three non-overlapping
subdomains on the surface of the sphere converges in three iterations, provided
the relaxation parameters are

γ̂1 = γ̂1,opt(m) := 1
2 + 1

2η
2(m) − 1

2η(m)
√

1 + η2(m),

γ̂2 = γ̂2,opt(m) := 1
2 + 1

2η
2(m) + 1

2η(m)
√

1 + η2(m).
(14)

This result shows that for more than two subdomains, convergence in a finite
number of steps can only be achieved with non-local convolution relaxation
parameters in the Dirichlet-Neumann algorithm.

4 Schwarz Algorithms

We decompose the surface of the sphere into two overlapping domains as
shown in Figure (1)-(i). The classical Schwarz algorithm is given by
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Luk+1
1 = 0 in Ω1, uk+1

1 (b, θ) = uk2(b, θ),

Luk+1
2 = 0, in Ω2, uk+1

2 (a, θ) = uk+1
1 (a, θ).

(15)

Using a Fourier series expansion as before, we find

ûk+1
1 (a,m)=ρûk1(a,m)

ûk+1
2 (b,m)=ρûk2(b,m)

, ρ :=
g+(a,m)

g+(b,m)

g−(b,m)

g−(a,m)
. (16)

Because of Remark 2, the fractions are less than one and this process is a
contraction and hence convergent. We have proved the following

Proposition 3. For each m 6= 0, the Schwarz iteration on the surface of
the sphere partitioned along two colatitudes a < b converges linearly with the
convergence factor

(

sin(a)

cos(a) + 1

)2|m| (
sin(b)

cos(b) + 1

)−2|m|

< 1. (17)

This shows that for small values of m the speed of convergence is very poor,
since the convergence factor in (17) is nearly one. Following the approach in
Gander et al. [2001], we introduce the following new transmission conditions:

(1 + p̂(m) ∂
∂ψ

)ûk+1
1 (b,m) = (1 + p̂(m) ∂

∂ψ
)ûk2(b,m),

(1 + q̂(m) ∂
∂ψ

)ûk+1
2 (a,m) = (1 + q̂(m) ∂

∂ψ
)ûk+1

1 (a,m),
(18)

where p̂ and q̂ are functions we can use to optimize the performance.

Proposition 4. If, for each m 6= 0, p̂(m) = sin(b)/|m| and q̂(m) = − sin(a)/|m|,
then the new Schwarz algorithm with transmission conditions (18) converges
in two iterations, even without overlap, a = b.

Proof. Using û1
2(ψ,m) = C2g−(ψ,m) and û1

1(ψ,m) = C1g+(ψ,m), where C2

is a coefficient to be determined by the method and C1 is given through the
initial guess, and substituting into the transmission condition, yields

C2g−(a,m)

(

1 − q̂(m)
|m|

sin(a)

)

= C1g+(a,m)

(

1 + q̂(m)
|m|

sin(a)

)

= 0.

Hence C2 = 0 and the iteration has converged for Ω2. A similar argument
shows that in the second step, the iteration converges on Ω1 as well.

To see if this result generalizes to more than two subdomains, we consider
the Schwarz algorithm with three subdomains,

Luk+1
1 = 0 in Ω1, (1 + p ∂

∂ψ
)uk+1

1 (α, θ) = (1 + p ∂
∂ψ

)uk2(α, θ),

Luk+1
2 = 0 in Ω2, (1 + q1

∂
∂ψ

)uk+1
2 (α, θ) = (1 + q1

∂
∂ψ

)uk+1
1 (α, θ),

(1 + q2
∂
∂ψ

)uk+1
2 (β, θ) = (1 + q2

∂
∂ψ

)uk3(β, θ),

Luk+1
3 = 0 in Ω3, (1 + r ∂

∂ψ
)uk+1

3 (β, θ) = (1 + r ∂
∂ψ

)uk+1
2 (β, θ),

(19)

where p, q1, q2 and r are convolution operators in θ with Fourier symbol p̂,
q̂1, q̂2 and r̂ respectively.
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Proposition 5. If, for each m 6= 0, p̂(m) = sin(α)/|m|, q̂1(m) = − sin(α)/|m|,
q̂2(m) = sin(β)/|m|, r̂(m) = − sin(β)/|m|, then the new Schwarz algorithm
for three subdomains (19) converges in three iterations.

The proof of this last result is similar to the proof for the two subdomain case.

Remark 4. The choice p̂(m) = sin(α)/|m| and q̂2(m) = sin(β)/|m| is not nec-
essary in this Gauss-Seidel form of the optimal Schwarz method: p̂(m) and
q̂2(m) can be any real number, except − sin(α)/|m| and − sin(β)/|m| respec-
tively, and the stated results still hold (the situation is similar for the two
subdomain case). In the more parallel Jacobi form of the algorithms however
the given choice is necessary to obtain the convergence results stated.

5 Numerical experiments

We used a spectral method in the longitude with 20 modes, and a finite dif-
ference method in the colatitude with discretization parameter h = π/3000.
In the first set of experiments, we used two subdomains, once with overlap
[ 9
20π,

11
20π], and once without overlap. A comparison of the convergence be-

havior of the algorithms is shown in Figure 2 on the left. While the classical
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Fig. 2. Convergence behavior for the methods analyzed: the two subdomain case
on the left and the three subdomain case on the right.

Schwarz algorithm converges very slowly, both the optimal Schwarz and the
Dirichlet-Neumann algorithm converge in two steps with and without overlap,
as predicted by the analysis.

In the second set of experiments, we use three non-overlapping subdo-
mains. In Figure 2 on the right, one can see that the optimal Schwarz and
Dirichlet-Neumann algorithms converge in three steps, as predicted by the
analysis, whereas the Dirichlet-Neumann algorithm with the constant relax-
ation parameter 1/2, which was optimal for the two subdomain case without
overlap, is now much slower.
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6 Conclusion

The Dirichlet-Neumann algorithm converges with local relaxation parameter
in a finite number of steps only in the special case of two subdomains. To
obtain convergence in a finite number of steps for more than two subdomains
or if overlap is used, non-local relaxation parameters are needed, like for the
optimal Schwarz method. These non-local transmission conditions will serve
as a guiding principle to develop local approximations which lead to fast
algorithms.
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