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Summary. This paper presents an overlapped block-parallel Newton method for
solving large nonlinear systems. The graph partitioning algorithms are first used to
partition the Jacobian into weakly coupled overlapping blocks. Then the simplified
Newton iteration is directly performed, with the diagonal blocks and the overlapping
solutions assembled in a weighted average way at each iteration. In the algorithmic
implementation, an accelerated technique has been proposed to reduce the number
of iterations. The conditions under which the algorithm is locally and semi-locally
convergent are studied. Numerical results from solving power flow equations are
presented to support our study.

1 Introduction

This paper considers the problem of solving the large sparse system of non-
linear equations

F(x) = 0, (1)

where F(x) = (f1, . . . , fN)T is a nonlinear operator from IRN to IRN . Such
systems often arise from scientific and computational engineering problems.
It is well-known that Newton methods and its variations (see Ortega and
Rheinboldt [1970], etc.) coupled with some direct solution technique such as
Gaussian elimination are powerful solvers for these systems when one has
a sufficiently good initial guess x0 and when N is not too large. When the
Jacobian is large and sparse, inexact Newton methods (see Dembo et al. [1982],
Brown and Saad [1990], Cai and Keyes [2002], etc.) or some kind of nonlinear
block-iterative methods (see Zecevic and Siljak [1994],Yang et al. [1997],Chen
and Cai [2003], etc.) may be used.

An inexact Newton method (IN) is a generalization of Newton method for
solving system (1), in which, each step {sk} satisfies ‖F′(xk)sk + F(xk)‖ <

‖rk‖, regardless of how {sk} is determined. In past years, Krylov subspace
methods, such as Arnoldi’s method (see Saad [1981]), GMRES (see Saad and
Schultz [1986]) and so on, have been studied intensively and applied in IN
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for solving large scale linear systems approximately. This combined method
is called inexact Newton-Krylov methods or nonlinear Krylov subspace pro-
jection methods. Many works on parallel Newton-Krylov methods have been
done by Gropp et al. [2000], Knoll and Keyes [2003], etc.

Parallel nonlinear block-iterative method is another powerful solver for
large sparse nonlinear systems, which chiefly consists of block Newton-type
and block quasi-Newton methods. The classical nonlinear block-Jacobi algo-
rithm and nonlinear block-Gauss-Seidel algorithm (see Ortega and Rheinboldt
[1970]) are two original versions. A block-parallel Newton method via overlap-
ping epsilon decompositions was presented by Zecevic and Siljak [1994]. Yang
et al. [1997] described a parallelizable Jacobi-type block Broyden method, and
more recently a partially overlapped Broyden method has been proposed by
Chen and Cai [2003].

In this paper, we consider a parallelizable block simplified Newton method
via overlapped partitioning, which is essentially an additive Schwarz method
(block-Jacobi algorithm) with overlapping. In the implementation, an accel-
erated technique (see Sect. 2) is proposed for each iteration to reduce the
number of iterations. Sect. 3 gives the sufficient conditions under which the
new method is locally and semi-locally convergent. The numerical results for
solving power flow equations are presented in Sect. 4. Finally, we draw con-
clusions and discuss the future work on this subject in Sect. 5.

2 The Algorithm

In the following discussion, x∗ ∈ IRN is an exact solution of system (1), i.e.,
F(x∗) = 0. Let x0 be an initial guess of x∗, and suppose the components of
x and F are conformally partitioned as follows:

{F} = {F1, . . . ,FM}, {x} = {x1, . . . ,xM}, (2)

where Fi = (f(i,1), . . . , f(i,ni))
T : IRN → IRni , xi = (x(i,1), . . . , x(i,ni))

T ∈ IRni

for i = 1, . . . , M . Let Si = {(i, 1), . . . , (i, ni)}, then the partition satisfies that
⋃M

i=1 Si = {1, 2, . . . , N} and Si ∩ Si+1 6= ∅ for i = 1, . . . , M − 1, which means
that the adjacent blocks have partial overlaps. This partition may be obtained
by graph-theoretic decomposition algorithms. Several overlapped strategies
based on the general graph partitioning scheme included in Chaco, a publicly
available graph partitioning software package developed by Hendrickson and
Leland [1995], have been chiefly discussed by Chen and Cai [2003].

Let J0 be the Jacobian matrix of F at x0, i.e., J0 = ∂F(x)
∂x

|x=x0 , and for

i = 1, . . . , M let J0
i = ∂Fi(x)

∂xi

|x=x0 ∈ IRni×ni be a nonsingular matrix. An
algorithm for the Overlapped Block Simplified Newton method is as follows:

Overlapped Block Simplified Newton (OBSN) algorithm.

1. a. Partition J0 into M blocks J0
i , i = 1, . . . , M .
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b. Select weighted average parameter α = {αi}M−1
i=1 , 0 ≤ αi ≤ 1.

2. For k = 0, 1, . . . until convergence:
For i = 1, . . . , M , do:

a. Solve J0
i s

k
i = −rk

i .

b. Assemble the solutions: xk+1
i = xk

i + ŝ
k
i , where for j = 1, . . . , ni,

ŝk
(i,j) =











αis
k
(i,j) + (1 − αi)s

k
(i+1,j), (i, j) ∈ Si ∩ Si+1;

αi−1s
k
(i−1,j) + (1 − αi−1)s

k
(i,j), (i, j) ∈ Si−1 ∩ Si;

sk
(i,j), others.

c. Calculate rk+1
i = Fi(x

k+1). If ‖rk+1‖ is small enough, stop.

Step 2 of the above algorithm can be essentially replaced by the Newton-
type iteration:

xk+1 = G(xk) = xk − (A(J0
D, α))−1F(xk), (3)

where J0
D denotes the partially overlapping block diagonal Jacobian and the

matrix (A(J0
D, α))−1 is determined by J−1

1 , . . . ,J−1
M and α. To obtain local

convergence for OBSN, one only needs to prove the convergence of the itera-
tion (3). However, OBSN is proposed here for solving large sparse nonlinear
systems in parallel. The reason is that Step 2 of the algorithm is easily paral-
lelizable despite the use of a direct or an iterative solver.

For most practical problems, increasing the number of blocks will yield a
severe increase in the number of iterations for the block-iterative method even
the blocks with overlapping. In order to obtain an efficient parallel implemen-
tation for OBSN, it is critical to reduce the number of iterations. We therefore
propose an accelerated technique based on the zero-nonzero structure of the
partitioned Jacobian J0. Suppose the set

S̄ = {〈i, j〉 : J0
ij 6= 0, J0

ij 6∈ J0
D, i, j = 1, . . . , N}, (4)

to be nonempty, then for all 〈p, q〉 ∈ S̄, append an updated formula following
Step 2.(b) in OBSN as follows:

{

xk+1
(p) = xk+1

(p) + γŝ
k
(q),

xk+1
(q) = xk+1

(q) + γŝ
k
(p),

(5)

where γ ∈ (0, 1) is an accelerated parameter. The algorithm with the updated
formula (5) is referred to as AOBSN algorithm.

Note that OBSN is essentially a variation of nonlinear block-multisplitting
method presented by Frommer [1989] or additive Schwarz methods (block-
Jacobi algorithm) with overlapping. The main difference is that the Jacobian
matrix of F need not be computed at each iteration and there is overlapping
only between adjacent blocks in OBSN. Here, the restriction of overlapping
just makes the selection of α much easier. The numerical results in Sect. 4
also show that the convergence performance of OBSN is much improved by
the formula (5) with γ rather than by α.
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3 Local and Semi-local convergence

Let ‖ · ‖ be a norm on IRN and Ω̄(x, r) be a close ball of radius r about x.
We can immediately obtain the local convergence theorem for OBSN.

Theorem 1. Let F : D ⊂ IRN → IRN be Fréchet differentiable at the zero
x∗ ∈ D of F, and suppose that Ji(x) : Ω0 ⊂ D → L(IRni) is defined on some
open neighborhood Ω0 ⊂ D of x∗ and is continuous at x∗ with nonsingular
Ji(x

∗) for i = 1, . . . , M . Then there exists a close ball Ω = Ω̄(x∗, δ) ⊂ Ω0, δ >

0, on which for any x0 ∈ Ω the mapping G : x ∈ Ω → x−(A(J0
D, α))−1F(x) ∈

IRN is well-defined and G has at x∗ the Fréchet derivative

G′(x∗) = I − (A(J0
D, α))−1J(x∗). (6)

If ρ(G′(x∗)) < 1, then the sequence {xk} generated by OBSN is well-defined
for any x0 ∈ Ω and it converges to x∗.

Proof. Set η = max
i=1,...,M

‖Ji(x
∗)−1‖ and for given ε > 0, 2ηε < 1, choose

δ > 0 such that Ω = Ω̄(x∗, δ) ⊂ Ω0 and ‖Ji(x) − Ji(x
∗)‖ ≤ ε for any

x ∈ Ω, i = 1, . . . , M . Then Ji(x) is invertible for all x ∈ Ω, and

‖(Ji(x))−1‖ ≤ η

1 − ηε
< 2η, x ∈ Ω, i = 1, . . . , M, (7)

that is, the mapping G(x) = x − (A(J0
D, α))−1F(x) is well-defined on Ω for

any x0 ∈ Ω. In addition, ρ(G′(x∗)) < 1 which implies the x∗ is an attractor
of the iterative formula (3), so the sequence xk generated by OBSN is well-
defined for any x0 ∈ Ω and it converges to x∗. ⊓⊔

Furthermore, we can also obtain the semi-local convergence theorem for
OBSN from Theorem 12.5.5 in Ortega and Rheinboldt [1970] by the Newton-
type iteration (3). The proof is trivial.

Theorem 2. Let F : D ⊂ IRN → IRN be Fréchet differentiable and Lips-
chitz continuous with Lipschitz constant τ on a close ball Ω̄(x0, r) ⊂ D. Also
suppose that there exist κ, η, and µ with h = κτη(1 − µ)2 ≤ 1

2 such that

‖(A(J0
D, α))−1‖ ≤ κ, (8)

‖(A(J0
D, α))−1F(x0)‖ ≤ η, (9)

‖I− (A(J0
D, α))−1J(x0)‖ ≤ µ < 1, (10)

Set

r− =
1 − µ

κτ
(1 −

√
1 − 2h), (11)

r+ =
1 − µ

κτ
(1 +

√
1 − 2h). (12)

If r ≥ r−, then the sequence {xk} generated by OBSN keeps in Ω̄(x0, r) and
it converges to the unique root x∗ of F in Ω̄(x0, r′) with r′ = min{r, r+}.
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4 Numerical Results

In this section, OBSN and AOBSN are applied to the load flow problem
in power systems. The relative importance of α, γ on the convergence of
(A)OBSN for the IEEE 118-bus system (Problem 1) are studied, and some
values are suggested for obtaining good performance with (A)OBSN. Then,
the parallel numerical results for the IEEE 662-bus system (Problem 2) on a
PC cluster are presented.

For an n-bus system without the slack bus, the load flow problem is de-
scribed by a system of nonlinear algebraic equations:

F(x1, . . . ,xn;P,Q) = 0 (13)

where
Fi = (FPi

, FQi
)T , xi = (fi, ei)

T , (14)

FPi
= Pi − Re(Ei

n
∑

k=1

Y ∗

ikE∗

k), (15)

FQi
= Qi − Im(Ei

n
∑

k=1

Y ∗

ikE∗

k). (16)

In the above equations, Ei = ei + jfi represents the unknown complex node
voltage, Pi + jQi represents the injected power and Yik = Gik + jBik repre-
sents the admittance. For PV buses, where the voltage magnitude Vi is fixed,
equation (16) is replaced by FQi

= V 2
i − (e2

i + f2
i ).

In practice, good initial guess can be easily obtained in the load flow
computation, especially in the load flow track case. So an approximate start x0

which is obtained by adding random values ranging from −0.01 to 0.01 to the
solutions is considered to evaluate the cases where good initial approximations
are provided. In all tests, Gaussian elimination was used to solve the linear
subproblems exactly and the nonlinear error tolerance was 10−3.

4.1 Influence of α, γ on Convergence

For the power flow equations (13), using the similarity of the structure of
matrix B = (Bik)n×n and the Jacobian J0 (see Zecevic and Siljak [1994]),
we applied the partially overlapped partitioning to B to achieve the partition
of J0 which reduces the problem dimension by a factor of 2. The linear-KL
partitioning coupled with the boundary-linear strategy (see Chen and Cai
[2003]) was chosen as the partition scheme for (A)OBSN in this study. The
choice was observed to be better compared to scattered, spectral partitioning
and multilevel-KL schemes (see Hendrickson and Leland [1995]) coupled with
the boundary-linear strategy. For simplicity, we only considered the case for
α1 = · · · = αM−1 = α.
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Fig. 1 shows the influence of α on the convergence of OBSN and AOBSN
(α = 0.5) for Problem 1 in ten differently approximate start cases. From the
figure, we can see that the influence of α on the convergence of OBSN is more
sensitive to x0 than that on AOBSN. In addition, the rate of convergence of
OBSN is significantly improved by the updated formula (5) with the acceler-
ated parameter γ = 0.5. Note that the influence of α on the convergence of
AOBSN is much less than that of γ, so α can be fixed (for example, α = 0.5)
if AOBSN is used to solve the power flow equations.
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Fig. 1. Influence of α on the con-
vergence of (A)OBSN for Problem
1 (ten approximate starts, M = 8)
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Fig. 2. Influence of γ on the con-
vergence of AOBSN for Problem 1
(ten approximate starts, M = 8)

Fig. 2 shows the influence of accelerated parameter γ on the convergence
of AOBSN (α = 0.5) for Problem 1 in the same ten start cases. The figure also
shows that the convergence performance of OBSN is significantly improved
by the accelerated technique with γ = 0.1, . . . , 0.8. Similar conclusions can be
drawn for other ten initial approximations obtained even by a larger disturbed
parameter as well.

4.2 Parallel Implementation of AOBSN for Problem 2

Using the above scheme, we partition the matrix B of Problem 2 into 2, 4, 8,
16, 32 and 64 blocks (see Fig. 3 for some cases). Fig. 4 shows the number of
iterations of three algorithms mentioned above for Problem 2. We can see that
AOBSN has much better convergent performance than the Block Simplified
Newton method (BSN) and OBSN, and its number of iterations is less sensitive
to the number of blocks. It should be pointed out that AOBSN usually requires
more iterations than Newton methods and its simplified version. However, by
virtue of the reduction of dimensionality, AOBSN can result in significant
computational savings.

In the parallel implementation, we assigned the individual blocks or a
group of blocks into per processor in an adequate load balancing way. All
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Fig. 3. Zero-nonzero structure of B and the partitioned B for Problem 2
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Fig. 4. Comparison of 3 methods
for Problem 2 (approximate start)
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Fig. 5. Parallel computing time of
AOBSN for Problem 2

numerical tests were run on an SMP-Cluster (36 nodes, CPU of per node:
4×Intel Xeon PIII700MHz, Myrinet, MPI). The programs were written in C
using double precision floating point numbers. Fig. 5 shows the parallel com-
putation time of AOBSN in 8, 16 and 32 block cases. The total execution time
reduces with the number of processors and reaches its minimal value when
the number of processors is 8 or 16 in 8 or 16 block cases, respectively. The
communication time approximately increases with the number of processors
and exceeds the computation time with 32 processors in 32 block case, which
indicates that Problem 2 is not sufficiently large to be efficiently mapped onto
more than 16 processors on the SMP-Cluster.

5 Conclusions and Discussion

This paper has presented an overlapped block-parallel Newton method (OBSN)
for solving large nonlinear systems. In the implementation, an accelerated ver-
sion (AOBSN) is also proposed to reduce the number of iterations. The nu-
merical results of solving power flow equations confirm that AOBSN is indeed
effective, particularly for problems where a good initial guess is available.

As mentioned in the previous sections, OBSN and AOBSN are nonlinear
methods depending on several parameters, including the partition scheme,
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M, α, γ, etc. In this paper, the relative importance of α, γ on the convergence
of (A)OBSN were studied for the power flow problem, and some values for
obtaining good results with (A)OBSN were suggested. A theoretical study
on how these parameters influence the convergence of the algorithms will be
carried out in our future work.
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