
Parallel Solution of Cardiac Reaction-Diffusion

Models

Luca F. Pavarino1 and Piero Colli Franzone2
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Summary. We present and study a parallel iterative solver for reaction-diffusion
systems in three dimensions arising in computational electrocardiology, such as the
Bidomain and Monodomain models. The models include intramural fiber rotation
and anisotropic conductivity coefficients that can be fully orthotropic or axially
symmetric around the fiber direction. These cardiac models are coupled with a
membrane model for the ionic currents, consisting of a system of ordinary differ-
ential equations. The solver employs structured isoparametric Q1 finite elements in
space and a semi-implicit adaptive method in time. Parallelization and portability
are based on the PETSc parallel library and large-scale computations with up to
O(107) unknowns have been run on parallel computers. These simulation of the full
Bidomain model (without operator or variable splitting) for a full cardiac cycle are,
to our knowledge, among the most complete in the available literature.

1 The cardiac Bidomain and Monodomain models

Cardiac tissue is traditionally modeled as an arrangement of cardiac fibers
that rotate counterclockwise from the epicardium to the endocardium, (see
Streeter [1979]). Moreover, from LeGrice and et al. [1995], the cardiac tis-
sue has a laminar organization that can be modeled as a set of muscle sheets
running radially from epi to endocardium. Therefore, at any point x, it is pos-
sible to identify a triplet of orthonormal principal axes al(x), at(x), an(x),
with al(x) parallel to the local fiber direction, at(x) and an(x) tangent and
orthogonal to the radial laminae respectively and both being transversal to
the fiber axis. The macroscopic Bidomain model represents the cardiac tissue
as the superposition of two anisotropic continuous media, the intra (i) and
extra (e) cellular media, coexisting at every point of the tissue and connected
by a distributed continuous cellular membrane; see Keener and Sneyd [1998].
The anisotropic conductivity properties of the tissue are described by the
conductivity coefficients in the intra and extracellular media σi,e

l , σi,e
t , σi,e

n ,
measured along the corresponding directions al,at,an, and by the conductiv-
ity tensors Di(x) and De(x)
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Di,e = σi,e
l ala

T
l + σi,e

t ata
T
t + σi,e

n anaT
n .

When the media are axially isotropic, i.e. when σi,e
n = σi,e

t , we have Di,e =
σt

i,eI+(σl
i,e−σt

i,e)ala
T
l . The intra and extracellular electric potentials ui, ue

in an insulated cardiac domain H are described in the Bidomain model by a
reaction-diffusion system coupled with a system of ODEs for the ionic gating
variables w. Given the applied currents per unit volume Ii,e

app, satisfying the

compatibility condition
∫

H
Ii
app dx =

∫

H
Ie
appdx, the initial conditions v0, w0,

then ui, ue, w satisfy the system:
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cm

∂v

∂t
− div(Di∇ui) + Iion(v, w) = Ii

app

−cm

∂v

∂t
− div(De∇ue) − Iion(v, w) = −Ie

app

∂w

∂t
− R(v, w) = 0, v(t) = ui(t) − ue(t)

nT Di∇ui = 0, nT De∇ue = 0,
v(x, 0) = v0(x), w(x, 0) = w0(x),

(1)

where cm = χ∗Cm, Iion = χ∗ iion, with χ the ratio of membrane surface area
per tissue volume, Cm the membrane capacitance and iion the ionic current of
the membrane per unit area. Existence and regularity results for this degen-
erate system can be found in Colli Franzone and Savaré [2002]. The system
uniquely determines v, while the potentials ui and ue are defined only up
to a same additive time-dependent constant related to the reference poten-
tial, chosen to be the average extracellular potential in the cardiac volume by
imposing

∫

H
ue dx = 0.

If the two media have equal anisotropy ratio, i.e. Di = λDe with λ con-
stant, then the Bidomain system reduces to the Monodomain model consisting
in a parabolic reaction-diffusion equation for the transmembrane potential v
coupled with a system of ODEs for the gating variables:



















cm

∂v

∂t
− div(Dm(x)∇v) + Iion(v, w) = Im

app,

∂w

∂t
− R(v, w) = 0, w(x, 0) = w0(x),

nT Dm∇v = 0, v(x, 0) = v0(x),

(2)

where Dm = σl ala
T
l + σt ata

T
t + σn anaT

n , with σl,t,n = λσi
l,t,n /(1 + λ)

and Im
app = (λIi

app + Ie
app)/(1 + λ).

The dynamics of S gating variables are described by a so-called membrane
model, consisting of ordinary differential equations of the form

∂wj

∂t
= Rj(v, wj) = (wj∞(v) − wj)/τj(v), j = 1, .., S. (3)

In this paper, we consider one of the most used detailed membrane models
in the literature, the Luo-Rudy phase I (LR1) model (see Luo and Rudy
[1991]), based on six gating variables and one variable for the calcium ionic
concentration.
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2 Discretization of the models

The Monodomain (2) and Bidomain models (1) are discretized by meshing
the cardiac tissue volume H with a structured grid of hexahedral isopara-
metric Q1 elements and by introducing the associated finite element space
Vh. A semidiscrete problem is obtained by applying a standard Galerkin
procedure and choosing a finite element basis {φi} for Vh. We denote by
M = {mrs =

∫

H
ϕr ϕsdx} the symmetric mass matrix, by Am,i,e = {am,i,e

rs =
∫

H
(∇ϕr)

T Dm,i,e ∇ϕsdx} the symmetric stiffness matrices and by Ihion, I
(m,i,e),h
app

the finite element interpolants of Iion and Im,i,e
app , respectively. Integrals are

computed with a 3D trapezoidal quadrature rule, so the mass matrix M is
lumped to diagonal form; see Quarteroni and Valli [1994] for an introduction
to finite element methods. In our implementation, we have actually reordered
the unknowns writing for every node the ui and ue components consecutively,
so as to minimize bandwidth of the stiffness matrix.

The time discretization is performed by a semi-implicit method using for
the diffusion term the implicit Euler method, while the nonlinear reaction term
Iion is treated explicitly. The use of an implicit treatment of the diffusion terms
appearing in the Mono or Bidomain models is essential to allow an adaptive
change of the time step according to the stiffness of the various phases of the
heartbeat. The ODE system for the gating variables is discretized by the semi-
implicit Euler method; in this way we decouple the gating variables by solving
the gating system first (given the potential vn at the previous time-step)

(wn+1 − wn)/∆t = R(vn,wn+1)

and then solving for un+1
i ,un+1

e in the Bidomain case

(

cm

∆t

[

M −M
−M M

]

+

[

Ai 0
0 Ae

]) (

un+1
i

un+1
e

)

=

cm

∆t

(

M( un
i − un

e )
M[−un

i + un
e ]

)

+

(

M[−Ihion(vn,wn+1) + Ii,happ]
M[ Ihion(vn,wn+1) − Ie,h

app]

)

, (4)

where vn = un
i −un

e . As in the continuous model, vn is uniquely determined,
while un

i and un
e are determined only up to the same additive time-dependent

constant chosen by imposing the condition 1T Mun
e = 0.

In the Monodomain case, we have to solve for vn+1

(cm

∆t
M + Am

)

vn+1 =
cm

∆t
Mvn − M Ihion(vn,wn+1) + MIm,h

app . (5)

We employed an adaptive time-stepping strategy based on controlling the
transmembrane potential variation ∆v = max(vn+1 − vn) at each time-
step, see Luo and Rudy [1991]. If ∆v < ∆vmin = 0.05 then we select
∆t = (∆vmax/∆v)∆t (if smaller than ∆tmax = 6 msec), if ∆v > ∆vmax = 0.5
then we select dt = (∆vmin/∆v)dt (if greater than ∆tmin = 0.005 msec). In
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order to guarantee a control on the variation of the gating variables of the LR1
membrane model as well, each gating equation of the system (3) is integrated
exactly (see Victorri and et al. [1985]), while the calcium ionic concentration
is updated using the explicit Euler method.

The linear system at each time step in the discrete problems is solved it-
eratively by the preconditioned conjugate gradient (PCG) method, using as
initial guess the solution at the previous time step. Parallelization and porta-
bility are realized using the PETSc parallel library (Balay et al. [2001]) and a
preconditioned conjugate gradient solver at each time step, with block Jacobi
preconditioner and ILU(0) on each block, the default one-level preconditioner
in the PETSc library. The numerical experiments reported in the next section
show that it performs well in the Monodomain case, but not in the Bidomain
case. Therefore, more research is needed in order to build better precondition-
ers, particularly with two or more levels; see Smith et al. [1996].

3 Numerical results

We have conducted several numerical experiments in three dimensions on dis-
tributed memory parallel architectures, with both the Monodomain and the
Bidomain model coupled with the LR1 membrane model. The parallel ma-
chines employed are an IBM SP RS/6000 with 512 processors Power 4 of
the Cineca Consortium (www.cineca.it), and an HP SuperDome 64000 with
64 processors PA8700 of the Cilea Consortium (www.cilea.it). We refer to
Colli Franzone and Pavarino [2003] for more detailed numerical results. Multi-
grid preconditioners for the Bidomain system have been studied by Weber dos
Santos et al. [2004], while mortar finite element discretizations by Pennacchio
[2004]. We studied first the spectrum of the iteration matrices (5) and (4) on
a small 15×15×8 mesh in the Monodomain case and 15×15×4 in the Bido-
main case (these meshes are chosen in order to have matrices of the same
size). The eigenvalues of the stiffness matrices are reported in the left panel
of Figure 1, while the eigenvalues of the iteration matrices are reported in the
right panel. It is clear that the addition to the stiffness matrix of a term with
the mass matrix greatly improves the spectrum of the Monodomain iteration

Table 1. Parameters calibration for numerical tests

ellipsoidal a1 = b1 = 1.5 cm, a2 = b2 = 2.7 cm, c1 = 4.4, c2 = 5 cm
geometry φmin = 0, φmax = 2π, θmin = −3π/8, θmax = π/8

χ = 103 cm−1, Cm = 10−3 mF/cm2

Monodomain σl = 1.2 · 10−3 Ω−1cm−1, σt = 2.5562 · 10−4 Ω−1cm−1

parameters G = 1.5 Ω−1cm−2, vth = 13 mV, vp = 100 mV
η1 = 4.4 Ω−1cm−2, η2 = 0.012, η3 = 1

σe
l = 2 · 10−3 Ω−1cm−1, σi

l = 3 · 10−3 Ω−1cm−1

Bidomain σe
t = 1.3514 · 10−3 Ω−1cm−1, σi

t = 3.1525 · 10−4 Ω−1cm−1

parameters σe
n = σe

t /µ1, σi
n = σi

t/µ2

µ1 = µ2 = 1 axial isotropic case, µ1 = 2, µ2 = 10 orthotropic case
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Fig. 1. Nonzero eigenvalue distribution of the stiffness matrices related to elliptic
operators with Neumann boundary conditions (left) and of the iteration matrices in
(5) and (4) (right) for a small mesh. Monodomain eigenvalues are denoted by dots
(·), Bidomain eigenvalues by circles (o)

matrix (5), but not of the Bidomain iteration matrix (4). In fact, the iterative
solution of the linear system at each time step turns out to be much harder
for the Bidomain model than for the Monodomain model.

3.1 Scaled speedup for Monodomain-LR1 and Bidomain-LR1

solvers

We consider first the Monodomain equation with LR1 ionic model, simulating
on the IBM SP4 machine the initial depolarization of some ellipsoidal blocks
after one stimulus of 250 mA/cm3 has been applied for 1 msec on a small
area (5 mesh points in each direction) of the epicardium. The blocks are cho-
sen in increasing sizes so as to keep constant the number of mesh points per
subdomain (processor). As shown in Figure 2, the domain varies from the
smaller block with 8 subdomains to half ventricle with 128 subdomains. We
fixed the local mesh in each subdomain to be of 75×75×50 nodes (281.750
unknowns), hence varying the global number of unknowns of the linear sys-
tem from 2.25·106 in the smaller case with 8 subdomains on a global mesh
of 150×150×100 nodes to 3.6·107 in the larger case with 128 subdomains on
a global mesh of 600×600×100 nodes. The model is run for 30 time steps of
0.05 msec each. At each time step, we compute the potential v, the gating
and concentration variables w1, · · · , w7 and the depolarization time. The re-
sults are reported in the upper part of Table 2. The assembling time, average
number of PCG iterations per time step and the average time per time step
(last three columns) are reasonably small. Up to 64 processors, the algorithm
seems practically scalable, and even for 128 processors, the number of PCG
iterations grows to just 8.

We then consider the Bidomain system with LR1 ionic model, in the same
setting (initial stimulus and domain decomposition) of the previous case. At
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Fig. 2. Scaled speedup test: ellipsoidal domains of increasing sizes decomposed into
8, 16, 32, 64 and 128 subdomains of fixed size

Table 2. Scaled speedup tests for Monodomain - LR1 and Bidomain - LR1 models.
Initial depolarization of an ellipsoidal block: 1 stimulus on epicardial surface, 30
time steps of 0.05 msec each, computation of v, w1, · · · , w7 and isochrones. tA =
assembly timing, it = average number of PCG iterations at each time step, time =
average CPU timing of each time step

Monodomain - LR1

# proc. mesh unknowns tA it. time
(nodes)

8 = 2·2·2 150×150×100 2.250.000 7.7 s 4 2.7 s
16 = 4·2·2 300×150×100 4.500.000 8.5 s 4 3 s
32 = 4·4·2 300×300×100 9.000.000 9.1 s 5 3.6 s
64 = 8·4·2 600×300×100 18.000.000 9.2 s 5 3.6 s

128 = 8·8·2 600×600×100 36.000.000 10.6 s 8 5.1 s

Bidomain - LR1

# proc. mesh unknowns tA it. time
(2× nodes)

8 = 2·2·2 100×100×70 1.400.000 12.9 s 98 40.2 s
16 = 4·2·2 200×100×70 2.800.000 13.3 s 127 55.5 s
32 = 4·4·2 200×200×70 5.600.600 15.7 s 148 72 s
64 = 8·4·2 400×200×70 11.200.000 16.2 s 176 91.9 s

128 = 8·8·2 400×400×70 22.400.000 18.4 s 244 129.7 s
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each time step, we now compute the potentials ui, ue, the gating and con-
centration variables and the depolarization time. Due to the larger memory
requirements of the Bidomain model, we used a smaller mesh of 50×50×35
nodes in each subdomain (processor), hence varying the global number of
unknowns of the linear system from 1.4·106 in the smaller case with 8 sub-
domains on a global mesh of 100×100×70 to 2.24·107 unknowns in the larger
case with 128 subdomains on a global mesh of 400×400×70 nodes. The re-
sults are reported in the lower part of Table 2. While the assembling time
remains reasonable (under 20 sec.), the average number of PCG iterations
per time step and the average time per time step are now much larger, clearly
showing the limits of the one-level preconditioner and the effects of the severe
ill-conditioning of the Bidomain iteration matrix.

3.2 Simulation of a full cardiac cycle

We also simulated a complete cardiac cycle (excitation-recovery) in a slab of
cardiac tissue of size 2×2×0.5 cm3, discretized with a fine mesh 200×200×50.
We used 25 processors of the HP SuperDome machine with 64 processors.
The fibers rotate intramurally linearly with depth for a total amount of 90o.
A stimulus is applied at an epicardial vertex and the excitation of the en-
tire slab requires about 80 msec, while the time interval for simulating the
cardiac cycle is on the order of 360 msec. The adaptive time-stepping al-
gorithm automatically adapts, in an efficient way, the time step size in the
three main different phases of the heart beat, see Figure 3 (left). While the
Monodomain solver is quite efficient, the Bidomain solver is not, since the
number of PCG iterations at each time step increases considerably, reaching
a maximum of about 250 iterations in the depolarization phase, see Figure 3
(right). The simulation took about 6.4 days for the the Bidomain model and
about 5 hours for the Monodomain model. We compared the two computer
platforms mentioned above by simulating the Monodomain model on a slab
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Fig. 3. Full cardiac cycle with Bidomain model and LR1 gating. Time-step size in
msec. on a semilogarithmic scale (left), PCG iterations at each time step (right)
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with dimensions 4×4×0.5 cm3 and mesh 400×400×50: the HP SuperDome
machine with 32 processors took about 20 hours and the IBM SP4 machine
with 64 processors took about 2.5 hours. Therefore, a considerable CPU time
reduction in the Bidomain case is to be expected by using the SP4 machine.
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