
Choosing Nonmortars: Does it Influence the

Performance of FETI-DP Algorithms?

Dan Stefanica

City University of New York, Baruch College, Department of Mathematics

Summary. We investigate whether different choices of nonmortar sides for the

geometrically conforming partitions inherent to FETI–DP influence the convergence

of the algorithms for four different preconditioners. We conclude experimentally

that they do not, although better condition number estimates exist for a Neumann-

Dirichlet choice of nonmortars.

1 Introduction

The dual–primal FETI (FETI–DP) method is an iterative substructuring
method using Lagrange multipliers. It was introduced in Farhat et al. [1999]
for two dimensional problems as a FETI–type algorithm which does not re-
quire solving singular problems on individual subdomains, and was extended
to three dimensional problems in Farhat et al. [2000] and Klawonn et al.
[2002]. The scalability and optimal convergence properties of FETI–DP were
established in Mandel and Tezaur [2001] and Klawonn et al. [2002].

Mortar finite elements were first introduced by Bernardi et al. [1994] and
are actively used in practice for their advantages over the conforming finite
elements, e.g., flexible mesh generation and straightforward local refinement.
Extending FETI and FETI–DP algorithms to mortar discretizations is a nat-
ural idea and such work can be traced back to Lacour and Maday [1997]. Most
of this work was computational, investigating the convergence properties of
various FETI preconditioners for mortar algorithms; see, e.g., Stefanica [2001,
2002]. Condition number estimates were established for two FETI–DP pre-
conditioners for mortar methods by Dryja and Widlund [2002a,b]. Recently,
similar bounds were obtained by Dryja and Proskurowski [2004] for problems
with discontinuous coefficients.

The FETI–DP algorithms discussed here are based on geometrically con-
forming partitions of the computational domain. Across every subdomain side
there is exactly one edge belonging to a different subdomain. For mortar meth-
ods, either one of these sides is chosen to be a nonmortar, with the other one
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being a mortar side. In Dryja and Widlund [2002a], the condition number
estimate for a FETI–DP preconditioner depends on whether the choice of
nonmortars is random or is made according to a Neumann-Dirichlet order-
ing of the subdomains, i.e., with the sides of any subdomain being either all
mortars or all nonmortars.

In this paper, we investigate experimentally this result and conclude that,
in practice, the special choice of nonmortars does not influence the numerical
convergence of the FETI–DP algorithm. We also compare the numerical per-
formance of three other possible preconditioners, a generalized one suggested
in Dryja and Widlund [2002b] and two other similar to the Dirichlet and gen-
eralized preconditioners for FETI mortar algorithms, and conclude that the
generalized preconditioners have the best convergence properties.

The notations in this paper are related to those of Dryja and Widlund
[2002b] and of Farhat et al. [1999]. For details omitted here due to space
constraints, we refer the reader to the same two papers.

2 Mortar Finite Element Spaces of First Type

To construct the mortar finite element space W , the computational domain Ω
is partitioned into nonoverlapping rectangular subdomains Ωi, i = 1 : N . For
the FETI–DP algorithms considered here, the partition must be geometrically
conforming, i.e, the intersection between the closures of any two subdomains
is either empty, or consists of a vertex or an entire edge, and the mortars must
be of the first type, i.e., continuity is required at the corner nodes.

Across the interface Γ , i.e., the set of points that belong to the bound-
aries of at least two subregions, we do not require pointwise continuity. Since
the partition is geometrically conforming, the edges of the subdomains are
pairwise opposite. From each pair, one edge, denoted by δm(i) and assumed
to belong to the subdomain Ωi, is chosen to be a nonmortar side, while the
other edge, denoted by γm(j) and belonging to Ωj , is a mortar side.

The restriction of a mortar function v ∈ W to any subdomain is a P1

or a Q1 finite element function. We assume that each subdomain Ωi has a
diameter of order H and that its triangulation has a mesh size of order h. Let
vi and vj be the restrictions of v to an arbitrary nonmortar side δm(i) and
to its opposite mortar side γm(j), respectively. Then vi and vj have the same
values at the left and right end points of δm(i) and γm(j), respectively, and the
following mortar conditions have to be satisfied:

∫

δm(i)

(vi − vj) ψ ds = 0, ∀ ψ ∈M(δm(i)), (1)

where M(δm(i)) is a space of test functions having the same dimension as
the number of interior nodes of δm(i), i.e., piecewise linear functions on δm(i)

which are constant in the first and last mesh interval.
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For algorithmic purposes, we derive a matrix formulation for the mortar
conditions (1). Let vi,r be the vector of interior nodal values of vi on δm(i),
and let vi,c be the vector of corner nodal values of vi on δm(i). We define vj,r

and vj,c similarly for vj on γm(j). The matrix formulation of (1) is

Bδm(i),rvi,r + Bδm(i),cvi,c − Bγm(j),rvj,r − Bγm(j),cvj,c = 0, (2)

where the matrix Bδm(i),r is banded for classical mortars and equal to the
identity for the biorthogonal mortars of Wohlmuth [2000].

3 FETI–DP Algorithms for Mortars

As model problem we choose the Poisson problem with mixed boundary con-
ditions on Ω. Given f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∆u = f on Ω, with u = 0 on ∂ΩD and ∂u/∂n = 0 on ∂ΩN , (3)

where ∂ΩN and ∂ΩD are the parts of ∂Ω = ∂ΩN ∪∂ΩD where Neumann and
Dirichlet boundary conditions are imposed, respectively,

To discretize (3), let Wi be the restriction to Ωi of the mortar finite el-

ement space W . The primal variables space is Ŵ , the subspace of Πn
i=1Wi

of functions continuous at each corner node. Lagrange multipliers are used
to enforce the mortar conditions (1). The dual variables space is ΠmM(δm),
where the product is considered over all the nonmortar sides. We partition the
nodal values of v ∈ Ŵ into the corner nodal values vc and the remainder nodal
values vr. Note that vr can be further split into interior nodal values vint and
remainder boundary nodal values vbr

. The continuity conditions at the sub-
domain corners are enforced by using a global vector of degrees of freedom vg

c

and a global to local map Lc with one nonzero entry per line equal to 1, and by
requiring that vc = Lcv

g
c . Therefore, v = [vint; vbr

; vbc
] = [vr; vbc

] = [vr;Lcv
g
c ].

Let K be the stiffness matrix of the discrete problem and let Krr, Krc,
and Kcc be its blocks corresponding to a decomposition of v into vr and vc.
We use a Lagrange multiplier matrix B to enforce the mortar conditions (1).
The matrix B has one horizontal block, Bδm(i)

, for each nonmortar side δm(i),
built from the columns of Bδm(i),r, Bδm(i),c, Bγm(j),r, and Bγm(j),c, with all the
other entries zero; cf. (2). We can also write B = [Br Bc] using vertical blocks
corresponding to the remainder and corner nodes.

The saddle point formulation of the model problem is


I 0 0
0 LT

c 0
0 0 I






Krr Krc B

T
r

KT
rc Kcc B

T
c

Br Bc 0






I 0 0
0 Lc 0
0 0 I






ur

ug
c

λ


 =




fr

LT
c fc

0


 . (4)

After eliminating the primal variables ur and ug
c we obtain the dual problem

FIrr
+ F̃Irc

(K∗

cc)
−1F̃T

Irc
λ = d, (5)
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where FIrr
= BrK

−1
rr B

T
r , F̃Irc

= BrK
−1
rr Krc − BcLc, and K∗

cc = LT
c (Kcc −

KcrK
−1
rr Krc)Lc.

As pointed out by Kim and Lee [2002], the FETI–DP algorithms of Dryja
and Widlund are not applied on the mortar spaceW , but on a space very close
to W . We call this the DW setting throughout the rest of the paper. Using the
notations from section 2, the condition (3.4) from Dryja and Widlund [2002b]
(the same as (6) from Dryja and Widlund [2002a]) used to build the block of
B corresponding to the nonmortar δm(i) can be expressed as

Bδm(i),rvi,r + Bγm(j),rvj,r = 0,

which is different from the mortar condition (2). Thus, the discrete problem
solved in Dryja and Widlund [2002b,a] can be written as



I 0 0
0 LT

c 0
0 0 I






Krr Krc B

T
r

KT
rc Kcc 0
Br 0 0






I 0 0
0 Lc 0
0 0 I






ur

ug
c

λ


 =




fr

LT
c fc

0


 (6)

and corresponds to (4) for Bc = 0. The dual problem for the DW setting is

BrS̃
−1BT

r λ = d̃, (7)

where BrS̃
−1BT

r = FIrr
+ FIrc

(K∗

cc)
−1FT

Irc
, with FIrc

= BrK
−1
rr Krc obtained

from F̃Irc
by setting Bc = 0. We note that our matrix Br is the same as the

matrix B from Dryja and Widlund [2002b,a].
Let Srr = Kbrbr

−KbrintK
−1

int,intK
T

brint be a Schur complement–type ma-

trix. The Dirichlet preconditioner M−1
D and the generalized preconditioner

M̃−1
gen were introduced in Dryja and Widlund [2002b] for the DW setting dual

problem (7):

M−1
D = BrSrrB

T
r ; (8)

M̃−1
gen = diag(BrB̃

T
r )−1B̃rSrrB̃

T
r diag(B̃rB

T
r )−1. (9)

The generalized matrix B̃r is obtained by scaling the Bγm(j),r in the block
corresponding to the nonmortar side δm(i) by hδm(i)

/hγm(j)
; see (3.13) from

Dryja and Widlund [2002b] for more details.
In Dryja and Widlund [2002a], it was shown that, for a random choice

of the nonmortar sides, κ(M−1
D ) ≤ C(1 + logH/h)4, while κ(M−1

D ) ≤ C(1 +
logH/h)2 if the nonmortar sides are chosen according to a Neumann–Dirichlet
ordering, i.e., with all the sides of any subdomain being either all mortars or
all nonmortars. In Dryja and Widlund [2002b], it was shown that κ(M̃−1

gen) ≤

C(1 + logH/h)2. All constants denoted by C are independent of H and h.
For the dual problem (5), based on the numerical performance of FETI

algorithms for mortars, see Stefanica [2001], we suggest the following Dirichlet
and generalized preconditioners:

F−1
D = BrSrrB

T
r ; (10)

F−1
gen = diag(BrB

T
r )−1BrSrrB

T
r diag(BrB

T
r )−1. (11)
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4 Numerical Results

We tested the numerical performance of the preconditioners F−1
gen (11) and

F−1
D (10) for the mortar dual problem (5), and the preconditioners M̃−1

gen (9)

and M−1
D (8) for the approximate dual problem (7).

Our interests were four–fold:
• check the convergence and scalability properties of the resulting algorithms;
• compare the performance of the algorithms for mortars to that of the algo-
rithms for the DW setting;
• investigate whether a Neumann–Dirichlet choice of nonmortars improves
convergence, in particular for the Dirichlet preconditioner M−1

D ;
• decide which of the four preconditioners performs best.

The model problem was the Poisson equation on the unit square Ω with
mixed boundary conditions. We partitioned Ω into N = 16, 36, 64, and 121
congruent squares, and Q1 elements were used in each square. For each par-
tition, the number of nodes on each edge, H/h, was taken to be, on average,
5, 10, 20, and 40, respectively, for different sets of experiments. The meshes
did not match for any neighboring subdomains. The preconditioned conjugate
gradient iteration was stopped when the residual norm decreased by a factor
of 10−6. The experiments were carried out in MATLAB.

We report iteration counts, condition number estimates, and flop counts
for two different sets of experiments: for randomly chosen nonmortars, in
Table 1, and for a Neumann–Dirichlet choice of nonmortars, in Table 2.

Table 1. Convergence results, randomly chosen nonmortars

Generalized Dirichlet DW Generalized DW Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 5 7 2.6 3.0e-1 24 32 1.0e+0 8 2.3 3.3e-1 26 32 1.1e+0

16 10 9 3.4 1.7e+0 22 41 4.3e+0 9 3.1 1.7e+0 28 40 5.4e+0

16 20 10 4.5 1.2e+1 23 52 2.8e+1 10 4.0 1.2e+1 30 51 3.6e+1

16 40 11 5.7 9.5e+1 25 65 2.2e+2 10 4.9 8.6e+1 32 62 2.8e+1

36 5 8 2.5 9.9e-1 25 31 3.1e+0 9 2.6 1.0e+0 30 33 3.5e+0

36 10 10 3.5 5.1e+0 26 40 1.3e+1 11 3.4 5.4e+0 32 41 1.6e+1

36 20 12 4.5 3.5e+1 29 51 8.6e+1 12 4.4 3.4e+1 35 52 1.0e+2

36 40 13 5.7 2.7e+2 30 63 6.3e+2 13 5.5 2.6e+2 38 64 7.8e+2

64 5 10 2.8 2.8e+0 28 36 7.9e+0 10 2.8 2.5e+0 32 37 8.0e+0

64 10 12 3.7 1.2e+1 29 47 3.0e+1 12 3.7 1.2e+1 37 48 3.6e+1

64 20 13 4.8 7.1e+1 32 60 1.8e+2 13 4.8 6.9e+1 41 61 2.2e+2

64 40 15 6.1 5.6e+2 34 76 1.3e+3 15 6.0 5.5e+2 45 76 1.7e+3

121 5 9 2.7 6.4e+0 29 36 2.1e+1 11 3.4 6.7e+0 37 41 2.3e+1

121 10 12 3.7 2.8e+1 30 45 7.2e+1 13 4.5 2.8e+1 41 52 8.9e+1

121 20 13 4.8 1.5e+2 33 61 3.8e+2 14 5.6 1.5e+2 46 68 5.0e+2

121 40 15 6.2 1.1e+3 36 77 2.6e+3 16 6.9 1.1e+3 51 84 3.7e+3
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Table 2. Convergence results, Neumann–Dirichlet choice for nonmortars

Generalized Dirichlet DW Generalized DW Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops Iter Cond Mflops

16 5 7 2.6 3.0e-1 20 21 8.7e-1 7 2.3 2.9e-1 22 21 4.6e+0

16 10 8 3.5 1.6e+0 19 26 3.7e+0 8 3.1 1.5e+0 24 25 4.6e+0

16 20 9 4.5 1.1e+1 19 33 2.3e+1 9 4.0 1.1e+1 24 32 2.9e+1

16 40 10 5.7 8.6e+1 19 42 1.7e+2 9 5.0 7.7e+1 26 40 2.3e+1

36 5 8 2.5 9.9e-1 25 33 3.1e+0 9 2.6 1.0e+0 28 33 3.2e+0

36 10 10 3.4 5.1e+0 26 42 1.3e+1 11 3.5 5.4e+0 31 43 1.5e+1

36 20 12 4.5 3.5e+1 29 54 8.6e+1 12 4.4 3.4e+1 34 54 9.8e+1

36 40 13 5.7 2.7e+2 31 67 6.5e+2 13 5.8 2.6e+2 37 68 7.6e+2

64 5 9 2.7 2.5e+0 29 38 8.2e+0 10 2.9 2.5e+0 33 39 8.0e+0

64 10 12 3.7 1.2e+1 29 49 3.0e+1 12 3.8 1.2e+1 36 49 3.5e+1

64 20 13 4.8 7.1e+1 30 63 1.7e+2 13 4.8 6.9e+1 42 63 2.3e+2

64 40 15 6.2 5.6e+2 31 79 1.2e+3 15 6.1 5.5e+2 46 80 1.7e+3

121 5 9 2.7 6.4e+0 30 40 2.2e+1 10 3.2 6.1e+0 35 38 2.2e+1

121 10 12 3.7 2.8e+1 31 52 7.4e+1 12 4.2 2.6e+1 39 48 8.4e+1

121 20 13 4.8 1.4e+2 33 66 3.8e+2 14 5.3 1.5e+2 44 61 4.8e+2

121 40 15 6.2 1.1e+3 35 83 2.5e+3 16 6.6 1.1e+3 49 77 3.6e+3

The convergence patterns reported in Table 1 and Table 2, showed that
all preconditioners yielded scalable algorithms. When the number of nodes
on each subdomain edge, H/h, was fixed and the number of subdomains, N ,
was increased, the iteration count showed only a slight growth. When H/h
was increased, while the partition was kept unchanged, the small increase in
the number of iterations was satisfactory. The condition number estimates
exhibited a similar dependence, or lack thereof, on N and H/h. Note that the
Dirichlet preconditioner for the DW setting, M−1

D , albeit scalable, required
the largest number of iterations, about three times as many as F−1

gen, and had

condition numbers about one order of magnitude larger than for F−1
gen.

The generalized preconditioners F−1
gen and M̃−1

gen had almost the same
iteration counts and flop counts and were cheapest to implement. This was
due in part to the fact that, for FETI–DP, the matrices diag(BrB

T
r ) and

diag(BrB̃
T
r ) were block diagonal. The Dirichlet preconditioner for mortars,

F−1
D , was noticeably more efficient than its DW counterpart, M−1

D .
By comparing the convergence results from Table 1 to those from Ta-

ble 2 for each preconditioner, we concluded that the answer to the question
from the title of the paper is that choosing nonmortars does not influence
the performance of the FETI–DP algorithms. A relatively small improvement
in terms of iteration counts was achieved consistently for M−1

D , the precon-
ditioner for which a tighter condition number estimate was proved for the
Neumann–Dirichlet choice of nonmortars in Dryja and Widlund [2002a].
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The generalized mortar preconditioners F−1
gen and M̃−1

gen performed very
similarly and were clearly better in terms of iteration and flop counts and
condition number estimates than the Dirichlet preconditioners F−1

D and M−1
D .

We conclude by investigating the robustness of the FETI–DP algorithms
for mortar discretizations in a more complicated setting, e.g., for an elliptic
problem with jump coefficients, −div(ρ(x)∇u) = f . The domain Ω was par-
titioned into four equal squares and ρ(x) was chosen to be constant in each
of these squares. The ratio of the constants in neighboring squares was 1000.
The mortar discretizations considered were similar to those used previously.

The results reported in Table 3 confirm the scalability of the FETI–DP
algorithms with respect to the number of subdomains and to the number of
nodes on each edge, for the generalized and Dirichlet preconditioners, modified
as suggested in Klawonn et al. [2002] to account for the jump coefficients,
for randomly chosen mortars. As expected, the generalized preconditioner
performs better in terms of both condition numbers and computational costs.

Due to space constraints, we do not present the numerical results for the
DW–type preconditioners, or for a Neumann–Dirichlet choice of nonmortars,
but we note that exactly the same type of convergence behavior as for the
Poisson problem was observed for the elliptic problem with jump coefficients.

Table 3. Convergence results, coefficients with jumps

Generalized Dirichlet

N H/h Iter Cond Mflops Iter Cond Mflops

16 5 11 9.2 4.7e-1 35 54 1.6e+0

16 10 13 10.8 2.6e+0 37 68 7.4e+0

16 20 14 12.1 1.6e+1 38 80 4.8e+1

16 40 15 13.3 1.3e+2 41 92 3.7e+2

36 5 12 9.6 1.5e+0 36 56 4.5e+0

36 10 14 11.3 7.2e+0 39 71 2.0e+1

36 20 15 12.9 4.5e+1 42 78 1.3e+2

36 40 16 13.6 3.3e+2 46 91 1.0e+3

64 5 14 9.9 4.0e+0 40 61 1.2e+1

64 10 15 12.1 1.6e+1 43 74 4.4e+1

64 20 17 13.4 9.4e+1 47 89 2.7e+2

64 40 19 13.9 7.2e+2 50 98 2.0e+3

128 5 14 10.3 1.0e+1 42 63 3.0e+1

128 10 15 12.0 3.6e+1 45 76 1.1e+2

128 20 17 13.5 2.0e+2 48 91 5.6e+2

128 40 19 13.9 1.5e+3 52 100 3.7e+3
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