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Summary. In this paper we study the parallel performance of some nonlinear addi-
tive Schwarz preconditioned inexact Newton methods for solving large sparse system
of nonlinear equations arising from the discretization of partial differential equations.
The main idea of nonlinear preconditioning is to replace an ill-conditioned nonlinear
system by an equivalent nonlinear system that has more balanced nonlinearities.
In addition to balance the nonlinearities through nonlinear preconditioning, we also
need to make sure that the multilayered iterative solver is scalable with respect to
the number of processors. We focus on some two-level nonlinear additive Schwarz
preconditioners, and show numerically that these two-level methods can reduce the
nonlinearities and at the same time maintain the parallel scalability. Parallel numer-
ical results for some high Reynolds number incompressible Navier-Stokes equations
will be presented.

1 Introduction

We study Newton type algorithms for solving a nonlinear system of equations

F (u∗) = 0, (1)

starting from an initial guess u(0) ∈ ℜn. Here F = (F1, . . . , Fn)T , Fi =
Fi(u1, . . . , un) are given functions which are often the result of the discretiza-
tion of some nonlinear partial differential equations, such as the incompressible
Navier-Stokes equations for fluid flows, using finite element or finite differ-
ence methods. For such nonlinear systems, some parallel nonlinear additive
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Schwarz preconditioned inexact Newton methods (ASPIN) were recently pro-
posed in Cai and Keyes [2002], and Cai et al. [2002]. ASPIN has been applied
successfully to some rather difficult problems such as the transonic full poten-
tial flows (Cai et al. [2000]), and the high Reynolds number incompressible
Navier-Stokes flows (Hwang and Cai [2003b]) and (Hwang and Cai [2003a]).
In this paper we compare the parallel performance of a one-level method (Cai
and Keyes [2002]), a two-level method (Cai et al. [2002]), and a slightly modi-
fied two-level method to be presented in this paper. In the modified two-level
method, the initial guess u(0) is replaced by a fine grid interpolation of the
coarse grid solution. It turns out in some situations that the small modifi-
cation has some major impact on the overall performance of the algorithm.
The focus of this paper is on the linear and nonlinear scalability issues of
the methods, and our discussions will be based on the numerical results for
solving some high Reynolds number incompressible Navier-Stokes equations
on distributed memory parallel computers with modest number of processors.

2 Algorithm description

In the rest of the paper we shall refer to the nonlinear algebraic system (1)
as the fine grid system, or simply the fine system, which has n unknowns and
n equations. In order to introduce the two-level algorithm, we assume that
there is a “coarse” version of (1) in the following form

F c(uc
∗
) = 0, (2)

which is a nonlinear algebraic system with nc unknowns and nc equations.
Usually nc << n. Such a coarse system can be obtained by the discretization of
the same differential equations on a coarser grid. The coarse and fine functions
F (u) and F c(uc) approximate each other in certain sense.

Inexact Newton algorithms (IN) (Eisenstat and Walker [1994]) are com-
monly used for solving such systems. In this paper, we work in the framework
of nonlinearly preconditioned inexact Newton algorithms (PIN) recently in-
troduced in (Cai and Keyes [2002]). In other words, we try to find the solution
u∗ of equation (1) by solving an equivalent system of nonlinear equations

F(u∗) = 0. (3)

(1) and (3) are equivalent in the sense that they have the same solution.
Other than having the same solution, the nonlinear functions F ( ) and F( )
may have completely different forms. We will define the function F using
the restriction of F on subspaces, and the coarse function F c in the case of
multilevel methods.

2.1 A one-level method

We first introduce the subspaces by an overlapping partition of S = (1, . . . , n),
which is an index set for the system (1); i.e. one integer for each unknown
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ui and Fi. We assume that S1, . . . , SN is a partition of S in the sense that
⋃N

i=1 Si = S, and Si ⊂ S. Here we allow the subsets to have overlap. Let ni be

the dimension of Si; then, in general,
∑N

i=1 ni ≥ n. Using the partition of S,
we introduce subspaces of ℜn and the corresponding restriction and extension
matrices. For each Si we define Vi ⊂ ℜn as

Vi = {v|v = (v1, . . . , vn)T ∈ ℜn, vk = 0, if k 6∈ Si}

and a n×n restriction (also extension) matrix ISi
whose kth column is either

the kth column of the n × n identity matrix In×n if k ∈ Si or zero if k 6∈ Si.
Using the restriction operator, we define the subdomain nonlinear function as
FSi

= ISi
F. We next define the major component of the algorithm, namely the

nonlinearly preconditioned function. For any given v ∈ ℜn, define Ti(v) ∈ Vi

as the solution of the following subspace nonlinear system

FSi
(v − Ti(v)) = 0,

for i = 1, . . . , N . Taking the sum of the all Tis, we have a new function

F (1)(u) =

N
∑

i=1

Ti(u), (4)

The operators Ti and F (1) were introduced by Dryja and Hackbusch [1997]
in which a version of a nonlinear Richardson method was applied to solve the
nonlinear system corresponding to (4).

Algorithm 1 (ASPIN(1)) Obtain an approximate solution of u∗ by solving

F (1)(u∗) = 0

using the inexact Newton method with u(0) as the initial guess (Cai and Keyes
[2002]).

It is worth to note that under some assumptions it was proven by Dryja
and Hackbusch [1997] and Cai and Keyes [2002] that the local problems have
unique solutions, thus Ti are well defined. It is also shown there that the
Jacobian of the preconditioned system is well defined.

To apply an inexact Newton method to (4) we have to know how to com-
pute the Jacobian of F (1). It is shown in (Cai and Keyes [2002]) that one can
obtain the Jacobian of F (1), denoted by J (1), by the following formula:

J (1)(u) =

N
∑

i=1

J−1
Si

(u − Ti(u)) · J(u),

where J(u) = DF (u) is the Jacobian of the original function F and JSi
(u) =

ISi
J(u)ISi

. In practice since Ti(u) converges to zero, we can assume that a

good approximation of the Jacobian is given by J (1)(u) ≈
∑N

i=1 J−1
Si

(u)J(u),
which is, as a matter of fact, the original Jacobian matrix preconditioned by a
one-level additive Schwarz method, thus it should be well-conditioned as long
as the number of subdomains is not very large.
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2.2 Two two-level methods

Similarly, let Sc = (1, . . . , nc) be an index set for the coarse system, and we
assume that {Sc

1, . . . , S
c
N } is a partition. For simplicity, we partition the fine

and the coarse systems into the same number of subsets. Also for simplicity,
in our parallel implementation, we allocate the subsystems corresponding to
the index sets Si and Sc

i to the same processor. We introduce the subdomain
fine to coarse restriction operator Ri : Si −→ Sc

i , in the sense that for each
vector vi ∈ Vi, there is a unique vector vc

i ∈ V c
i , such that

vc
i = Rivi.

Assuming the Ris are consistent in the overlapping part of the subdomains,
we can define a global fine to coarse restriction operator Rc : ℜn −→ ℜnc

as
follows: For any v ∈ ℜn, the k component of Rcv is defined as

(Rcv)k = (Riv)k, if k ∈ Sc
i .

A global coarse to fine extension operator Ec can be defined as the transpose
of Rc. To define the coarse function T0 : ℜn −→ ℜn, we first introduce a
projection T c : ℜn −→ ℜnc

as follows: For any given v ∈ ℜn, T cv satisfies the
coarse nonlinear system

F c(T c(v)) = RcF (v). (5)

We assume that (5) has a unique solution. Then we define an operator T0 :
ℜn −→ ℜn by

T0(v) = EcT c(v). (6)

Suppose that T0 is given as in (6); it is easy to see that T0(u∗) can be com-
puted without knowing the exact solution u∗ itself. In fact, from (5), we have
T0(u∗) = Ecuc

∗
. Throughout this paper, we assume that the coarse solution uc

∗

is given, through a pre-processing step. We can now introduce a new nonlinear
function ℜn −→ ℜn by

F (2)(u) = T0(u) − T0(u∗) +

N
∑

i=1

Ti(u). (7)

Algorithm 2 (ASPIN(2)) Obtain an approximate solution of u∗ by solving

F (2)(u∗) = 0

using the inexact Newton method with u(0) as the initial guess (Cai et al.
[2002]).

In this paper, we propose a slight modification of the above algorithm in
the selection of the initial guess. The algorithm takes the following form.
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Algorithm 3 (ASPIN(2’)) Obtain an approximate solution of u∗ by solv-
ing

F (2)(u∗) = 0

using the inexact Newton method with T0(u∗) as the initial guess.

No additional cost is needed to switch from the original initial guess u(0)

to T0(u∗) since the vector T0(u∗) is needed anyway in the nonlinear function
evaluation.

3 Numerical studies

We next present some numerical results on a two-dimensional lid driven cavity
flow problem (Hirsch [1990]). Consider the velocity-vorticity formulation of the
incompressible Navier-Stokes equations on the unit square Ω = (0, 1)× (0, 1):



























−∆u −
∂ω

∂y
= 0

−∆v +
∂ω

∂x
= 0

−
1

Re
∆ω + u

∂ω

∂x
+ v

∂ω

∂y
= 0,

(8)

where Re is the Reynolds number, (u, v) is the velocity and ω is the vortic-
ity. The boundary conditions are: u = v = 0 for bottom, left and right, and
u = 1, v = 0 for top. The boundary condition on ω is given by its definition:
ω(x, y) = −∂u

∂y
+ ∂v

∂x
. The usual uniform mesh 5-point finite difference approx-

imation is used to discretize the boundary value problem. Upwinding is used
for the first derivative terms and central differencing for the second deriva-
tive terms. To obtain a nonlinear algebraic system of equations F , we use
natural ordering inside each subdomain, and at each mesh point we arrange
the unknowns in the order of u, v, and ω. The partitioning of F is through
the partitioning of the mesh points in a checkerboard fashion for both the
fine and the coarse grids. The coarse to fine interpolation is defined using the
coarse grid bilinear finite element basis functions. The implementation is done
using PETSc (Balay et al. [2002]), and the results are obtained on an IBM SP
supercomputer. Double precision is used throughout the computations. The
initial guess u(0) is zero for u, v and ω in ASPIN(1) and ASPIN(2). We stop
the global PIN iterations if ‖F(u(k))‖ ≤ 10−10‖F(u(0))‖. The same stopping
condition is used for the coarse grid nonlinear systems, which are solved by
a Newton-Krylov-Schwarz method based on the same mesh partition. The
global Jacobian systems are solved with GMRES restarting at 30. The global
linear iteration for solving the global Jacobian system is stopped if the relative
tolerance ‖F(u(k)) − F

′

(u(k))p(k)‖ ≤ 10−3‖F(u(k))‖ is satisfied. At the kth
global nonlinear iteration, nonlinear subsystems
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Table 1. Varying Reynolds numbers. Fine mesh size 128 × 128, coarse mesh size
32× 32, number of processors 16.

Reynolds global global average linear
number nonlinear linear iteration per

iterations iterations nonlinear step

101 3 112 37
ASPIN(1) 102 4 162 40

103 7 216 30
104 6 156 26

101 4 38 9
ASPIN(2) 102 6 89 14

103 7 99 14
104 22 9517 432

101 3 28 9
ASPIN(2’) 102 4 51 12

103 4 48 12
104 3 40 13

FSi

(

u(k) − g
(k)
i

)

= 0,

have to be solved. We use the standard IN with a cubic line search for such
systems with initial guess g

(k)
i,0 = 0. The local nonlinear iteration in sub-

domain Si is stopped if the following condition is satisfied: ‖FSi
(g

(k)
i,l )‖ ≤

10−3‖FSi
(g

(k)
i,0 )‖.

Table 2. Varying the overlapping size. Reynolds number = 103. Fine mesh size
128× 128, coarse mesh size 32× 32, number of processors 16.

global global average linear
overlap nonlinear linear iteration per

iterations iterations nonlinear step

1 7 216 30
ASPIN(1) 2 6 141 23

4 6 112 18

1 8 167 20
ASPIN(2) 2 8 122 15

4 7 100 14

1 5 62 12
ASPIN(2’) 2 4 46 11

4 4 45 11

We first compare the three ASPIN algorithms for different Reynolds num-
bers. In Tables 1, we report the total number of global nonlinear iterations,
the total number of linear iterations, and the average number of linear itera-
tions per nonlinear iteration. For this particular test problem, the nonlinearity
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is determined mostly by the Reynolds number. As Re increases the nonlin-
ear system becomes more difficult to solve with the regular inexact Newton
method (Cai and Keyes [2002]). However, as shown in Table 1, the numbers
of linear and nonlinear iterations of ASPIN(2’) are not very sensitive to the
increase of Re.

In Table 2, we test the algorithms with different level of overlaps in the
Schwarz preconditioner. It is quite interesting to see that ASPIN(2’) is not
sensitive to this parameter, which is a bit surprising.

To use the two-level algorithms on large number of processors and for large
fine meshes, the coarse grid size has to be sufficiently fine. This leads to some
difficult coarse grid nonlinear systems to solve. Although the coarse problems
are, in general, easier to solve than the fine grid problem but sometimes NKS
may not be good enough to converge the coarse nonlinear iterations. In the
next set of experiments we use an ASPIN(1) coarse solver. That is instead of
solving problem (2) by NKS we solve it using ASPIN(1). The stopping criteria
for the coarse solver and the fine solver are the same.

In Table 3 we present some experiments for ASPIN(2’) on an 1024× 1024
mesh, Reynolds number 104, and the coarse mesh is 64 × 64.

Table 3. ASPIN(2’). Varying the number of processors. Fine mesh size 1024×1024,
coarse mesh size 64× 64, Reynolds number = 104.

processors nonlinear average linear iter. total CPU
# iterations per nonlin. step time (sec)

32 7 34 1377
64 8 32 653
128 8 39 418
256 10 44 374

The results show that both the number of linear and nonlinear iterations are
nearly independent of the number of processors, which is the same as the
number of subdomains. In terms of the CPU time, the algorithm scales well
for up to 128 processors. The CPU time for 256 processors is only slightly
smaller than for 128 processors. We suspect that for large number of proces-

Table 4. Performance of the ASPIN(1) based coarse solver. Fine grid 1024× 1024,
Reynolds number = 104.

processors coarse total CPU coarse CPU percentage
# grid time (sec) time (sec)

32 64× 64 1377 20 1.4 %
64 64× 64 653 19 2.9%
128 64× 64 418 16 3.8%
256 64× 64 374 35 9.3%
256 128× 128 361 155 42.9%
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sors the ASPIN(1) coarse solver becomes less effective. Thus we measure the
computational time the coarse solver takes, and the results are summarized
in Table 4 in which we also report the percentage of time spent on the coarse
solver. It seems that the ASPIN(1) based coarse solver takes much more com-
puting time for large number of processors. Our current approach works fine
for modest number of processors, but for larger number of processors a more
efficient parallel coarse solver is definitely needed.
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