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Summary. During the last few years, an algebraic formulation of Schwarz methods
was developed. In this paper this algebraic formulation is used to prove new conver-
gence results for multiplicative Schwarz methods when applied to consistent singular
systems of linear equations. Coarse grid corrections are also studied. In particular,
these results are applied to the numerical solutions of Markov chains.

1 Introduction

We consider the solution of consistent large sparse linear singular systems of
the form

Ax = b. (1)

We study its solution by means of Schwarz methods. Specifically, we analyze
the case where the coefficient matrix A = I − B, where I is the identity
matrix and B is a nonnegative (column) stochastic matrix, i.e., BT e = e,
where e = (1, 1, . . . , 1)T ∈ IRn. Thus A is a singular M -matrix; see section 2
for definitions. In particular we consider the case of b = 0, and thus we look
for the nonnegative vector v, normalized so that vT e = 1, satisfying Av = 0,
i.e., such that Bv = v. This is the stationary probability distribution of the
Markov chain represented by B.

In our analysis we use the algebraic formulation of Schwarz methods de-
veloped in Benzi et al. [2001], Frommer and Szyld [1999], and applied, e.g., in
Frommer and Szyld [2001], Nabben [2003], Nabben and Szyld [2003].

There is no separate treatment in the literature of Schwarz methods for
singular systems in the p.d.e. context. Nevertheless the implementations de-
rived mostly for the non-singular case can be shown to work in the singular
case as well, especially when the null space is known. This is the case, for
example, when Neumann boundary conditions are present. The convergence
theory developed, e.g., in Dryja et al. [1994], Dryja and Widlund [1994], can
be applied to these cases with little or no changes.
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We believe that this is the first time that singular systems are analyzed
using an algebraic approach to Schwarz methods (with overlap), and that
Markov chains problems are studied in this context. One of our goals is to
present Schwarz iterations as one more possible tool for the numerical solu-
tions of Markov chains. In fact, multiplicative Schwarz iterations reduce to the
block Gauss-Seidel method when the overlap is removed. Having the overlap
has proved crucial for the fast convergence of these methods in the nonsin-
gular case; see, e.g., Smith et al. [1996], Dryja and Widlund [1994]. In the
singular context, having larger overlap may decrease the convergence rate of
the iteration. Comparison theorems may be used to prove such decrease in
convergence rate; see Marek and Szyld [2000], Marek and Szyld [2002].

We discuss here one approach, namely that multiplicative Schwarz itera-
tions applied directly to the n×n system (1) converge. Other approaches are
discussed in Marek and Szyld [2004], where “coarse-grid” corrections are also
considered.

2 Definitions and auxiliary results

In this section we present some notation, definitions, and preliminaries. Con-
cepts on nonnegative matrices not explicitly defined here can be found in the
book by Berman and Plemmons [1979].

An n × n matrix C = (cjk) with cjk ∈ IR, is called nonnegative if cjk ≥
0, j, k = 1, . . . , n; this is denoted C ≥ O. When cjk > 0, j, k = 1, . . . , n, we
say that the matrix is positive and denote it by C > O. The same notation is
used for nonnegative and positive vectors. By σ(C) we denote the spectrum
of C and by ρ(C) its spectral radius. By R(C) and N (C) we denote the range
and null space of C, respectively.

Let λ ∈ σ(C) be a pole of the resolvent operator R(µ, C) = (µI − C)−1.
The multiplicity of λ as a pole of R(µ, C) is called the index of C with respect
to λ and denoted indλC. Equivalently, k = indλC if it is the smallest inte-
ger for which R((λI − C)k+1) = R((λI − C)k). This happens if and only if
R((λI − C)k) ⊕N ((λI − C)k) = IRn.

Let A be an n×n matrix. A is an M -matrix if A = βI−B, B nonnegative
and ρ(B) ≤ β. A pair of matrices (M, N) is called a splitting of A if A = M−N

and M−1 exists. A splitting of a matrix A is called of nonnegative type if the
matrix T = M−1N is nonnegative (Marek [1970]). If the matrices M−1 and
N are nonnegative, the splitting is called regular (Varga [1962]).

Let T be a square matrix. T is called convergent if lim
k→∞

T k exists, and

zero-convergent if lim
k→∞

T k = O. Standard stationary iterations of the form

xk+1 = Txk + c, k = 0, 1, . . . , (2)

converge if and only if either lim
k→∞

T k = O. or, if ρ(T ) = 1, T is convergent. A

square matrix T with unit spectral radius is convergent if the following two
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conditions hold:
(i) if λ ∈ σ(T ) and λ 6= 1, then |λ| < 1.
(ii) ind1T = 1.
When T ≥ O, (i) can be replaced with T having positive diagonal entries (Ale-
feld and Schneider [1982]); see Szyld [1994] for equivalent conditions for (ii).

We state a very useful Lemma; see e.g., Bohl and Marek [1995] for a proof.
We note that when ρ(T ) = 1, this lemma can be used to show condition (ii)
above. To prove convergence one needs to show in addition that condition (i)
also holds, or equivalently, that the diagonal entries are all positive.

Lemma 1. Let T be a nonnegative square matrix such that Tv ≤ αv with
v > 0. Then ρ(T ) ≤ α. If furthermore ρ(T ) = α, then indαT = 1.

A square nonnegative matrix B is irreducible if for every pair of indices
i, j there is a power k = k(i, j) such that the ij entry of Bk is nonzero.

3 Algebraic formulation of Schwarz methods

Given an initial approximation x0 to the solution of (1), the (one-level) mul-
tiplicative Schwarz method can be written as the stationary iteration (2),
where

T = (I − Pp)(I − Pp−1) · · · (I − P1) =

1
∏

i=p

(I − Pi) (3)

and c is a certain vector. Here

Pi = RT
i A−1

i RiA, (4)

where Ai = RiART
i , Ri is a matrix of dimension ni × n with full row rank,

1 ≤ i ≤ p; see, e.g., Smith et al. [1996]. In the case of overlap we have
p

∑

i=1

ni > n. Note that each Pi, and hence each I −Pi, is a projection operator;

i.e., (I − Pi)
2 = I − Pi. Each I − Pi is singular and ρ(I − Pi) = 1.

We refer the reader to the papers Benzi et al. [2001], Frommer and Szyld
[1999] for details of the algebraic formulation of Schwarz methods. What we
will say here is that nonsingular matrices Mi, i = 1, . . . , p, are defined so
that A = Mi − Ni are regular splittings (and thus of nonnegative type), and
furthermore the following equality holds:

EiM
−1

i = RT
i A−1

i Ri, i = 1, . . . , p, (5)

where Ei = RT
i Ri. These diagonal matrices Ei have ones on the diagonal in

every row where RT
i has nonzeros. We can thus rewrite (3) as

T = (I − EpM
−1
p A)(I − Ep−1M

−1

p−1
A) · · · (I − E1M

−1

1
A). (6)
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In the context of discretizations of p.d.e.s, the use of Schwarz methods
greatly benefit from the use of coarse grid corrections, and they are needed
to guarantee a convergence rate independent of the mesh size; see, e.g., Dryja
et al. [1994], Dryja and Widlund [1994], Quarteroni and Valli [1999], Smith
et al. [1996]. Coarse grid corrections can be additive or multiplicative. Here we
restrict our comments to the multiplicative corrections. To that end consider
a new projection P0 of the form (4) onto the “coarse space”, i.e., onto a
particular subset of states, usually taken in the overlap between the other set
of states. Corresponding to these “coarse” states, there correspond a natural
matrix R0 and A0 = R0ART

0 , so that E0 = RT
0 R0 and M0 is similarly defined;

see Benzi et al. [2001]. The multiplicative corrected multiplicative Schwarz
iteration operator is then

Tµc = (I − P0)Tµ = (I − E0M
−1

0 A)T. (7)

In Benzi et al. [2001] it was shown that when A is nonsingular, ρ(T ) < 1,
and thus, the method (2) is convergent. The same results hold for Tµc, i.e.,
with a “coarse grid” correction. In this paper we explore the convergence
of (2), using the iterations defined by (6) and (7), when A is singular. Other
Schwarz methods for the singular case are studied in Marek and Szyld [2004].

4 Convergence of multiplicative Schwarz

We prove here our main result, namely that when A is irreducible, the mul-
tiplicative Schwarz iterations are convergent. As is well known, when B ≥ O

is irreducible, its Perron eigenvector is strictly positive v > 0. If in addition
we require that the diagonals of the iteration matrices are positive, we show
in the next theorem that the matrix (6) is convergent.

Theorem 1. Let A = I − B, where B is an n × n column stochastic matrix
such that Bv = v with v > 0. Let p ≥ 1 be a positive integer and A = Mi −Ni

be splittings of nonnegative type such that the diagonals of Ti = M−1

i Ni,
i = 1, . . . , p, are positive. Then (6) is a convergent matrix.

Proof. Let v > 0 be such that Bv = v, i.e., Av = 0. For each splitting
A = Mi − Ni, we then have th at Miv = Niv. This implies that Tv = v, and
by Lemma 1 we have that ρ(T ) = 1 and that the index is 1. To show that T

is convergent, we show that its diagonal is positive. Each factor in (6) is then

I − Ei + Ei(I − M−1

i A) = I − Ei + EiM
−1

i Ni,

and since O ≤ Ei ≤ I and M−1

i Ni ≥ O, each factor is nonnegative. For
a row in which Ei is zero, the diagonal entry in this factor has value one.
For a row in which Ei has value one, the diagonal entry in this factor is the
positive diagonal entry of M−1

i Ni. Thus, we have a product of nonnegative
matrices, each having positive diagonals, implying that the product T has
positive diagonal entries, and therefore it is convergent. ⊓⊔
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Corollary 1. Theorem 1 applies verbatim to the case of “coarse grid” correc-
tion, by considering the additional splitting A = M0 −N0, with T0 = M−1

0 N0

having positive diagonals, so that Tµc of (7) is convergent.

Let γ = max{|λ|, λ ∈ σ(T ), λ 6= 1}. The fact that T is convergent implies
that γ < 1; see, e.g., Berman and Plemmons [1979]. Therefore Theorem 1 and
Corollary 1 indicate that for multiplicative Schwarz, σ(M−1A) = σ(I − T )
has zero as an isolated eigenvalue with index 1, and the rest of the spectrum
is contained in a ball with center 1 and radius γ. Furthermore, the smaller γ

is, the smaller this ball around 1 is. This configuration of the spectrum often
gives good convergence properties to Krylov subspace methods preconditioned
with multiplicative Schwarz.

5 The reducible case

We consider here the general case, where B might not be irreducible. There is
a permutation matrix H such that the symmetric permutation of B is lower
block-triangular [Gantmacher, 1959, p.341], and in fact it has the form

HBHT =











G0 O · · · O

G1 C1 · · · O
...

...
. . .

...
Gp O · · · Cp











, (8)

where lim
k→∞

Gk
0 = O and Ci is an irreducible and stochastic matrix, i =

1, . . . , p. There are efficient algorithms to compute the permutation matrix
H , and thus, the form (8). For example, Tarjan’s algorithm has almost linear
complexity and good software is available for it; see Duff and Reid [1978].

Solving linear systems with the matrix B reduces then to solving systems
with each of the diagonal blocks of (8). This can be accomplished using mul-
tiplicative Schwarz iterations, which were shown to converge for irreducible
stochastic matrices in section 4.
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