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Summary. The contribution deals with the numerical solving of contact problems
with Coulomb friction for 3D bodies. A variant of the FETI based domain de-
composition method is used. Numerical experiments illustrate the efficiency of our
algorithm.

1 Introduction

The FETI method was proposed by Farhat and Roux [1992] for parallel so-
lution of problems described by elliptic partial differential equations. The key
idea is elimination of the primal variables so that the original problem is
reduced to a small, relatively well conditioned quadratic programming prob-
lem in terms of the Lagrange multipliers. Then the iterative solver is used to
compute the solution.

Our recent papers (see Dostál et al. [2002] or Haslinger et al. [2002]) ap-
ply the FETI procedure to the contact problems with Coulomb friction in
2D. It leads to the sequence of quadratic programming problems with simple
inequality bounds so that the fast algorithm based on an active set strat-
egy and an adaptive precision control (see Dostál and Schöberl [2003]) can
be used directly. The situation is not so easy in 3D. The reason is that the
tangential contact stress has two components in each contact node which are
subject to quadratic inequality constraints. Fortunately the structure of this
constraints is relatively simple: the vector whose components are the tangen-
tial contact stresses belongs to a circle in IR2 with the center at the origin
and a given radius. A convenient piecewise linear approximation of the circle
can be defined by the intersection of squares rotated of a constant angle α.
Doing this approximation at all the contact nodes, we obtain a new quadratic
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370 Radek Kučera, Jaroslav Haslinger, and Zdeněk Dostál

programming problem with bound and equality constraints that can be ef-
ficiently solved by the algorithm based on the augmented Lagrangian (see
Dostál et al. [2003]). The implementation details for the problem with one
body on the rigid foundation can be found in Haslinger et al. [2003]. Here, we
shall extend our method to 3D-multibody problems and show how to reduce
the size of the solved quadratic programming problem by means of the mixed
finite element method.

2 Formulation of the problems

Let us consider a system of elastic bodies that occupy in the reference config-
uration bounded domains Ωp ⊂ IR3, p = 1, 2, . . . , s, with sufficiently smooth
boundaries Γ p that are split into three disjoint parts Γ p

u , Γ p
t and Γ p

c so that

Γ p = Γ p
u ∪Γ p

t ∪Γ p
c . Let us suppose that the zero displacements are prescribed

on Γ p
u and that the surface tractions of density t

p ∈ (L2(Γ p
t ))3 act on Γ p

t .
Along Γ p

c the body Ωp may get into unilateral contact with some other of
the bodies. Finally we suppose that the bodies Ωp are subject to the volume
forces of density f

p ∈ (L2(Ωp))3.
To describe non-penetration of the bodies, we shall use linearized non-

penetration condition that is defined by a mapping χ : Γc −→ Γc, Γc =
⋃s

p=1 Γ p
c , which assigns to each x ∈ Γ p

c some nearby point χ(x) ∈ Γ q
c , p 6= q.

Let v
p(x),vq(χ(x)) denote the displacement vectors at x, χ(x), respectively.

Assuming the small displacements, the non-penetration condition reads

vp
n(x) ≡ (vp(x) − v

q(χ(x))) · np(x) ≤ δp(x),

where δp(x) = (χ(x) − x) · np(x) is the initial gap and n
p(x) is the critical

direction defined by n
p(x) = (χ(x) − x)/‖χ(x) − x‖ or, if χ(x) = x, by the

outer unit normal vector to Γ p
c .

We start with the weak formulation of an auxiliary problem, called the
contact problem with given friction. To this end we introduce the space of
virtual displacements

V = {v = (v1, . . . ,vs) ∈

s
∏

p=1

(H1(Ωp))3 : vp = 0 on Γ p
u}

and its closed convex subset of kinematically admissible displacements

K = {v ∈ V : vp
n(x) ≤ δp(x) for x ∈ Γ p

c },

where n
p ∈ (L∞(Γ p

c ))3 and δp ∈ L∞(Γ p
c ). Let us assume that the normal

contact stress Tν ∈ L∞(Γc), Tν ≤ 0, is known apriori so that one can evaluate
the slip bound g on Γc by g = F (−Tν), where F = F p > 0 is a coefficient of
friction on Γ p

c . Denote gp = g|Γ p
c
.

The primal formulation of the contact problem with given friction reads
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(P) minJ (v) subject to v ∈ K,

where
J (v) = 1

2a(v,v) − b(v) + j(v)

is the total potential energy functional with the bilinear form a representing
the inner energy of the bodies and with the linear form b representing the
work of the applied forces t

p and f
p, respectively. The sublinear functional j

represents the work of friction forces

j(v) =

s
∑

p=1

∫

Γ p
c

gp‖vp
t ‖ ds,

where v
p
t is the projection of the displacement v

p on the plane tangential
to the unit outer normal vector to Γ p

c denoted by νp ∈ (L∞(Γ p
c ))3. Let us

introduce unit tangential vectors t
p
1, t

p
2 ∈ (L∞(Γ p

c ))3 such that the triplet
B = {νp(x), tp

1(x), tp
2(x)} is an orthonormal basis in IR3 for almost all x ∈ Γ p

c

and denote vp
t1 = v

p · tp
1, vp

t2 = v
p · tp

2. Then v
p
t = (0, vp

t1 , v
p
t2) with respect to

the basis B so that the norm appearing in j reduces to the Euclidean norm
in IR2. More details about the formulation of contact problems can be found
in Hlaváček et al. [1988].

The Lagrangian L : V × Λt × Λn −→ IR of the problem (P) is defined by

L(v, µt, µn) =
1

2
a(v,v) − b(v) +

s
∑

p=1

∫

Γ p
c

µ
p
t · vp

t ds +

s
∑

p=1

〈µp
n, vp

n − δp〉Γ p
c
,

where

Λt = {µt = (µ1
t , . . . , µ

s
t ) ∈

s
∏

p=1

(L∞(Γ p
c ))2 : ‖µp

t ‖ ≤ gp, µp
t = (µp

t1 , µ
p
t2)},

Λn = {µn = (µ1
n, . . . , µs

n) ∈

s
∏

p=1

H−1/2(Γ p
c ) : µp

n ≥ 0}

and 〈·, ·〉Γ p
c

denotes the duality pairing between H−1/2(Γ p
c ) and H1/2(Γ p

c ).
The Lagrange multipliers µt, µn are considered as functionals on the

contact parts of the boundaries. While the first one accounts for the non-
penetration condition, the second one removes the non-differentiability of the
sublinear functional as

j(v) = sup
µt∈Λt

s
∑

p=1

∫

Γ p
c

µ
p
t · v

p
t ds, v ∈ V.

Thus the problem (P) can be replaced by the saddle-point problem as

min
v∈K

J (v) = min
v∈V

sup
(µt,µn)∈Λt×Λn

L(v, µt, µn).
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By the mixed formulation of the problem (P), we mean a problem of finding
a saddle-point of the Lagrangian L:

(M)































































Find (u, λt, λn) ∈ V × Λt × Λn such that

a(u,v) = b(v) −

s
∑

p=1

∫

Γ p
c

λ
p
t · vp

t ds −

s
∑

p=1

〈λp
n, vp

n〉Γ p
c
, ∀v ∈ V

s
∑

p=1

∫

Γ p
c

(λp
t − µ

p
t ) · u

p
t ds +

s
∑

p=1

〈λp
n − µp

n, up
n − δp〉Γ p

c
≤ 0,

∀(µt, µn) ∈ Λt × Λn.

It is well-known that there is a unique saddle-point (u, λt, λn) and its first
component u solves the problem (P).

Let us point out that the solution u ≡ u(g) of (P) depends on a particular
choice of g ∈ L∞(Γc), g ≥ 0. We can define a mapping Φ which associates with
every g the product F (−Tν(u(g))), where Tν(u(g)) ≤ 0 is the normal contact
stress related to u(g). The classical Coulomb’s law of friction corresponds to
the fixed point of Φ which is defined by g = F (−Tν(u(g))). To find it, we can
use the method of successive approximations which starts from a given g(0)

and generates the iterations g(l) by

(MSA) g(l+1) = Φ(g(l)), l = 1, 2, . . . .

This iterative process converges provided Φ is contractive, that is guaranteed
for sufficiently small F (see Haslinger [1983]).

3 Discretizations

We shall discretize the contact problem with given friction by means of one
of the following two approximations.

Approximation I is based on the finite element method applied to the primal
formulation (P). We divide the bodies Ωp into tetrahedron finite elements T
with the maximum diameter h and assume that the partitions are regular and
consistent with the decompositions of ∂Ωp into Γ p

u , Γ p
t and Γ p

c . Moreover, we
restrict ourselves to the geometrical conforming situation where the intersec-
tion between the boundaries of any two different bodies ∂Ωp ∩ ∂Ωq, p 6= q, is
either empty, a vertex, an entire edge, or an entire face. On the partitions, we
introduce the finite element subspace of V by

Vh = V 1
h × · · · × V s

h

with
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V p
h = {vp ∈ (C(Ωp))3 : vp|T ∈ (P1(T ))3 for all T ⊂ Ωp},

where Pm(T ) denotes the set of all polynomials on T of degree ≤ m. Replacing
V by Vh, we can rewrite the approximative primal formulation (P) into an
algebraic form. Then we can proceed to the dual formulation introducing
the algebraic mixed formulation (analogously to the continuous setting) and
eliminating the primal variables (displacements).

Approximation II is based on the mixed finite element method applied to the
mixed formulation (M). The space V is approximated by the same Vh as in
Approximation I. In addition, to approximate the sets Λt and Λn, we introduce
regular partitions of Γ p

c formed by rectangles R with the maximum diameter
H . Let us point out that this partitions are independent on the partitions of
Ωp used for the approximation of V . Let us define

Λp
H = {λp ∈ L2(Γ p

c ) : λp|R ∈ P0(R) for all R ⊂ Γ p
c }.

Repleacing L∞(Γ p
c ) and H−1/2(Γ p

c ) by Λp
H in the definitions of Λt and Λn, we

obtain their approximations Λt,H and Λn,H , respectively. The approximative
mixed formulation (M) can be reduced again to the dual formulation elimi-
nating the primal variables. If the partitions of Γ p

c are defined by restrictions
of the partitions of the bodies Ωp then we obtain a variant of the so called
mortar method, see Krause and Wohlmuth [2002].

The dual formulations arising from both Approximation I and Approxima-

tion II are represented by the quadratic programming problems of the same
type:

(D) min Θ(λ) s.t. λ ∈ Λ and R
⊤(f − B

⊤λ) = 0,

with

Θ(λ) =
1

2
λ⊤

BK
†
B

⊤λ − λ⊤(BK
†
f − c),

Λ = {λ = (λ⊤
t1 , λ

⊤
t2 , λ

⊤
n )⊤ : ‖((λt1)k, (λt2)k)‖ ≤ gk, λn ≥ 0},

B =





N

T1

T2



 , c =





d

0

0



 .

Here, K
† denotes a generalized inverse to the symmetric positive semidefi-

nite stiffness matrix K = diag(K1, . . . ,Ks), R is the full rank matrix whose
columns span the kernel of K, the full rank matrices N,T1,T2 describe pro-
jections of displacements at the nodes lying on Γc to the normal and tangential
directions, respectively, f represents the nodal forces, d is the vector of dis-
tances between the bodies and gk are the values of the slip bound at the
contact nodes. The difference between Approximation I and Approximation II

consists in the different contents of B and c.
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The minimized functional in (D) is strictly convex and quadratic but the
feasible set contains the non-linear constraints ‖((λt1)k, (λt2)k)‖ ≤ gk. This
constraints can be treated by the method described in Haslinger et al. [2003]
so that the efficient algorithm based on the augmented Lagrangian (see Dostál
et al. [2003]) can be applied.

The advantage of Approximation II is that the number of the dual vari-
ables is lower compared with Approximation I , i.e. the size of the problem (D)
is considerably reduced. This happens if H/h > 1, i.e. if the partitions of Γ p

c

used for the definitions of Λp
H are coarser than the partitions of the bodies Ωp

restricted to Γ p
c . The coarser partitions are related to the satisfaction of the

Ladyzhenskaya–Babuška–Brezzi condition that guarantees the existence and
the uniquenees of the solution. For our particular choice of the spaces, this
condition is satisfied if the ratio H/h is sufficiently large (see Haslinger and
Hlaváček [1982]). On the other hand, the ratio H/h should not be too large
in order to avoid violation of the non-penetration condition that is satisfied
in the weak sense only.

The method of successive approximation (MSA) can be implemented so
that the problem (D) is solved to evaluate the mapping Φ. We shall use a more
efficient version of this method, in which two outer loops (i.e. the iterative
steps of (MSA) and the outer loop of the algorithm for solving (D)) can be
connected in one loop. The resulting algorithm can be viewed as the method
of successive approximation with an inexact solving of the auxiliary problems
with given friction.

4 Numerical experiments and conclusions

Let us consider two bricks Ω1 and Ω2 as in Figure 1 made of an elas-
tic isotropic, homogeneous material characterized by Young modulus E =
21.2× 1010 and Poisson’s ratio σ = 0.277 (steel). The brick Ω1 is unilaterally
supported by the rigid foundation Ω0. The applied surface tractions are in
Figure 1, the volume forces vanish. Both contact interfaces Γ 1

c = Ω0 ∩ Ω1

and Γ 2
c = Ω1 ∩ Ω2 are partitioned by two meshes as in Figure 2. The mesh

defined by restriction of the partitions of the bodies Ω1 and Ω2 is triangular
(dotted) while the mesh used for approximation of the Lagrange multipliers is
rectangular (solid). Let us point that the meshes on the interfaces do match
for the sake of simple implementation of the model problem. Our method can
be applied directly to the problems with nonmathing meshes.

Table 1 compares behaviour of our algorithm for Approximation I and
Approxiamtion II with H/h = 2, 4. All computations are carried out with
12150 primal variables while the number of the dual variables nd is different.
From the results, we conclude that the performance of the algorithm is not
too sensitive to the value of the coefficient of fricrion and the efficiency of our
algorithm is comparable to solving of the linear problems. Approximation II

reduces the size of the dual problem nd with relatively minor effect on the
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Fig. 1. The model problem with two loaded bodies.

supp φj

supp ψi

Fig. 2. The meshes on Γ 2

c for H/h = 2 and the supports of FEM basis functions.

Table 1. Iter denotes the number of outer iterations; Cg is the total number of the
conjugate gradient steps; err is the relative error.

Approx. I Approx. II

nd = 2592 H/h = 2, nd = 576 H/h = 4, nd = 144

F Iter Cg Iter Cg err Iter Cg err

0.001 24 373 32 299 0.0100 23 147 0.0178

0.01 22 332 26 291 0.0102 16 114 0.0175

0.1 19 331 20 315 0.0120 19 137 0.0147

1 21 931 21 711 0.0078 24 242 0.0104

10 16 229 26 213 0.0206 16 117 0.0413



376 Radek Kučera, Jaroslav Haslinger, and Zdeněk Dostál

solutions compared by err = ‖uII − uI‖/‖uI‖, where uI and uII are results
of Approximation I and Approximation II, respectively.

Using auxiliary decomposition, results on natural coarse space projections
(see Mandel and Tezaur [1996], Klawonn and Widlund [2001]) and quadratic
programming (see Dostál and Schöberl [2003], Dostál [2003]), it is possible to
show that our algorithm for the problem with given friction is scalable.
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