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Summary. In this paper we present new numerical approach to solve the contin-
uous casting problem. The main tool is to use IPEC method and DDM similar
to Lapin and Pieska [2002] with multilevel domain decomposition. On the subdo-
mains we use multidecomposition of the subdomains. The IPEC is used both in the
whole calculation domain and inside the subdomains. The calculation algorithm is
presented and numerically tested. Several conclusions are made and discussed.

1 Introduction

Theory of the so-called regional-additive schemes (splitting schemes with do-
main decomposition) for linear diffusion and convection-diffusion have been
studied in Samarskii and Vabischevich [1996] and Vabischevich [1994]. The
stability have been proved and error estimates have been deduced. For non-
linear problems like our their technique is not available.

Several new finite-difference schemes for a nonlinear convection-diffusion
problem are constructed and numerically studied in Lapin and Pieska [2002].
These schemes are constructed on the basis of non-overlapping domain de-
composition and predictor-corrector approach.

The paper of Lapin and Pieska [2002] was motivated by Dawson et al.
[1991], Rivera et al. [2003], Rivera et al. [2001], where TL3, EP4 and EPIC5

methods have been studied and tested. The EPIC method was proved to be
stable and scalable when solving on big number of processors. In the paper
of Lapin and Pieska [2002] the scheme from Rivera et al. [2003], Rivera et al.
[2001] was modified in such a way, that its implementation leads to IPEC6

method.

3 time lagging
4 explicit predictor
5 explicit predictor-implicit corrector
6 implicit predictor-explicit corrector
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The main idea of these kind of algorithms is first to solve the problem
in artificial boundaries (predictor step). After the solution at the boundaries
is known then it can be used as Dirichlet type boundary condition and the
noncoupled subdomain problems can be solved parallel. The last step of these
methods is to correct the solution at the artificial boundaries (corrector step).

The advantages of predictor-corrector methods (IPEC or EPIC) is that we
reduce the amount of information send between processors. We need to send
only once the subsolutions from slave processors to master processor. When we
use Schwarz alternating methods with overlapping subdomains, the number
of sending and receiving is much more bigger. The numerical experiences in
Lapin and Pieska [2002] show that the speedup of IPEC method is linear.
However, the stability and the rate of convergence for IPEC method is not
known but asymptotically the rate of approximation is of the order O(τ +h2).

The idea of multidecomposition method MDD is to use DDM with IPEC
inside the subdomains. The subdomain is divided to smaller subdomains and
then IPEC method is used to solve these smaller subproblems sequently. The
main reason and motivation for this kind of method is to economise the num-
ber of processors. Nowadays the PC computers have multiprocessor cards but
the number of processors in it are very small and limited. Our proposed algo-
rithm gives a good and effective way to decrease calculation times in the case
of only few processors.

2 Problem statement

The continuous casting problem can be mathematically formulated as follows.
Let the rectangular domain Ω ⊂ R

2, Ω = (0, l1) × (0, l2) be occupied by a
thermodynamically homogeneous and isotropic steel. We denote by H̄(x, t)
the enthalpy and by T (x, t) the temperature for (x, t) ∈ Ω̄ × [0, tf ]. We have

constitutive law H̄ = H̄(T ) = ρ
∫ T

0 c(Θ)dΘ + ρL(1 − fs(T )), where ρ is the
density, c(T ) is the specific heat, L is the latent heat and fs(T ) is the solid
fraction at temperature T . The graph H̄(T ) is an increasing function R → R,
involving near vertical segment, which corresponds to a phase transition state,
namely, for T ∈ [TS, TL]. In our numerical example in section 6 we choose for
the enthalpy function phase change interval TL − TS = 0.02. This does not
effect cruisial for convergence properties of our method. Further by k(T ) we
denote the thermal conductivity coefficient.

Using Kirchoff’s transformation u = K(T ) =
∫ T

0
k(ξ)dξ a continuous cast-

ing process can be described by a boundary-value problem, formally written
in the following pointwise form: find u(x, t) and H(x, t) such that

(P)







∂H(u)
∂t

+ v ∂H(u)
∂x2

− ∆u = 0, for x ∈ Ω, t > 0,

u = z(x, t) for x ∈ ΓD, t > 0,
∂u
∂n

= g, for x ∈ ΓN , t > 0, H = H0(x) for x ∈ Ω̄, t = 0,
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where v = const > 0 is a casting speed in x2-direction, ΓD ∪ ΓN = ∂Ω is
the boundary of the domain, below ΓD = {x ∈ ∂Ω : x2 = 0 ∨ x2 = l2}. The
existence and uniqueness of a weak solution for problem (P) are proved in
Rodrigues and Yi [1990].

3 Mesh approximation of continuous casting problem

We approximate problem (P) by an implicit finite difference scheme in time
and finite element method in space. Let Th be a partitioning of Ω in the rect-
angular elements δ of dimensions h1×h2 and Vh = {uh(x) ∈ H1(Ω) : uh(x) ∈
Q1 for all δ ∈ Th}, where Q1 is the space of bilinear functions. By Πhv(x)
we denote the Vh-interpolant of a continuous function v(x), i.e. Πhv(x) ∈ Vh

and coincides with v(x) in the mesh nodes (vertices of all δ ∈ Th). We also
use an interpolation operator Ph, which is defined as follows: for any contin-
uous function v(x) the function Phv(x) is piecewise linear in x1, piecewise
constant in x2 and on δ = [x1, x1 + h1] × [x2, x2 + h2] it coincides with v(x)
at (x1, x2 + h2) and (x1 + h1, x2 + h2).

Let further V 0
h = {uh(x) ∈ Vh : uh(x) = 0 for all x ∈ ΓD}, V z

h =
{uh(x) ∈ Vh : uh(x) = zh for all x ∈ ΓD}. Here zh is the bilinear interpolation
of z on the boundary ΓD. For any continuous function v(x) we define the
quadrature formulas: Sδ(v) =

∫

δ
Πhvdx, S∂δ(v) =

∫

∂δ
Πhvdx, Eδ(v) =

∫

δ
Phvdx, SΩ(v) =

∑

δ∈Th
Sδv, SΓN

(v) =
∑

∂δ∈Th∩Γ̄N
S∂δ(v), EΩ(v) =

∑

δ∈Th
Eδ(v). Let also ωτ = {tk = kτ, 0 ≤ k ≤ M, Mτ = tf} be an uniform

mesh in time on the segment [0, tf ] and ∂t̄H = 1
τ
(H(x, t) − H(x, t − τ)).

When constructing the characteristic mesh scheme we approximate the term
( ∂

∂t
+ v ∂

∂x2
)H by using the characteristics of the first order differential op-

erator Chen [1991]. Namely, if (x1, x2, t) is the mesh point on the time

level t we choose x̃2 = x2 −
∫ t

t−τ
v(ξ)dξ and approximate: ( ∂

∂t
+ v ∂

∂x2
)H ≈

1
τ
(H(x1, x2, t)− H̃(x, t− τ)), where we denote H̃(x, t− τ) = H(x1, x̃2, t− τ).

Near the boundary it can happen that x̃2 < 0. In that case we put H̃(x, t−τ) =
H(x1, 0, t−τ). In what follows we use the notation dt̃H = 1

τ
(H(x, t)−H̃(x, t−

τ)) for the difference quotient in each mesh point on time level t.
Now, the characteristic finite difference scheme for problem (P) is: for all

t ∈ ωτ , t > 0, find uh ∈ V z
h and Hh ∈ Vh such that

SΩ(dt̃Hhηh) + SΩ(∇uh∇ηh) = SΓN
(gηh) for all ηh ∈ V 0

h (1)

Let N0 = card V 0
h and u ∈ R

N0 be the vector of nodal values for uh ∈ V 0
h .

We use the writing uh ⇔ u for this bijection. We define N0 × N0 matrices by
the following relations: for all u, η ∈ R

N0 , u ⇔ uh ∈ V 0
h and η ⇔ ηh ∈ V 0

h ,

(Ãu, η) = SΩ(∇uh∇ηh), (Mu, η) = SΩ(uhηh), A0 = M−1Ã. Let now
z̃h(x) ∈ Vh be the function, which is equal to zh on Γ̄D and 0 for all
nodes in Ω ∪ ΓN . Then a right hand side vector f is defined by the equal-
ity (f, η) = SΓN

(gηh) − SΩ(∇z̃h,∇ηh) ∀η ∈ R
N0 , η ⇔ ηh ∈ V 0

h , and we
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set F = M−1f. In these notations the algebraic form for characteristic mesh
scheme (1) becomes

dt̃H + A0u = F, (2)

It is easy to see, that A0 is the standard five-point finite difference approx-
imation of Laplace operator, A0u = −ux1x̄1

− ux2x̄2
for the internal mesh

points with the notations ux1
= h−1(u(x1 + h1, x2) − u(x1, x2)), ux̄1

=
h−1(u(x1, x2)−u(x1−h1, x2)), and similarly for ux2

and ux̄2
. Furthermore, let

ω̄ be the set of all grid points, γD = Γ̄D ∩ ω̄, γN = ΓN ∩ ω̄, ω = Ω ∩ ω̄, γ−

N =
{x ∈ γN : x1 = 0}, γ+

N = {x ∈ γN : x1 = l1}.

4 Domain decomposition by straight lines

In this section we present the IPEC algorithm of Lapin and Pieska [2002]. We
restrict our discussion to the case of decomposition by unidirect straight lines.
More variations and possibilities of decomposition is discussed and tested in
Lapin and Pieska [2002].

Let the domain Ω be decomposed into two subdomains Ω1 and Ω2 by a
straight line Sy in x2-direction, which is also a grid line. We denote by δSy

the characteristic function of this line, i.e., the mesh function δSy
(x) = 1 for

x ∈ Sy ∩ ω̄, while δSy
(x) = 0 for other mesh points. Also, let ω̄k, k = 1, 2

be the corresponding to the subdomains Ω̄k sets of grid points, Sy being the
common part of their boundaries.

Let A2u = −δSy
ux1x̄1

and A1 = A0 − A2,

A1u =







−(1 − δSy
)ux1x̄1

− ux2x̄2
for x ∈ ω,

−2h−1
1 ux1

− ux2x̄2
for x ∈ γ−

N ,
2h−1

1 ux̄1
− ux2x̄2

for x ∈ γ+
N .

Now, instead of characteristic scheme (2) we consider the following scheme on
the time level tn+1 = (n + 1)τ :

1

τ
(Hn+ 1

2 − H̃n) + A1u
n+ 1

2 + A2u
n = F, (3)

δSy

τ
(Hn+1 − H̃n) +

1 − δSy

τ
(Hn+1 − Hn+ 1

2 ) + δSy
A1u

n+ 1
2 + A2u

n+1 = δSy
F,

(4)
Let us discuss the implementation of scheme (3),(4). In the points of Sy equa-
tion (3) has the form:

Hn+ 1
2 − H̃n

τ
− u

n+ 1
2

x2x̄2
− un

x1x̄1
= F, (5)

i.e. in the points of Sy we have one-dimensional problem (5), that we solve
first. After that the equation (3) is splitted in two non-coupled characteristic
schemes in the subdomains:
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





























Hn+ 1
2 − H̃n

τ
− u

n+ 1
2

x1x̄1
− u

n+ 1
2

x2x̄2
= F, for x ∈ ω1 ∪ ω2,

Hn+ 1
2 − H̃n

τ
−

2

h1
u

n+ 1
2

x1
− u

n+ 1
2

x2x̄2
= F, for x ∈ γ−

N ,

Hn+ 1
2 − H̃n

τ
+

2

h1
u

n+ 1
2

x̄1
− u

n+ 1
2

x2x̄2
= F, for x ∈ γ+

N ,

(6)

and these equations are accomplished by Dirichlet boundary conditions, given
on γD and calculated from (5) on Sy. Finally we solve the system of the

equations, corresponding to x ∈ Sy: Hn+1
−H̃n

τ
− u

n+ 1
2

x2x̄2
− un+1

x1x̄1
= F. As

un+1(x) = un+ 1
2 (x) for x /∈ Sy, this system becomes















Hn+1 − H̃n

τ
+ 2

un+1(x1, x2)

h2
1

− u
n+ 1

2

x2x̄2

−
un+ 1

2 (x1 − h1, x2) + un+ 1
2 (x1 + h1, x2)

h2
1

= F, x ∈ Sy.

(7)

Thus, the algorithm for the implementation of (3),(4) consists of 3 steps:

1) Predictor step: solving one-dimensional problem (5);
2) Main step: concurrent solving subproblems (6);
3) Corrector step: solving the system of scalar equations (7).

5 Multidecomposition method

The general idea of the multidecomposition is to divide the subdomain to
smaller subdomains i.e. use two-level decomposition of the calculation do-
main. The division of the subdomains is presented in the figure 1. We use the
notation Ωi = ∪pi

ji=1Ωi,ji
. The use of high number of subdomains inside the

subdomain may increase the error dramatically. To overcome this feature we
introduce so called smoothing steps to our method. The calculation algorithm
for characteristic mesh scheme (5)-(7) is presented below.
Algorithm 1.

1. Time step n perform on the main processor the predictor step (5) on Sy.

2. Send the values of un+ 1
2 and Hn+ 1

2 on Sy to the slave processors.
3. Concurrently on the slave processors perform the predictor step (5) on the
artificial boundaries of the subdomains Ωi,ji

, i = 1, 2, j1 = 1, ..., p1, j2 =
1, ..., p2.
4. Concurrently on the slave processors perform sequentially the main step
(6) on the subdomains Ωi,ji

.
5. Concurrently on the slave processors perform the corrector step (7) on the
artificial boundaries of the subdomains Ωi,ji

, i = 1, 2, j1 = 1, ..., p1, j2 =
1, ..., p2.
6. On the slave processors perform the smoothing step i.e. few iterations of
the MSOR-method over the whole subdomain Ωi.



682 J. Pieskä, E. Laitinen, and A. Lapin

Sy

y

x

ΓD

ΓD

ΓN ΓN

Ω1,1

Ω1,2

Ω1,3

Ω1,4

Ω1,5

Ω1,6

Ω1,7

Ω1,8

Ω1,9

Ω1,10

Ω1,11

Ω1,12

Ω1,13

Ω1,14

Ω1,15

Ω1,16

Ω2,1

Ω2,2

Ω2,3

Ω2,4

Ω2,5

Ω2,6

Ω2,7

Ω2,8

Ω2,9

Ω2,10

Ω2,11

Ω2,12

Ω2,13

Ω2,14

Ω2,15

Ω2,16

Fig. 1. Used nonoverlapping domain decomposition and multidecomposition of the
subdomains.

7. Send the subsolutions un+1 and Hn+1 to the main processor.
8. On the main processor perform the corrector step (7) on Sy.
9. On the main processor perform few iterations of the MSOR-method in the
neighborhood of Sy.
10. Put n = n + 1, if the final time tf is reached STOP, else GOTO 1.

Remark 1. On the step 3. we do not do the predictor step (5) on Sy.

Remark 2. On the steps 3.-6. we do the calculations concurrently. Each pro-
cessor perform the steps asynchronously.

6 Numerical verification

Let Ω =]0, 1[×]0, 1[ with the boundary Γ divided in two parts ΓD = {x ∈
∂Ω : x2 = 0 ∨ x2 = 1} and ΓN = Γ \ ΓD. Moreover, let tf = 1 and uSL = 1.
The phase change interval is [uSL − ε, uSL + ε], ε = 0.01, and the velocity is
v(t) = 1

5 . Our numerical example is

∂H

∂t
− ∆K + v(t)

∂H

∂x2
= f(x; t) on Ω,

u(x1, x2; t) = (x1 −
1
2 )2 − 1

2e−4t + 5
4 on ΓD,

∂u

∂n
= 1 on ΓN ,

u(x1, x2; 0) = (x1 −
1
2 )2 + (x2 −

1
2 )2 + 1

2 on Ω,

where Kirchoff’s temperature K(u) and enthalpy H(u) are according to their
definition
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K(u) =







u if u < uSL − ε,
3
2u − 1−ε

2 if u ∈ [uSL − ε, uSL + ε],
2u − 1 if u > uSL + ε,

and

H(u) =







2u if u < uSL − ε,
(

1+8ε
2ε

)

(u − 1) + 5+4ε
2 if u ∈ [uSL − ε, uSL + ε],

6u − 3 if u > uSL + ε.

The known right hand side f(x; t) is chosen such that our problem have the
exact solution u(x1, x2; t) = (x1 −

1
2 )2 + (x2 −

1
2 )2 − 1

2e−4t + 1.
The stopping criterion of the calculations was the L2-norm of residual

‖r‖L2(Ω) < 10−4. We solve our problem by using different methods, Additive
Schwarz alternating method (ASAM), Implicit Predictor-Explicit Corrector
method (IPEC), Multidomain decomposition method (MDD) and sequential
modified SOR method (SEQ). The results are presented in the table 1.

Table 1. Calculation times for ASAM, IPEC, MDD and sequential MSOR methods
when the number of processors and calculation grid is changed. Number of inside
subdomains, 4× 4.

SEQ ASAM ASAM ASAM IPEC IPEC IPEC MDD MDD
Grid 1 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc.

65× 65× 128 8.67 7.01 4.76 3.91 3.76 s 2.33 s 1.64 s 5.4 s 4.4
129 × 129× 256 112.9 77.6 59.3 33.9 47.3 s 25.1 s 14.1 s 25.9 s 14.6
257 × 257× 512 1425 889 494 281 600 s 285 s 164 s 342 s 179

Table 2. Efficiencies for ASAM, IPEC, MDD and methods when the number of
processors and calculation grid is changed. Number of inside subdomains, 4× 4.

ASAM ASAM ASAM IPEC IPEC IPEC MDD MDD
Grid 2 proc. 4 proc. 8 proc. 2 proc. 4 proc. 8 proc. 2 proc. 4 proc.

65× 65× 128 0.62 0.46 0.28 1.15 0.93 0.66 0.8 0.49
129× 129× 256 0.73 0.48 0.42 1.19 1.12 1 2.18 1.93
257× 257× 512 0.8 0.72 0.63 1.19 1.25 1.09 2.08 1.99

7 Conclusions

The numerical examples show that the multidecomposition method (MDD)
is very effective numerical method when solving continuous casting problem.
The idea to divide the subdomains to smaller subdomains seems to be very
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good and profitable. The algebraic dimension of the subproblems inside the
subdomains are very small and thus they are very quick to solve.

The introduced smoothing step allows us to use quite big number of sub-
domains. The accuracy of the different methods, MDD, ASAM and IPEC are
the same. However, the smoothing step is economical to perform and calcu-
lation times for MDD are roughly half of the calculation times of the IPEC
method.

The tables 1 and 2 show very clearly the advantages of the multidecompo-
sition method over other methods. It is extremely quick and accuracy is the
same than other methods. Implementation of MDD is straightforward and it
do not need huge amount of processors to solve big and complicated problems.
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