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Summary. We analyze the convergence behavior of the overlapping Schwarz wave-
form relaxation algorithm applied to nonlinear advection problems. We show for
Burgers’ equation that the algorithm converges super-linearly at a rate which is
asymptotically comparable to the rate of the algorithm applied to linear advection
problems. The convergence rate depends on the overlap and the length of the time
interval. We carefully track dependencies on the viscosity parameter and show the
robustness of all estimates with respect to this parameter.

1 Introduction

Overlapping Schwarz waveform relaxation algorithms have been applied suc-
cessfully to many evolution problems. However, a rigorous error analysis is
only available in the case of linear and weakly nonlinear problems. For results
covering the heat equation, advection-diffusion equations, and problems with
nonlinear source terms, we refer to Gander [1997], Giladi and Keller [2002],
Gander [1998], Daoud and Gander [2000], Gander and Zhao [2002].

We present here first convergence results for the algorithm applied to a
class of strongly nonlinear problems: scalar parabolic conservation laws with
nonlinear fluxes. In Section 2 we present the problem and the necessary analyt-
ical background. In particular we focus on conservation laws in the advection
dominated case when the problem is singularly perturbed. In Section 3 we
introduce the Schwarz waveform relaxation algorithm for parabolic conserva-
tion laws. In Section 4 the error analysis for the algorithm is presented for
the special case of Burgers’ equation. We focus on two topics: the comparison
of the results for the linear and the nonlinear case and the influence of the
diffusion parameter ε on the convergence rate. The paper concludes with a
numerical experiment that confirms the theoretical results.

We note that there is a fundamentally different approach to solve nonlin-
ear conservation laws using domain decomposition. One first discretizes the
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problem uniformly in time using an implicit scheme, and then applies domain
decomposition to the steady problems obtained at each time step, see Dolean
et al. [2000] and references therein. For a heterogeneous approach, see also
Garbey [1996], Garbey and Kaper [1997].

2 Advection Dominated Conservation Laws

We consider for T > 0 and a function u0 ∈ W 1,∞(R) the initial boundary
value problem

∂uε

∂t
+

∂

∂x
f(uε) = ε

∂2uε

∂x2
in R × (0, T ), uε(., 0) = u0 in R (1)

for the unknown uε = uε(x, t) : R × (0, T ) → R. Here ε > 0 is a constant
and f ∈ C2(R) denotes the possibly nonlinear flux function. The scalar prob-
lem (1) is a simple model for nonlinear systems of conservation laws which
arise frequently to describe dynamical processes in continuum mechanics. Im-
portant examples are the Navier-Stokes equations in fluid mechanics and the
system of thermo-elasticity in solid mechanics. An interesting feature of many
applications governed by conservation laws is the fact that they are advection
dominated. On the level of problem (1) this implies that the diffusion param-
eter ε is small and we have to consider a singularly perturbed problem. In
the limit ε = 0 the parabolic equation in (1) changes type and becomes the
hyperbolic equation

∂u0

∂t
+

∂

∂x
f(u0) = 0 in R × (0, T ) (2)

for the unknown u0 : R× (0, T ) → R. It is well-known that classical solutions
of the initial value problem for (2) do not exist globally in time for all smooth
initial data if f is nonlinear, see for example Dafermos [2000]. Singularities
called shock waves occur. In the singularly perturbed case with ε > 0, diffusive
layers with ∂uε

∂x = O(ε−1) take the role of shock waves. The following theorem
reflects the relationships between solutions of (1), (2) and summarizes the
results we need later from the theory of conservation laws.

Theorem 1. There exists a unique classical solution uε ∈ C1(0, T ; C2(R)) of
(1) that satisfies

inf
x∈R

{u0(x)} ≤ uε(x, t) ≤ sup
x∈R

{u0(x)}, (x, t) ∈ R × [0, T ],

ε‖uε
x‖L∞(R×[0,T ]) ≤ C,

where the positive constant C does not depend on ε. Furthermore there exists
a function u0 ∈ L∞(R× [0, T ]) such that for each compact set Q ⊂ R we have

lim
ε→0

‖u0 − uε‖L1(Q×[0,T ]) = 0.
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The analogous statements hold for the initial boundary value problem with
Dirichlet boundary conditions.

The proofs of these results are classical and can be found for instance in
Dafermos [2000].

3 Overlapping Schwarz Waveform Relaxation

We approximate the solution of (1) using the overlapping Schwarz waveform
relaxation algorithm on the two subdomains Ω1 = (−∞, L) and Ω2 = (0,∞)
with overlap L > 0. The parameter ε is fixed here, so we therefore drop the
index ε in this and the next section to simplify the notation. For iteration index
n ∈ N, the overlapping Schwarz waveform relaxation algorithm is defined by

∂un
1

∂t
+ f ′(un

1 )
∂un

1

∂x
= ε

∂2un
1

∂x2
in Ω1 × (0, T ),

un
1 (·, 0) = u0 in Ω1,

un
1 (L, ·) = un−1

2 (L, ·) on [0, T ],

(3)

and
∂un

2

∂t
+ f ′(un

2 )
∂un

2

∂x
= ε

∂2un
2

∂x2
in Ω2 × (0, T ),

un
2 (·, 0) = u0 in Ω2,

un
2 (0, ·) = un−1

1 (0, ·) on [0, T ].

(4)

4 Convergence Analysis

We first review results on the iteration (3), (4) for the linear flux f(u) =
cu, c ∈ R. We define the errors in the Schwarz waveform relaxation iteration
by en

1 := u−un
1 on the left subdomain and en

2 := u−un
2 on the right subdomain

for n ∈ N0. For n ∈ N, we find that the error en
1 satisfies

∂en
1

∂t
+ c

∂en
1

∂x
= ε

∂2en
1

∂x2
in Ω1 × (0, T ),

en
1 (·, 0) = 0 in Ω1,

en
1 (L, ·) = en−1

2 (L, ·) on [0, T ],

(5)

and the analogous equations hold for en
2 . The error analysis for (5) has been

performed in Gander [1997] and independently in Giladi and Keller [2002].
We cite the final result.

Theorem 2 (Linear Advection Diffusion). The overlapping Schwarz wave-
form relaxation algorithm (3), (4) for the advection diffusion problem (1) with
f(u) = cu converges super-linearly. For each T > 0 and i = 1, 2 we have
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sup
x∈Ωi,0≤t≤T

|e2n
i (x, t)| ≤ Cierfc

(

nL√
εT

)

, (6)

where C1 = sup0≤t≤T |e0
1(L, t)| and C2 = sup0≤t≤T |e0

2(0, t)|.

Remark 1. If we apply the expansion
√

πerfc(z) = e−z2

(z−1 + O(z−3)) for
large values z > 0 in the estimate (6), we obtain

sup
x∈Ωi,0≤t≤T

|e2n
i (x, t)| ≈ Ci√

π
e−

n
2

L
2

εT

√
εT

nL
.

For fixed T, L, ε > 0 we observe that the algorithm converges super-linearly
for n → ∞ and t ≤ T . The error vanishes also for ε → 0 , reflecting the fact
that the algorithm applied to the pure advection equation converges in two
steps.

We now consider the iteration (3), (4) for the quadratic flux f(u) = u2

2 ,
that is Burgers’ equation. For n ∈ N, we find that the error en

1 := u − un
1

satisfies the equation

∂en
1

∂t
+ u

∂en
1

∂x
+

∂un
1

∂x
en
1 = ε

∂2en
1

∂x2
in Ω1 × (0, T ),

en
1 (·, 0) = 0 in Ω1,

en
1 (L, ·) = en−1

2 (L, ·) on [0, T ],

(7)

and an analogous problem for en
2 . We note that in contrast to the linear

equation the error equations for the Burgers case contain an additional source
term scaled with the spatial derivative of the iterate. Moreover due to Theorem
1 these terms behave like O(ε−1) (The estimates in Theorem 1 hold mutatis
mutandis also for initial boundary value problems).

For our analysis of the non-linear case we require that the iteration starts
with the initial guesses

u0
i (x, t) = inf

x′∈Ωi

{u0(x
′)}, (x, t) ∈ Ωi × (0, T ), i = 1, 2. (8)

Because of this choice and the comparison principle for parabolic differential
equations we have for all iterations n ∈ N0

en
i (x, t) ≥ 0, (x, t) ∈ Ωi × (0, T ), i = 1, 2.

It suffices therefore to derive upper bounds for the errors to obtain a bound
on the convergence rate of the overlapping Schwarz waveform relaxation al-
gorithm applied to Burgers’ equation. The first step of our analysis is to
determine linear advection diffusion problems that bound the evolution of the
errors. We show the derivation of the linear problems in detail, because it
is here where the influence of the viscosity parameter ε needs to be traced
carefully.
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Lemma 1 (Super-Solutions). For all n ∈ N we have

0 ≤ en
1 (x, t) ≤ ēn

1 (x, t), ∀ (x, t) ∈ Ω1 × (0, T ),

where the super-solution ēn
1 is the solution of the linear, constant coefficient

problem

∂ēn
1

∂t
+ a1

∂ēn
1

∂x
+ b1ē

n
1 = ε

∂2ēn
1

∂x2
in Ω1 × (0, T ),

ēn
1 (·, 0) = 0 in Ω1,

ēn
1 (L, t) = exp(σ1t) sup

0≤τ≤t
en−1
2 (L, τ) t ∈ [0, T ],

(9)

with the constants a1, b1, σ1 ∈ R given by

a1 := inf
(x,t)∈Ω1×(0,T )

{u(x, t)},

b1 := inf
(x,t)∈Ω1×(0,T )

{∂un
1

∂x
(x, t) + (u(x, t) − a1)

a1

2ε

}

,

σ1 :=

{

−a2
1

4ε − b1 if −a2
1

4ε − b1 ≥ 0,
0 otherwise.

The number σ1 is finite but can be of order O(ε−1) due to (ii) in Theorem 1.

Remark 2. It is not surprising that the constant coefficient problems contain
source terms that are not present in the linear case. Note that the spatial

derivatives
∂un

i

∂x are in fact multiplied with the second derivative of the flux
f = f(u) which is one for f(u) = u2/2 and vanishes in the linear case.

Proof. (of Lemma 1) We use explicit solutions of the constant-coefficient equa-
tion (9) by means of the heat kernel. We define the shifted derivative of the
heat kernel by

K1,x(x, t) = − 1

2
√

π

x − L

ε1/2t3/2
exp

(

− (x − L)2

4εt

)

. (10)

For the linear, constant coefficient problem (9) satisfied by the super-solution,
we then have the closed form solution formula

ēn
1 (x, t) = exp(p1x + q1t)

∫ t

0

K1,x(x, t − τ)g1(τ) dτ, (11)

where we used the constants

pi =
ai

2ε
, qi = −a2

i

4ε
− bi, i = 1, 2 (12)

and the function g1 = g1(t) = exp(−p1L + (σ1 − q1)t) sup0≤τ≤t en−1
2 (L, τ).

Note that g1 is nonnegative due to the non-negativity of the errors, and mono-
tonically increasing because of our choice of σ1. To show that ēn

1 is indeed a
super-solution, we have to show that



256 Martin J. Gander and Christian Rohde

dn
1 := ēn

1 − en
1 ≥ 0. (13)

Now the difference function dn
1 satisfies the linear advection diffusion equation

∂dn
1

∂t
+ u

∂dn
1

∂x
+

∂un
1

∂x
dn
1 − ε

∂2dn
1

∂x2
= Q1(x, t), (14)

where the source term Q1(x, t) is given by

Q1(x, t) = (u(x, t) − a1)
∂ēn

1

∂x
+

(

∂un
1

∂x
(x, t) − b1

)

ēn
1 (x, t)

= (u(x, t) − a1)
e(p1x+q1t)

2
√

π

∫ t

0

e

„

−
(x−L)2

4ε(t−τ)

«

ε1/2(t − τ)3/2

[

(x − L)2

2ε(t − τ)
− 1

]

g1(τ) dτ

−
(

(u(x, t) − a1)p1 +
∂un

1

∂x
(x, t) − b1

)

(x − L)

×e(p1x+q1t)

2
√

π

∫ t

0

e

„

−
(x−L)2

4ε(t−τ)

«

ε1/2(t − τ)3/2
g1(τ) dτ

=: (u(x, t) − a1)e
(p1x+q1t)Q11(x, t)

+

(

(u(x, t) − a1)p1 +
∂un

1

∂x
(x, t) − b1

)

e(p1x+q1t)(L − x)Q12(x, t).

If we can show that Q11(x, t) and Q12(x, t) are non-negative for all (x, t) ∈
Ω1× (0, T ), we obtain Q1(x, t) ≥ 0 for all (x, t) ∈ Ω1× (0, T ) by the definition
of a1, b1, which implies (13) by the maximum principle for (14) with zero initial
and boundary data. But Q12 is nonnegative since g1 from (11) is nonnegative.
For Q11 we observe that it is the x-derivative of the solution w of the heat
equation wt = εwxx in Ω1 × (0, T ) which satisfies w(L, .) = g1 and w(., 0) ≡
0. Since g1 is nonnegative and monotonically increasing, Q11 must also be
nonnegative, which concludes the proof that ēn

1 is a super-solution of en
1 .

For the preceding proof we used an explicit solution for the constant coeffi-
cient problem (9) which serves to bound the error at a given iteration step. To
obtain an upper bound on the error over many iteration steps, one considers
then the iterated formula using a similar result on the subdomain Ω2 for en

2 .
Since the iteration for the bounds is an iteration for linear problems, one can
obtain, using similar techniques as the ones used in Gander [1997] or Giladi
and Keller [2002], the following result.

Theorem 3 (Burgers’ Equation). The overlapping Schwarz waveform re-
laxation algorithm (3), (4) for the nonlinear advection problem (1) with
f(u) = u2/2 and initial guess (8) converges super-linearly. For each T > 0
and i = 1, 2 we have

sup
x∈Ωi,0≤τ≤T

{e2n
i (x, t)} ≤ Cie

D(T+L)
ε

nerfc

(

nL√
εT

)

, (15)
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where the constants C1 = sup0≤t≤T {e0
1(L, t)}, C2 = sup0≤t≤T {e0

2(0, t)}, and
D are independent of ε, L, T and n (but depends on C from Theorem 1).

Remark 3.
(i) If we apply the expansion for the erfc-function for fixed T, L, ε > 0 as in
Remark 1, we observe that the algorithm converges super-linearly for n → ∞
and t ≤ T at the same asymptotic rate as for the linear advection diffusion
equation.
(ii) For Burgers’ equation, the error estimate contains in addition the factor

e
D(T+L)

ε
n. Thus there exists a T ∗ = T ∗(n) such that (a) the algorithm con-

verges for ε → 0 on any time interval [0, T ] with T < T ∗(n), and (b) the
estimate for the error e2n

1 does not converge to 0 for ε → 0 on time inter-
vals with T > T ∗(n). This scenario does not happen for the linear advection
diffusion equation. Even though our estimate might not be sharp, this factor
reflects the fact that in the purely hyperbolic case the Schwarz algorithm con-
verges in a finite number of steps. The number of steps however depends on
the nonlinearity and the initial data, see Gander and Rohde [2003].
(iii) Theorem 3 can be extended to the case of multiple subdomains, such that
the estimate is independent of the number of subdomains, as in the linear
case, see Gander and Rohde [2003].

We conclude the paper with a numerical experiment that illustrates the
results of Theorem 3. As initial data we take the continuous function

u0(x, t) =







1 : x < 0,
1 − 2x : 0 ≤ x < 1,

−1 : x ≥ 1.

The hyperbolic limit problem with ε = 0 will develop a (standing) shock
at t = 0.5. Thus for small but positive values of ε the solution will exhibit
a sharp layer. For the numerical method we take two bounded subdomains
Ω1 = (0, 1

2 + L) and Ω2 = (1
2 −L, 1) with the overlap parameter L = 0.1. We

compute the numerical solution up to T = 0.6 with a centered finite difference
scheme in space, explicit for the nonlinear term and implicit for the Laplacian.
The discretization parameters were ∆x = 0.01 and ∆t = 0.003. Figure 1 shows
the error on [0, 1]× [0, 0.6] in the L∞-norm versus the number of iterations at
even iteration steps. One can clearly see the super-linear convergence behavior
of the overlapping Schwarz waveform relaxation algorithm applied to Burgers’
equation with the dependence on ε, as predicted by Theorem 3. One can
also see that for ε small, the convergence in a finite number of steps of the
hyperbolic limit starts to manifest itself.
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Fig. 1. Convergence rates for various values of the diffusion parameter ε.
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