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Summary. The FETI-DP domain decomposition method is extended to address
the iterative solution of a class of indefinite problems of the form (K−σ2M)x = b,
and a class of complex problems of the form (K − σ2M + iσD)x = b, where K,
M, and D are three real symmetric positive semi-definite matrices arising from
the finite element discretization of either second-order elastodynamic problems or
fourth-order plate and shell dynamic problems, i is the imaginary complex number,
and σ is a positive real number.

1 Introduction

Real linear or linearized systems of equations of the form

(K− σ2M)x = b (1)

and complex linear or linearized systems of equations of the form

(K − σ2M + iσD)x = b (2)

are frequent in computational structural dynamics. Eq. (1) is encountered, for
example, in the finite element (FE) simulation of the forced response of an
undamped mechanical system to a periodic excitation . In that case, K and M

are the FE stiffness and mass matrices of the considered mechanical system,
respectively, σ is the circular frequency of the external periodic excitation, b

is its amplitude, (K− σ2M) is the impedance of the mechanical system, and
x is the amplitude of its forced response. Such problems also arise during the
solution by an inverse shifted method of the generalized symmetric eigenvalue
problem Kx = ω2Mx associated with an undamped mechanical system. In
that example, K and M have the same meaning as in the previous case, (ω2,
x) is a desired pair of eigenvalue and eigenvector representing the square of
a natural circular frequency and the corresponding natural vibration mode of
the undamped mechanical system, respectively, and the shift σ2 is introduced
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to obtain quickly the closest eigenvalues to σ2. In both examples mentioned
here, the matrices K and M are symmetric positive semi-definite, and there-
fore (K − σ2M) rapidly becomes indefinite when σ is increased. Eq. (2) is
encountered in similar problems when the mechanical system is damped, in
which case i denotes the pure imaginary number satisfying i2 = −1 and D

denotes the FE damping matrix and is also symmetric positive semi-definite.
Domain decomposition based preconditioned conjugate gradient (PCG)

methods have emerged as powerful equation solvers in this field on both se-
quential and parallel computing platforms. While most successful domain de-
composition methods (DDMs) have been designed for the solution of symmet-
ric positive (semi-) definite systems, some have targeted indefinite problems of
the form given in (1) (Cai and Widlund [1992]) . The objective of this paper
is to present an alternative DDM that addresses both classes of indefinite (1)
and complex (2) problems, that is based on the FETI-DP (Farhat, Lesoinne
and Pierson [2000], Farhat et al. [2001]) DDM, and that is scalable when K,
M, and D result from the FE discretization of second-order elastodynamic
problems and fourth-order plate and shell dynamic problems.

2 The FETI-DP method

The dual-primal finite element tearing and interconnecting method (FETI-
DP) (Farhat, Lesoinne and Pierson [2000], Farhat et al. [2001]) is a third-
generation FETI method (for example, see Farhat [1991], Farhat and Roux
[1991]) developed for the scalable and fast iterative solution of systems of
equations arising from the FE discretization of static, dynamic, second-order,
and fourth-order elliptic partial differential equations (PDEs). When equipped
with the Dirichlet preconditioner (Farhat, Mandel and Roux [1994]) and ap-
plied to fourth-order or two-dimensional second-order problems, the condition
number κ of its interface problem grows asymptotically as (Mandel and Tezaur
[2001])

κ = O (1 + logm H

h
), m ≤ 2, (3)

where H and h denote the subdomain and mesh sizes, respectively. When
equipped with the same Dirichlet preconditioner and an auxiliary coarse prob-
lem constructed by enforcing some set of optional constraints at the subdo-
main interfaces (Farhat et al. [2001]), the condition number estimate (3) also
holds for second-order scalar elliptic problems (Klawonn, Widlund and Dryja
[2002]). The result (3) proves the numerical scalability of the FETI method-
ology with respect to all of the problem size, the subdomain size, and the
number of subdomains. More specifically, it suggests that one can expect
the FETI-DP method to solve small-scale and large-scale problems in similar
iteration counts. This in turn suggests that when the FETI-DP method is
well-implemented on a parallel processor, it should be capable of solving an
n-times larger problem using an n-times larger number of processors in almost
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a constant CPU time. This was demonstrated in practice for many complex
structural mechanics problems (for example, see Farhat, Lesoinne and Pierson
[2000] and Farhat et al. [2001] and the references cited therein).

Next, the FETI-DP method is overviewed in the context of the generic
symmetric positive semi-definite (static) problem

Kx = b, (4)

where K has the same meaning as in problems (1,2) and b is an arbitrary
vector, in order to keep this paper as self-contained as possible.

2.1 Non-overlapping domain decomposition and notation

Let Ω denote the computational support of a second- or fourth-order problem
whose discretization leads to problem (4), {Ω(s)}Ns

s=1 denote its decomposition
into Ns subdomains with matching interfaces Γ (s,q) = ∂Ω(s)

⋂
∂Ω(q), and let

Γ =

s=Ns⋃

s=1,q>s

Γ (s,q) denote the global interface of this decomposition. In the

remainder of this paper, each interface Γ (s,q) is referred to as an “edge”,

whether Ω is a two- or three-dimensional domain. Let also K(s) and b(s)

denote the contributions of subdomain Ω(s) to K and b, respectively, and let
x(s) denote the vector of dof associated with it.

Let Nc of the NI nodes lying on the global interface Γ be labeled “corner”
nodes (see Fig. 1), Γc denote the set of these corner nodes, and let Γ ′ = Γ\Γc.
If in each subdomain Ω(s) the unknowns are partitioned into global corner dof
designated by the subscript c, and “remaining” dof designated by the subscript
r, K(s), x(s) and b(s) can be partitioned as follows

K(s) =

[
K

(s)
rr K

(s)
rc

K
(s)T

rc K
(s)
cc

]
, x(s) =

[
x

(s)
r

x
(s)
c

]
and b(s) =

[
b

(s)
r

b
(s)
c

]
. (5)

The r-type dof can be further partitioned into “interior” dof designated by
the subscript i, and subdomain interface “boundary” dof designated by the

subscript b. Hence, x
(s)
r and b

(s)
r can be further partitioned as follows

x(s)
r =

[
x

(s)
i x

(s)
b

]T

and b(s)
r =

[
b

(s)
i b

(s)
b

]T

, (6)

where the superscript T designates the transpose.

Let xc denote the global vector of corner dof, and x
(s)
c denote its restriction

to Ω(s). Let also B
(s)
r and B

(s)
c be the two subdomain Boolean matrices defined

by

B(s)
r x(s)

r = ±x
(s)
b and B(s)

c xc = x(s)
c , (7)
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Fig. 1. Example of a definition of corner points.

where the ± sign is set by any convention that implies that
Ns∑
s=1

B
(s)
r x

(s)
r rep-

resents the jump of the solution x across the subdomain interfaces. Finally,
let

bc =

Ns∑

s=1

B(s)T

c b(s)
c . (8)

In Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001], it was
shown that solving problem (4) is equivalent to solving the following domain-
decomposed problem

K(s)
rr x(s)

r + K(s)
rc B(s)

c xc + B(s)T

r λ + B(s)T

r Qb µ = b(s)
r , s = 1, ..., Ns (9)

Ns∑

s=1

B(s)T

c K(s)T

rc x(s)
r +

Ns∑

s=1

B(s)T

c K(s)
cc B(s)

c xc = bc, (10)

Ns∑

s=1

B(s)
r x(s)

r = 0, (11)

QT
b

Ns∑

s=1

B(s)
r x(s)

r = 0, (12)

where λ is an Nλ-long vector of Lagrange multipliers introduced on Γ ′ to
enforce the continuity (11) of the solution x, and µ is another vector of La-
grange multipliers introduced to enforce the optional linear constraints (12).
These optional constraints, a concept first developed in Farhat, Chen, Risler
and Roux [1998], are associated with a matrix Qb with NQ < Nλ columns
defined on Γ ′. The word “optional” refers to the fact that Eq. (12) and the
vector of Lagrange multipliers µ are not necessarily needed for formulating
the above domain-decomposed problem. Indeed, since the solution of problem
(4) is continuous across the subdomain interfaces, it satisfies Eq. (11) and
therefore satisfies Eq. (12) for any matrix Qb.

The domain-decomposed problem (9–12) was labeled “dual-primal” in
Farhat, Lesoinne and Pierson [2000] and Farhat et al. [2001] because it is
formulated in terms of two different types of global unknowns: the dual La-
grange multipliers represented by the vector λ, and the primal corner dof
represented by the vector xc.

In the remainder of this paper, the j-th column of Qb is denoted by qj .



The FETI-DPH method 23

2.2 Interface and coarse problems

Let

K̃cc =

[
Kcc 0
0 0

]
, dr =

Ns∑

s=1

B(s)
r K(s)−1

rr b(s)
r ,

and b∗

c = bc −

Ns∑

s=1

(K(s)
rc B(s)

c )TK(s)−1

rr b(s)
r . (13)

After some algebraic manipulations aimed at eliminating symbolically x
(s)
r ,

s = 1, ..., Ns, xc, and µ, the domain-decomposed problem (9–12) can be trans-
formed into the following symmetric positive semi-definite interface problem

(FIrr
+ F̃Irc

K̃∗
−1

cc F̃T
Irc

)λ = dr − F̃Irc
K̃∗

−1

cc b̃∗

c , (14)

where

FIrr
=

Ns∑

s=1

B(s)
r K(s)−1

rr B(s)T

r , F̃Irc
=

Ns∑

s=1

B(s)
r K(s)−1

rr K̃(s)
rc B(s)

c ,

K̃(s)
rc =

[
K(s)

rc B(s)
c B(s)T

r Qb

]
, b̃∗

c =

[
b∗

c

−QT
b dr

]
,

K̃∗

cc = K̃cc −




Ns∑
s=1

(K
(s)
rc B

(s)
c )T K

(s)−1

rr (K
(s)
rc B

(s)
c )

Ns∑
s=1

(K
(s)
rc B

(s)
c )TK

(s)−1

rr (B
(s)T

r Qb)

Ns∑
s=1

(B
(s)T

r Qb)
TK

(s)−1

rr (K
(s)
rc B

(s)
c )

Ns∑
s=1

(B
(s)T

r Qb)
T K

(s)−1

rr (B
(s)T

r Qb)


 .

(15)

The FETI-DP method is a DDM which solves the original problem (4)
by applying a PCG algorithm to the solution of the corresponding dual in-
terface problem (14). At the n-th PCG iteration, the matrix-vector product

(FIrr
+ F̃Irc

K̃∗
−1

cc F̃T
Irc

)λn incurs the solution of an auxiliary problem of the
form

K̃∗

ccz = F̃T
Irc

λn. (16)

From the fifth of Eqs. (15), it follows that the size of this auxiliary problem
is equal to the sum of the number of corner dof, Ndof

c , and the number of
columns of the matrix Qb, NQ.

For NQ = 0 — that is, for Qb = 0, the auxiliary problem (16) is a coarse

problem, and K̃∗

cc is a sparse matrix whose pattern is that of the stiffness
matrix obtained when each subdomain is treated as a “superelement” whose
nodes are its corner nodes. This coarse problem ensures that the FETI-DP
method equipped with the Dirichlet preconditioner (see Section 2.3) is numer-
ically scalable for fourth-order plate and shell problems, and two-dimensional
second-order elasticity problems (Farhat et al. [2001], Mandel and Tezaur
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[2001]). However, for Qb = 0, the FETI-DP method equipped with the Dirich-
let preconditioner is not numerically scalable for three-dimensional second-
order problems.

For any choice of Qb 6= 0, K̃∗

cc remains a sparse matrix. If Qb is constructed
edge-wise — that is, if each column of Qb is constructed as the restriction of
some operator to a specific edge of Γ ′ — the sparsity pattern of K̃∗

cc becomes
that of a stiffness matrix obtained by treating each subdomain as a superele-
ment whose nodes are its corner nodes augmented by virtual mid-side nodes.
The number of dof attached to each virtual mid-side node is equal to the
number of columns of Qb associated with the edge on which lies this mid-side
node. If NQ is kept relatively small, the auxiliary problem (16) remains a rel-
atively small coarse problem. This coarse problem was labeled “augmented”
coarse problem in Farhat, Lesoinne and Pierson [2000] in order to distinguish
it from the smaller coarse problem obtained with Qb = 0. Furthermore, each
column of Qb is referred to as an “augmentation coarse mode”. When these
augmentation coarse modes are chosen as the translational rigid body modes
of each edge of Γ ′, the FETI-DP method equipped with the Dirichlet pre-
conditioner becomes numerically scalable for three-dimensional second-order
problems (Klawonn, Widlund and Dryja [2002]).

2.3 Local preconditioning

Two local preconditioners have been developed so far for the FETI-DP
method:

1. The Dirichlet preconditioner which can be written as

F
D−1

Irr
=

Ns∑

s=1

W(s)B(s)
r

[
0 0

0 S
(s)
bb

]
B(s)T

r W(s),

where S
(s)
bb = K

(s)
bb − K

(s)T

ib K
(s)−1

ii K
(s)
ib , (17)

the subscripts i and b have the same meaning as in Section 2.1, and W(s)

is a subdomain diagonal scaling matrix that accounts for possible subdo-
main heterogeneities (Rixen and Farhat [1999]). This preconditioner is
mathematically optimal in the sense that it leads to the condition number
estimate (3).

2. The lumped preconditioner which can be written as

F
L−1

Irr
=

Ns∑

s=1

W(s)B(s)
r

[
0 0

0 K
(s)
bb

]
B(s)T

r W(s). (18)

This preconditioner is not mathematically optimal in the sense defined
above; however, it decreases the cost of each iteration in comparison with
the Dirichlet preconditioner often with a modest increase in the iteration
count.
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3 The FETI-DPH method

In the context of Eq. (1), K
(s)
rr becomes K

(s)
rr − σ2M

(s)
rr . Hence, the extension

of the FETI-DP method to problems of the form given in (1) or (2) requires
addressing the following issues:

1. K
(s)
rr − σ2M

(s)
rr is indefinite and therefore the dual interface problem (14)

is indefinite.
2. Independently of which interface points are chosen as corner points, K

(s)
rr −

σ2M
(s)
rr is in theory singular when σ2 coincides with an eigenvalue of the

pencil (K
(s)
rr ,M

(s)
rr ).

3. How to construct augmentation coarse modes and extended Dirichlet and
lumped preconditioners that address the specifics of problems (1,2).

For problems of the form given in (2), only the third issue is relevant.
The first issue can be addressed by solving the dual interface problem (14) by
a preconditioned generalized minimum residual (PGMRES) algorithm rather
than a PCG algorithm. The second and third issues were addressed in Farhat,
Macedo and Lesoinne [2000] in the context of the basic FETI method and
acoustic scattering applications — that is, for the exterior Helmholtz scalar

problem where σ2 = k2 and k denotes the wave number. More specifically, a
regularization procedure was developed in that reference to prevent all sub-
domain problems from being singular for any value of the wave number k,

without destroying the sparsity of the local matrices K
(s)
rr −k2M

(s)
rr and with-

out affecting the solution of the original problem (1). Furthermore, for the
scalar Helmholtz equation, the coarse modes were chosen in Farhat, Macedo

and Lesoinne [2000] as plane waves of the form eikθT
j Xb , j = 1, 2, · · · , where

θj denotes a direction of wave propagation and Xb the coordinates of a node
on Γ . The resulting DDM was named the FETI-H method (H for Helmholtz).

Unfortunately, the regularization procedure characterizing the FETI-H
method transforms each real subdomain problem associated with Eq. (1) into
a complex subdomain problem. For acoustic scattering applications, this is
not an issue because the Sommerfeld radiation condition causes the original
problem to be in the complex domain. However, for real-valued problems such
as those represented by Eq. (1), the regularization procedure of the FETI-H
method is unjustifiable from computational resource and performance view-
points.

In practice, experience reveals that K
(s)
rr −σ2M

(s)
rr is non-singular as long as

K
(s)
rr is non-singular. This observation is exploited here to design an extension

of the FETI-DP method for indefinite problems of the form given in (1) and
complex problems of the form given in (2) by:

1. Replacing the PCG solver by the PGMRES solver.
2. Adapting the Dirichlet and lumped preconditioners to exploit an interest-

ing characteristic of problems (1,2).
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3. Constructing a new augmentation coarse space that is effective for second-
order elastodynamic problems as well as fourth-order plate and shell dy-
namic problems.

The extension of FETI-DP outlined above is named here the FETI-DPH
method.

3.1 Adapted Dirichlet and lumped preconditioners

Consider the subdomain (impedance) matrix

Z(s)
rr = K(s)

rr − σ2M(s)
rr . (19)

For the applications outlined in the introduction, M
(s)
rr is a mass matrix;

hence, in three dimensions and at the element level, this matrix is propor-

tional to h3. On the other hand, for the same applications, K
(s)
rr is a stiffness

matrix; in three dimensions and at the element level, it is proportional to h
for second-order elasticity problems, and to 1/h2 for fourth-order plate and

shell problems. It follows that for a sufficiently fine mesh, Z
(s)
rr is dominated

by K
(s)
rr . These observations, the optimality of the Dirichlet preconditioner

and the computational efficiency of the lumped preconditioner established for

the solution of problem (4) suggest preconditioning the local matrices Z
(s)
rr by

Dirichlet and lumped constructs that are based on K
(s)
rr (see Section 2.3) and

not Z
(s)
rr . When Rayleigh damping is used,

D(s)
rr = cKK(s)

rr + cMM(s)
rr , (20)

where cK and cM are two real constants, and the same reasoning can be
invoked to advocate preconditioning the local matrices

Z(s)
rr = K(s)

rr − σ2M(s)
rr + iσD(s)

rr (21)

by Dirichlet and lumped constructs that are based on (1+ iσcK)K
(s)
rr and not

Z
(s)
rr .

Finally, it is pointed out that the ad-hoc reasoning outlined above can
be mathematically justified, at least in the context of the scalar Helmholtz
equation (for example, see Klawonn [1995] and the references cited therein).

3.2 Wavy augmented coarse problem

Let r denote the residual associated with the iterative solution of the dual
interface problem (14). From Eqs. (9–12) and Eq. (14), it follows that

r = dr − F̃Irc
K̃∗

−1

cc b̃∗

c − (FIrr
+ F̃Irc

K̃∗
−1

cc F̃T
Irc

)λ =

Ns∑

s=1

B(s)
r x(s)

r , (22)
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which shows that the residual r represents the jump of the iterate solution
across the subdomain interfaces.

From Eq. (12), Eq. (15), Eq. (14) and Eq. (11), it follows that at each
iteration of the PGMRES algorithm applied to the solution of problem (14),
FETI-DPH forces the jump of the solution across the subdomain interfaces
to be orthogonal to the subspace represented by the matrix Qb. This feature
is a strategy for designing an auxiliary coarse problem which, when Qb is
well chosen, accelerates the convergence of a DDM (Farhat, Chen, Risler and
Roux [1998]). In this work, the search for a suitable matrix Qb is driven by
the following reasoning. Suppose that the space of traces on Γ ′ of the desired
solution of problem (1) is spanned by a set of orthogonal vectors {vjE

}Nλ

j=1,
where the subscript E indicates that vjE

is non-zero only on edge E ∈ Γ ′.
Then, the residual r defined in Eq. (22) can be written as

r =

Nλ∑

j=1

αjvjE
, (23)

where {αj}
Nλ

j=1 is a set of real coefficients. If each augmentation coarse mode
is chosen as

qj = vjE
, j = 1, · · · , NQ, (24)

Eq. (12) simplifies to

αj = 0, j = 1, · · · , NQ. (25)

In that case, Eq. (25) implies that at each iteration of the PGMRES algorithm,
the first NQ components of the residual r in the basis {vjE

}Nλ

j=1 are zero. If

a few vectors {vjE
}

NQ

j=1, NQ << Nλ, that dominate the expansion (23) can
be found, then choosing these vectors as coarse augmentation modes can be
expected to accelerate the convergence of the iterative solution of the dual
interface problem (14). Hence, it remains to exhibit such a set of orthogonal
vectors vjE

and construct a computationally efficient matrix Qb.
A second-order elastodynamic problem is governed by Navier’s displace-

ment equations of motion

µ∆u + (Λ + µ)∇(∇ · u) + b = ρ
∂2u

∂t2
, (26)

where u ∈ R
3 denotes the displacement (vector) field of the elastodynamic

system, Λ and µ its Lamé moduli, b ∈ R
3 its body forces, ρ its density, and t

denotes time. If a harmonic motion is assumed, — that is, if

u(X, t) = v(X)e−iωt, (27)

where X ∈ R
3 denotes the spatial variables, and ω denotes a circular fre-

quency, the homogeneous form of Eq. (26) becomes
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µ∆v + (Λ + µ)∇(∇ · v) + ρω2v = 0. (28)

The free-space solutions of the above vector equation are

v = ap sin(kpθ · X), v = ap cos(kpθ · X), (29)

v = as1
sin(ksθ · X), v = as1

cos(ksθ · X), (30)

v = as2
sin(ksθ · X), v = as2

cos(ksθ · X), (31)

where θ ∈ R
3 is an arbitrary vector of unit length (‖θ‖2 = 1), ap ∈ R

3 is a
vector that is parallel to θ, (as1

, as2
) ∈ R

3 × R
3 are two independent vectors

in the plane orthogonal to θ,

kp =

√
ρω2

Λ + 2µ
, and ks =

√
ρω2

µ
. (32)

The free-space solutions (29) are known as the elastic pressure or longitudinal
waves, and the free-space solutions (30) and (31) are known as the elastic
shear or transverse waves.

Consider next the following fourth-order PDE associated with a given
elastic body

∆2u −
m

D
ω2u = 0, where m = ρτ, D =

Eτ3

12(1 − ν2)
, (33)

E denotes the Young modulus of the elastic body, ν its Poisson ratio, τ its
thickness, and all other variables have the same meaning as before. The reader
can check that the free-space solutions (29,30,31) with

kp = ks =4

√
m

D
ω2 (34)

are also free-space solutions of Eq. (33). The PDE (33) can model the har-
monic transverse motion of a plate. In that case, u is a scalar representing
the transverse displacement field. However, for the purpose of constructing
an augmented coarse problem for the FETI-DPH method, and only for this
purpose, it is assumed here that when u ∈ R

3, Eq. (33) models the harmonic
motion of a shell in all three dimensions.

Hence, a general solution of either Eq. (28) or Eq. (33) can be written as

v =

∞∑

j=1

{
apj

(
c1j

sin(kpθj · X) + c2j
cos(kpθj · X)

)}

+

∞∑

j=1

{
as1j

(
c3j

sin(ksθj · X) + c4j
cos(ksθj · X)

)}

+
∞∑

j=1

{
as2j

(
c5j

sin(ksθj · X) + c6j
cos(ksθj · X)

)}
, (35)
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where θj ∈ R
3 is an arbitrary vector of unit length defining the direction of

propagation of an elastic pressure or shear wave, c1j
, c2j

, c3j
, c4j

, c5j
, and

c6j
are real coefficients, and kp and ks are given by Eq. (32) for a second-

order elastodynamic problem and by Eq. (34) for a fourth-order plate or shell
dynamic problem. From Eq. (35) and Eq. (24), it follows that the desired
matrix Qb is composed of blocks of six columns. The columns of each block
are associated with one direction of propagation θj and one edge E of the
mesh partition, and can be written as

qbl




3(m − 1) + 1
3(m − 1) + 2
3(m − 1) + 3



 = apj
sin(kpθj · Xm), qbl+1




3(m − 1) + 1
3(m − 1) + 2
3(m − 1) + 3



 = apj
cos(kpθj · Xm),

· · · · · · (36)

qbl+4




3(m − 1) + 1
3(m − 1) + 2
3(m − 1) + 3


 = as2j

sin(ksθj · Xm), qbl+5




3(m − 1) + 1
3(m − 1) + 2
3(m − 1) + 3


 = as2j

cos(ksθj · Xm),

l = 6(j − 1) + 1, m = 1, · · · , NI − Nc,

where qb[3(m − 1) + 1] designates the entry of qb associated with the dof
in the x-direction attached to the m-th node on an edge E ∈ Γ ′, qb[3(m −
1) + 2] designates the entry associated with the dof along the y-direction,
qb[3(m − 1) + 3] designates the entry associated with the dof along the z-
direction, and Xm ∈ R

3 denotes the coordinates of this m-th node. Hence, if
NE denotes the number of edges of the mesh partition, and Nθ the number of
considered directions of wave propagation, the total number of augmentation
coarse modes is given in general by NQ = 6NENθ. To these modes can be
added the edge-based translational rigid body modes as these are free-space
solutions of Eq. (28) when ω = 0.

In this paper, the number of directions is limited by Nmax
θ = 13, and

the directions θj are generated as follows. A generic cube is discretized into
3 × 3 × 3 points. A direction θj is defined by connecting the center point to
any of the other 26 points lying on a face of the cube. Since each direction
θj is used to define both a cosine and a sine mode, only one direction θj is
retained for each pair of opposite directions, which results in a maximum of
13 directions.

4 Performance studies and preliminary conclusions

Here, the FETI-DPH method is applied to the solution of various problems
of the form given in (1) or (2) and associated with: (a) the discretization
by quadratic tetrahedral elements (10 nodes per element) of a wheel carrier
fixed at a few of its nodes, and (b) the discretization by linear triangular shell
elements of an alloy wheel clamped at a few center points (Fig. 2). When the
structure is assumed to be damped, Eq. (20) is used to construct D and cK
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and cM are determined by requiring that the critical damping ratio of the
first 10 modes of the structure be equal in a least-squares sense to a specified
value, ξ. In all problems, the shift is set to σ2 = ω2 = 4π2f2, where ω2

is the square of a (possibly natural) circular frequency of the structure and
f is the corresponding frequency in Hz. To help the reader appreciate the
magnitude of a chosen shift value, the natural frequencies of both structures
are characterized in Table 1. In order to investigate the performance, potential,
and various scalability properties of the FETI-DPH method, various values of
σ2 are considered, three meshes with different resolutions are employed for the
wheel carrier second-order problem (504,375 dof, 1,317,123 dof, and 2,091,495
dof), and one mesh with 936,102 dof is employed for the alloy wheel fourth-
order shell problem. In all cases, the right-sides of problems (1,2) are generated
by a distributed load, the computations are performed on a Silicon Graphics
Origin 3800 system with 40 R12000 400 MHz processors, and convergence is
declared when the relative residual satisfies

REn =
‖(K− σ2M + iσD) xn − b‖2

‖b‖2

≤ 10−6. (37)

Fig. 2. FE discretizations of a wheel carrier (left) and an alloy wheel (right).

First, attention is directed to the wheel carrier undamped problem, and
for each generated mesh, Ns is chosen to keep the subdomain problem size
constant. Two frequencies, 500 KHz and 2 MHz, are considered: the latter
value of the shift σ2 arises, for example, when exciting the structure by its
200−th natural frequency, or shifting around it during the solution of an
eigenvalue problem. The number of wave directions is set to Nθ = 2, and the
three translational rigid body modes are included in the construction of the
augmentation matrix Qb. The performance results of the FETI-DPH solver
obtained on Np = 12 processors are reported in Table 2 where Nitr records
the iteration count. For each considered frequency, the iteration count asso-
ciated with the chosen number of subdomains and chosen preconditioner is
almost independent of the mesh size, which highlights the numerical scalabil-
ity of the FETI-DPH method with respect to both the subdomain problem
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Table 1. Eigenvalue/Frequency partial spectrum of the pencil (K,M).

Wheel Carrier (2nd-order) Alloy Wheel (4th-order)

Mode Number Eigenvalue (ω2) Frequency Eigenvalue (ω2) Frequency

1 2.6e+11 8.2e+04 Hz 7.6e+05 1.4e+02 Hz
100 5.2e+13 1.1e+06 Hz 1.0e+09 5.1e+03 Hz
200 1.6e+14 2.0e+06 Hz 3.0e+09 8.7e+03 Hz
300 2.8e+14 2.6e+06 Hz 5.7e+09 1.2e+04 Hz
400 4.0e+14 3.2e+06 Hz 9.5e+09 1.5e+04 Hz
500 5.1e+14 3.5e+06 Hz
600 6.0e+14 3.9e+06 Hz

size and the total problem size. For this second-order problem, the lumped
and Dirichlet preconditioners deliver similar CPU performances; hence, the
lumped preconditioner is preferable since it requires less memory.

Table 2. Performance of the FETI-DPH solver: wheel carrier, undamped, 2nd-order
problem; fixed subdomain problem size; Nθ = 2 (+ the three translational rigid body
modes); Np = 12.

Frequency Shift (σ2) Mesh size Ns Nitr CPU Nitr CPU
Lumped Lumped Dirichlet Dirichlet

504,375 dof 250 63 64 s. 45 60 s.
5 × 105 Hz 9.8e+12 1,317,123 dof 600 70 207 s. 53 206 s.

2,091,495 dof 950 60 364 s. 45 358 s.

504,375 dof 250 137 123 s. 105 119 s.
2 × 106 Hz 1.6e+14 1,317,123 dof 600 174 483 s. 140 491 s.

2,091,495 dof 950 151 901 s. 118 887 s.

To illustrate the performance of the FETI-DPH solver for problems of
the form given in (2), the wheel carrier is next assumed to have a Rayleigh
damping. The mesh with Ndof = 1, 317, 123 is considered, the number of
subdomains is set to Ns = 600, the shift is set to σ2 = 105 Hz, the number
of wave directions is set to Nθ = 2, the three translational rigid body modes
are included in the construction of the augmentation matrix Qb, and the
number of processors is set to Np = 16. For these parameters, the performance
results of FETI-DPH equipped with the lumped preconditioner are reported
in Table 3 for the undamped case (ξ = 0), and for realistic damping scenarios
(ξ = 1%, ξ = 2%, and ξ = 5%). These results suggest that the intrinsic
performance of FETI-DPH improves with the amount of damping. For the
undamped case, FETI-DPH operates in the real domain. This explains why
in that case, each iteration is 2.7 times faster than in the damped case where
FETI-DPH operates in the complex plane.
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Table 3. Performance of the FETI-DPH solver: wheel carrier, damped, 2nd-order
problem; Ndof = 1, 317, 123; Ns = 600; σ2 = 105 Hz; lumped preconditioner; Nθ = 2
(+ the three translational rigid body modes); Np = 16.

ξ cK cM Nitr CPU

0% 0 0 62 182 s.

1% 3.42e-6 17.9 51 403 s.

2% 6.85e-6 35.8 49 394 s.

5% 1.71e-5 89.5 48 384 s.

Next, attention is directed to the undamped alloy wheel problem to in-
vestigate the performance for a fourth-order shell problem of the FETI-DPH
solver equipped with the Dirichlet preconditioner. Two different frequencies,
5 KHz and 20 KHz, are considered: the upper value of the shift σ2 arises,
for example, when exciting the considered alloy wheel by a frequency that is
higher than its 400−th natural frequency, or shifting around that frequency
during the solution of an eigenvalue problem. The number of subdomains is
varied between Ns = 100 and Ns = 400 and the number of processors is fixed
to Np = 8. Table 4, where Ncoarse denotes the total size of the augmented
coarse problem, contrasts for each value of Ns the performance of FETI-DP
(with PGMRES as a solver) and the best performance of FETI-DPH obtained
by varying Nθ. The reported performance results suggest that the FETI-DPH
solver is numerically scalable for dynamic shell problems of the form given in
(1). They also highlight the superiority of FETI-DPH over FETI-DP which
fails to converge in a reasonable iteration count for large values of the shift
σ2.

Table 4. FETI-DPH vs. FETI-DP: alloy wheel, undamped, 4th-order problem;
Ndof = 936, 102; Dirichlet preconditioner; Np = 8.

Frequency Shift (σ2) Ns Nθ Ncoarse Nitr CPU

100 0 3,258 347 534 s.
100 3 7,275 122 265 s.
200 0 6,372 236 301 s.

5× 103 Hz 9.8e+8 200 2 11,853 116 200 s.
400 0 12,129 226 317 s.
400 2 21,924 123 271 s.

100 0 3,258 >400 –
100 5 9,512 330 680 s.
200 0 6,372 >400 –

2× 104 Hz 1.6e+10 200 5 17,581 261 564 s.
400 0 12,129 >400 –
400 3 27,270 265 706 s.
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