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Summary. We present iterative subdomain methods based on a domain decom-
position approach to solve the coupled Stokes/Darcy problem using finite elements.
The dependence of the convergence rate on the grid parameter h and on the physical
data is discussed; some difficulties encountered when applying the algorithms are
indicated together with possible improvement strategies.

1 Introduction and problem setting

The simulation of incompressible flows in heterogenous media is an interest-
ing topic with many applications: considering the particular case of free fluids
which can filtrate through porous media, we recall for example the hydrolog-
ical environmental applications and mass transfer in biomechanics.

The Stokes/Darcy coupled system provides a linear model to describe such
phenomena. We consider a bounded domain Ω ⊂ R

d (d = 2, 3) formed by two
non-overlapping subdomains Ωf and Ωp separated by a surface Γ = Ωf ∩Ωp.
Ωf is the region occupied by the fluid whose motion is described by the Stokes
equations which can be written in adimensional form as:

−Re−1
f △uf + ∇pf = f

∇ · uf = 0
in Ωf , (1)

where uf and pf are the adimensional velocity and pressure, respectively,
while Ref is the Reynolds number defined as Ref = LfUf/ν, ν > 0 being
the fluid kinematic viscosity and Lf , Uf a characteristic length and velocity,
respectively.

The filtration through the porous region Ωp is modeled using Darcy’s
equations, whose adimensional form reads:

up = −εRep∇pp

∇ · up = 0
in Ωp, (2)
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where up and pp are the adimensional fluid velocity and pressure, respectively,
Rep is the Reynolds number Rep = δpUp/ν, Up being a characteristic velocity
through the porous medium and δp a characteristic pore size. Finally, ε =
δp/Lp is the adimensional ratio between the micro and the macro scales in
Ωp.

Across the interface Γ the continuity of normal stresses and fluxes is re-
quired; precisely, we impose:

uf · n = up · n
−n · T(uf , pf ) · n = pp

−τ j · T(uf , pf ) · n = αuf · τ j

on Γ (3)

where T(uf , pf) is the stress tensor, n is the unit normal outward vector to
∂Ωf and τ j ·n = 0 (j = 1, . . . , d− 1); α is a dimensionless coefficient depend-
ing essentially on ν and the hydraulic conductivity of the porous medium. For
an extensive discussion about these coupling conditions we refer to Discac-
ciati et al. [2002], Jäger and Mikelić [1996], Layton et al. [2003], Payne and
Straughan [1998].

The mathematical analysis of the coupled problem has been addressed in
previous works concerning both the continuous case and the finite element
approximation (see Discacciati and Quarteroni [2003], Layton et al. [2003]).

In order to solve the coupled problem, an iterative substructuring method
was proposed and analyzed in Discacciati and Quarteroni [2004]. Here, we test
it on a model problem in order to investigate its effectiveness and robustness,
with particular emphasis on the role that physical and grid parameters play on
the convergence properties. We consider the computational domain Ω ⊂ R

2,
with Ωf = (0, 1)×(1, 2), Ωp = (0, 1)2 and interface Γ = (0, 1)×{1}. We rewrite
Darcy’s equation as −∇ · (εRep∇pp) = 0 in Ωp, and consider the following
analytic solution: uf = (y2−2y+1, x2−x)T , pf = 2(x+y−1)/Ref+1/(3εRep)
and pp = (x(1 − x)(y − 1) + y3/3 − y2 + y)/(εRep) + 2x/Ref .

Concerning the finite element discretization, P2−P1 Taylor-Hood elements
have been used for Stokes equations, while P2 Lagrangian elements have been
adopted for Darcy’s problem. All the computational meshes are conforming
on Γ .

2 Dirichlet-Neumann (DN) methods

Considering the interface conditions (3)1 and (3)2, we can choose as scalar
interface variable λ either λ = uf · n on Γ or λ = pp on Γ . These two choices
define two different DN-type methods, which can be outlined as follows, re-
spectively:

Algorithm DN1

0. choose λ = uf · n on Γ and an initial guess λ(0) on Γ ;
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For k = 0, 1, . . . until convergence, Do

1. solve Darcy’s equation with b.c. −εRep∇p
(k+1)
p · n = λ(k) on Γ ;

2. solve Stokes problem with b.c. −n·T(u
(k+1)
f , p

(k+1)
f )·n = p

(k+1)
p and

(3)3 on Γ;

3. λ(k+1) = θu
(k+1)
f · n + (1 − θ)λ(k) on Γ , θ ∈ (0, 1) ;

End For

Algorithm DN2

0. choose λ = pp on Γ and an initial guess λ(0) on Γ ;

For k = 0, 1, . . . until convergence, Do

1. solve Stokes problem with b.c. −n · T(u
(k+1)
f , p

(k+1)
f ) · n = λ(k) and

(3)3 on Γ;

2. solve Darcy’s equation with b.c. −εRep∇p
(k+1)
p · n = u

(k+1)
f · n on

Γ ;

3. λ(k+1) = θp
(k+1)
p + (1 − θ)λ(k) on Γ , θ ∈ (0, 1) ;

End For

The two DN methods are equivalent to preconditioned Richardson meth-
ods to solve the symmetric Steklov-Poincaré equations associated to the cou-
pled problem, and they allow to characterize optimal preconditioners for
Krylov type methods (e.g. the Conjugate Gradient) for the corresponding
interface problems (see Discacciati and Quarteroni [2004]).

2.1 Numerical results

We consider Ref = 1, εRep = 1 and tol = 10−5; in Table 1 we report the num-
ber of iterations for both the Richardson and the Preconditioned Conjugate
Gradient (PCG) method. These convergence results are satisfactory as they
show the optimality of the preconditioners with respect to the grid parameter
h.

Number of DN1 PCG DN2 PCG
mesh elements (θ = 0.7) λ = uf · n (θ = 0.7) λ = pp

172 9 4 10 4
688 9 4 10 4
2752 9 4 10 4
11008 9 4 10 4

Table 1. Number of iterations on different grids with Ref = 1 and εRep = 1

However, if the fluid viscosity and the hydraulic conductivity decrease,
small relaxation parameters θ must be adopted to guarantee convergence, in



566 Marco Discacciati

accordance with the theoretical estimate of the upper bound θmax given in
Discacciati and Quarteroni [2004]. Unfortunately, in some cases θ should be
so small that in practice it prevents the numerical scheme from converging.
To quote an example, if Ref = 103 and εRep = 10−2, then θ should be
unreasonably small (smaller than 10−4 !) in DN1 to prevent divergence.

This difficulty should not be ascribed to the non-optimal choice of the
relaxation parameter θ. In fact, if we apply the PCG method which embeds
the choice of the optimal acceleration parameter (see, e.g., Quarteroni et al.
[2000] p. 150), the iterative algorithm converges, but the optimal properties
of the preconditioners are lost, since the number of iterations depends on the
mesh parameter h, as reported in Table 2.

Mesh elements PCG iterations (λ = uf · n)

688 82
2752 102
11008 148

Table 2. Number of iterations on different grids with Ref = 103 and εRep = 10−2

On the basis of the numerical results we have obtained we can conclude
that DN methods are effective only when the ratio Ref/(εRep) is sufficiently
small, while dealing with large values causes some difficulties. However, the
latter are the very values of interest in real-life applications and, therefore, a
robust numerical method is required.

3 Dirichlet-Neumann for a time-dependent problem

We introduce a formal argument to better understand the results obtained
in Sect. 2.1 and to set up a more effective numerical scheme. This approach
will be treated from a precise mathematical viewpoint in a forthcoming work
Discacciati [2004].

The underlying idea is that our difficulties in solving the Stokes/Darcy
problem may come from the different structure of equations (1)1 and (2)1,
which become even more dissimilar when Ref ≫ 1 and εRep ≪ 1. In fact, in
that case, under the physically reasonable hypothesis that △uf and ∇pp are
sufficiently small, (1)1 reduces almost to CfI + ∇pf = f , while (2)1 becomes
up+CpI = 0, where Cf and Cp denote two positive constants ≪ 1. We rewrite
(2)1 as

(εRep)
−1up + ∇pp = 0 in Ωp , (4)

and formally comparing (4) to (1)1, we are led to modify the latter by adding
a mass term like (εRep)

−1up as follows:
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β(εRep)
−1uf − Re−1

f △uf + ∇pf = f̃ , β ∈ R
+ , (5)

possibly with a consequent modification of the right hand side (see Remark
1) that we have denoted by f̃ . In this way we obtain a generalized Stokes
momentum equation, and note that now (5) has the same behaviour of (4) in
the cases of our interest, that is when Ref ≫ 1 and εRep ≪ 1.

We expect that the mass term β(εRep)
−1uf would help improving the

positivity of the discrete Steklov-Poincaré operator which acts as a precondi-
tioner in the DN1 method. With this aim, we have carried out some numerical
tests using the PCG algorithm with λ = uf · n as interface variable to solve
the modified problem (2), (5). The convergence results reported in Table 3
show that the numerical scheme has really improved.

Ref εRep β Iterations on the mesh with
688 el. 2752 el. 11008 el.

0.1 17 14 13
103 10−2 1 10 9 7

10 5 5 4

0.1 19 21 19
106 10−4 1 11 10 10

10 5 5 4

Table 3. Number of iterations to solve problem (2), (5) for different values of Ref ,
εRep and β

Remark 1. Equation (5) can be regarded as a discretization in time of the
time-dependent Stokes momentum equation ∂tuf − Re−1

f △uf + ∇pf = f in
Ωf . Precisely, if we consider

β(εRep)
−1uf,n+1 − Re−1

f △uf,n+1 + ∇pf,n+1 = f̃n+1 n ≥ 0

with f̃n+1 = f(x, tn+1)+β(εRep)
−1uf,n, we have a backward Euler discretiza-

tion in time with β(εRep)
−1 playing the role of the inverse of a time step.

From the physical viewpoint, since the fluid velocities in Ωf are much
higher than the ones through the porous medium (see Ene and Sanchez-
Palencia [1975]), a time-dependent model better represents the phenomena
occurring during the filtration process.

3.1 The tDN algorithm

Let [0, T ] be a characteristic time interval; using for the sake of simplicity
the first-order backward Euler scheme, denoting by ∆t > 0 the time step and
N = T/∆t, the iterative method that we propose to solve the time-dependent
coupled problem reads (the subscript n refers to the nth time level):
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Algorithm tDN

For n = 0, . . . , N − 1 Do

0. choose an initial guess λ
(0)
n+1 for the normal velocity on Γ at

the (n + 1)th time level;

For k = 0, 1, . . . until convergence, Do

1. solve Darcy’s equation with b.c. −εRep∇p
(k+1)
p,n+1 · n = λ

(k)
n+1 on Γ ;

2. solve Stokes problem

(∆t)−1u
(k+1)
f,n+1 − Re−1

f △u
(k+1)
f,n+1 + ∇p

(k+1)
f,n+1 = (∆t)−1uf,n + fn+1

∇ · u
(k+1)
f,n+1 = 0

in Ωf

with b.c. −n · T(u
(k+1)
f,n+1, p

(k+1)
f,n+1) · n = p

(k+1)
p,n+1 and (3)3 on Γ ;

3. λ
(k+1)
n+1 = θu

(k+1)
f,n+1 · n + (1 − θ)λ

(k)
n+1 on Γ , θ ∈ (0, 1) ;

End For

End For

3.2 Numerical tests

We consider the horizontal section of a channel 12 m long and 8 m wide which
is partially occupied by a porous medium with discontinuous conductivity, as
represented in Fig. 1 (left). A parabolic inflow profile is imposed on the left
hand side boundary with maximal velocity equal to 0.1m/s. On the right
an outflow condition is imposed. The time interval is t ∈ [0, 0.5] and the
time step ∆t = 10−3 s; for space discretization three different computational
meshes have been adopted.

In a first case we have considered Ref = 8 · 105 and a discontinuous

coefficient εRep = 10−3 in Ω
(1)
p , εRep = 10−7 in Ω

(2)
p .

In Fig. 1 (right) we have represented the computed solution at time t =
0.05 s, while in Fig. 2 a zoom of the velocity field through the porous medium is
shown; it can be seen that the velocity is almost null in the less permeable areas
of the porous medium. Finally, Table 4 (left) reports the number of iterations
obtained for three computational grids at different time levels, showing that
the number of iterations is low and independent of h.

The same test has been performed considering different values of the pa-

rameters: Ref = 8 · 102, εRep = 10−1 in Ω
(1)
p and εRep = 10−5 in the less

permeable part of the porous medium Ω
(2)
p . The convergence results show that

the number of iterations is essentially independent of these parameters, as it
can be seen comparing the previous convergence results with those reported
in Table 4 (right).
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Fig. 1. Computational domain (left) and computed velocity field at t = 0.05 s
(right)
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Fig. 2. Zoom of the velocity field through the porous medium

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 21 21 21
0.003 20 19 19
0.006 12 11 11
0.009 10 10 10
0.01 10 10 10

Time Iterations on the mesh with
level 232 el. 928 el. 3712 el.

0.001 22 22 22
0.003 20 20 20
0.006 15 15 15
0.009 15 15 15
0.01 15 15 15

Table 4. Number of iterations on different grids with Ref = 8 · 105, εRep = 10−3

and 10−7 (left); with Ref = 8 · 102, εRep = 10−1 and 10−5 (right)

4 Conclusions and perspectives

Numerical results show that considering a time-dependent problem allows to
set up a far more efficient DN algorithm for problems with parameters in
a range of physical interest. However, as we have shown, the value of ∆t
generally depends on εRep and Ref , and in some cases we could be forced to
consider very small time steps ∆t ≪ 1. This could be quite annoying since one
might be interested in considering long time scales, for example in modeling
the filtration of pollutants in groundwater.
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This limitation on ∆t drives us to reconsider the steady coupled model. In
fact, should we find an algorithm whose behaviour were as much as possible
independent of the physical parameters, then not only we would be able to
solve the steady problem itself, but we could also use it in the framework of the
time-dependent model where ∆t would be chosen under the sole requirements
of stability and accuracy. A possible approach we are currently considering is
a Robin-Robin type method following the ideas presented in Lube et al. [2001]
for Oseen equations; its analysis and numerical results will be presented in a
future work.
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