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Summary. Inexact Newton method with backtracking is one of the most popular
techniques for solving large sparse nonlinear systems of equations. The method is
easy to implement, and converges well for many practical problems. However, the
method is not robust. More precisely speaking, the convergence may stagnate for
no obvious reason. In this paper, we extend the recent work of Tuminaro, Walker
and Shadid [2002] on detecting the stagnation of Newton method using the angle
between the Newton direction and the steepest descent direction. We also study a
nonlinear additive Schwarz preconditioned inexact Newton method, and show that
it is numerically more robust. Our discussion will be based on parallel numerical
experiments on solving some high Reynolds numbers steady-state incompressible
Navier-Stokes equations in the velocity-pressure formulation.

1 Introduction

Many computational science and engineering problems require the numerical
solution of large, sparse nonlinear systems of equations. Several classes of ap-
proaches are available, including Newton type methods, multigrid type meth-
ods, and continuation type methods. However, for some difficult problems,
such as incompressible flows with high Reynolds number (Re), none of the
methods works well, except the continuation methods, e.g. parameter contin-
uation Gunzburger [1989] and pseudo time stepping Kelley and Keyes [1998],
which are often too slow to be considered practical. In general, nonlinear it-
erative methods are fragile. They may converge rapidly for a well-selected set
of parameters (for example, certain initial guesses, certain range of Re), but
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diverge if we slightly change some of the parameters. They may converge well
at the beginning of the iterations, then suddenly stall for no apparent reason.
In this paper we develop some techniques for detecting the bad behavior of
Newton method, and focus on a class of nonlinear preconditioning methods
that make Newton more robust; i.e., not too sensitive to some of the unfriendly
parameters such as large Re. The preconditioner is constructed using the non-
linear additive Schwarz method, which not only increases the robustness of
Newton, but also maintains the parallel scalability of the algorithm.

2 A brief review of inexact Newton method

Solving a nonlinear system of equations,

F (x) = 0, (1)

using inexact Newton with backtracking (INB) Eisenstat and Walker [1996]
can be described briefly as

x(k+1) = x(k) − λ(k)s(k),

where λ(k) is the step length computed using a linesearch technique, and s(k)

is a good search direction if a non-zero λ(k) can be found. s(k) is computed,
often from a linearly preconditioned Jacobian equation

M−1
k Js(k) = M−1

k F (x(k)),

where J is a Jacobian of F and M−1
k is a linear preconditioner. It has been

known for a long time that, even with global strategies, INB often stagnates
for many problems. A recent study Tuminaro et al. [2002] shows that this is
likely because the angle between the Newton direction and the steepest descent
direction is too close to π/2. In this case, the Newton direction becomes only a
weak descent direction. As a result, only extremely small steps can be accepted
by linesearch. More precisely, let θ be the angle between s(k) and the negative
gradient direction of ‖F‖ at x(k). Then, according to Tuminaro et al. [2002],
in the worst case,

1

κ(J)
≤ cos(θ) ≤

2

κ(J)
, (2)

where κ(J) is the condition number of J . This means that the Newton direc-
tion can be nearly orthogonal to the gradient of ‖F‖ when κ(J) is large. In the
incompressible Navier-Stokes equations, κ(J) becomes very large when Re is
high or when the mesh size is fine. Estimate (2) also suggests that sometimes
solving the Jacobian system too accurately is not a good idea, even without
considering the issue of computational cost. It might be better to stop the
Jacobian iteration earlier. The following stopping conditions were suggested
in Eisenstat and Walker [1996],

||F (x(k)) − Js(k)||2 ≤ ηk||F (x(k))||2
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• Choice 0: ηk is a constant (not too small)

• Choice 1:

ηk =

∣

∣||F (x(k))||2 − ||F (x(k−1)) − Js(k−1)||2
∣

∣

||F (x(k−1))||2

• Choice 2:

ηk = γ

(

||F (x(k))||2
||F (x(k−1))||2

)α

, γ ∈ [0, 1], α ∈ (1, 2].

INB with these forcing terms is more robust, but is still not enough to solve
the Navier-Stokes equations for a large range of Re because the parameters
in the “choices” are too problem-dependent Shadid et al. [1997]. A closer
look at (2) and its proof in Tuminaro et al. [2002] shows that the linear
preconditioner M−1

k does not appear in the estimate (2), which means that
even though the linear preconditioning may speed up the solution algorithm
for the Jacobian system, it does not help improve the quality of the search
direction. Therefore, to enhance the robustness of Newton method by finding a
better search direction we believe that the preconditioner has to be nonlinear.
An alternative approach to improve the quality of the search direction is based
on the affine invariant Newton methods Deuflhard [1991] using the natural
monotonicity test for highly nonlinear systems.

3 Nonlinear additive Schwarz preconditioning

This section describes a nonlinearly preconditioned inexact Newton algorithm
(ASPIN) Cai and Keyes [2002], Hwang and Cai [2003]. Suppose that F (x) = 0
is a nonlinear system of equations arising from a finite element discretization.
The finite element mesh on Ω is partitioned into non-overlapping subdomains
Ωi, i = 1, . . . , N , then, each subdomain is extended into a larger overlapping
subdomain Ω′

i. Let Ri be a restriction operator on Ω′
i, we define the subdomain

nonlinear function
Fi = RiF.

For any given x ∈ Rn, Ti(x) is defined as the solution of the subspace nonlinear
systems,

Fi

(

x − RT
i Ti(x)

)

= 0, for = 1, ..., N. (3)

Using the subdomain functions, we introduce a new global nonlinear system

F(x) =

N
∑

i=1

RT
i Ti(x) = 0, (4)

which we refer to as the nonlinear additive Schwarz preconditioned system.
Then, ASPIN algorithm is defined as: find a solution of (1) by solving
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F(x) = 0,

with INB, starting with an initial guess x(0). As shown in Cai and Keyes
[2002], Hwang and Cai [2003], an approximation of the Jacobian of F takes

the form
∑N

i=1 J−1
i J . Through nonlinear preconditioning, we have:

• an improved angle estimate

1

κ(
∑N

i=1 J−1
i J)

≤ cos(θ) ≤
2

κ(
∑N

i=1 J−1
i J)

; and

• an improved conditioning of the Jacobian system

(

N
∑

i=1

J−1
i J

)

s(k) = F(x(k)); and

• an improved merit function ‖F‖2/2 for the linesearch.

4 Stabilized finite element method for incompressible

Navier-Stokes equations in the primitive variable

Consider two-dimensional steady-state incompressible Navier-Stokes equa-
tions in the primitive variable form Gunzburger [1989], Reddy and Gartling
[2000]:







u · ∇u − 2ν∇ · ǫ(u) + ∇p = 0 in Ω,
∇ · u = 0 in Ω,
u = g on Γ,

(5)

where u is the velocity, p is the pressure, ν = 1/Re is the dynamic viscosity,
and ǫ(u) = 1/2(∇u + (∇u)T ) is the symmetric part of the velocity gradient.
The pressure p is determined up to a constant. To make p unique, we impose
an additional condition

∫

Ω
p dx = 0.

To discretize (5), we use a stabilized Q1−Q1 finite element method (Franca
and Frey [1992]). For simplicity, we consider only rectangular bilinear mesh
Th = {K}. Let V h and P h be a pair of finite element spaces for the velocity
and pressure, given by

V h = {v ∈ (C0(Ω) ∩ H1(Ω))2 : v |K ∈ Q1(K)2, K ∈ Th }

P h = {p ∈ C0(Ω) ∩ L2(Ω) : p|K ∈ Q1(K), K ∈ Th}.

The weighting and trial velocity function spaces V h
0 and V h

g are

V h
0 = {v ∈ V h : v = 0 on Γ} and V h

g = {v ∈ V h : v = g on Γ}.

Similarly, let the finite element space P h
0 be both the weighting and trial

pressure function spaces:
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P h
0 =

{

p ∈ P h :

∫

Ω

p dx = 0

}

.

Following Franca and Frey [1992], the stabilized finite element method for
steady-state incompressible Navier-Stokes equations reads: Find u

h ∈ V h
g and

ph ∈ P h
0 , such that

B
(

u
h, ph; v , q

)

= 0 ∀(v , q) ∈ V h
0 × P h

0 (6)

with

B(u , p; v , q) = ((∇u) · u , v) + (2νǫ(u), ǫ(v)) − (∇ · v , p) − (∇ · u , q)+
∑

K∈Th

((∇u) · u + ∇p, τ((∇v ) · v −∇q))K + (∇ · u , δ∇ · v)

We use the stability parameters δ and τ suggested in Franca and Frey
[1992]. The stabilized finite element formulation (6) can be written as a non-
linear algebraic system

F (x) = 0, (7)

which is often large, sparse, and highly nonlinear when the value of Reynolds
number is large. A vector x corresponds to the nodal values of u

h = (uh
1 , uh

2)
and ph in (6). Now, we define the subdomain velocity space as

V h
i =

{

vh ∈ V h ∩ (H1(Ω′
i))

2
: vh = 0 on ∂Ω′

i

}

and the subdomain pressure space as

P h
i =

{

ph ∈ P h ∩ L2(Ω′
i) : ph = 0 on ∂Ω′

i\Γ
}

.

Using these subspaces we can define subspace nonlinear problems as in (3).
Note that, implicitly defined in the subspaces V h

i and P h
i , we impose Dirichlet

conditions according to the original equations (5) on the physical boundaries,
and on artificial boundaries, we assume both u = 0 and p = 0. This is similar
to the conditions used in Klawonn and Pavarino [1998].

5 Experimental results

To show the convergence properties of ASPIN and its robustness with respect
to high Reynolds numbers, in this section we consider a lid-driven cavity flow
problem described by (5) on the unit square. We also compare the results with
those obtained using a standard Newton-Krylov-Schwarz algorithm Cai et al.
[1998], which is here referred to as INB. GMRES is used for solving Jacobian
systems. A zero initial guess is used for all test cases, and a constant nonlinear
tolerance 10−6 is used for ASPIN and INB. Other parameters to be studied
are described briefly as follows. Two meshes of size 64 × 64 and 128 × 128
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are considered. Reynolds numbers range from 103 to 104. The subdomains
are obtained by partitioning the mesh uniformly into either a 2×2 or a 4×4
partition. The number of processors is the same as the number of subdomains.
Our parallel software is developed using PETSc of Argonne National Labo-
ratory Balay et al. [2002]. More implementation details and numerical results
are available in Hwang and Cai [2003].

Figure 1 compares the nonlinear residual history of ASPIN with those
of INB with three different choices of forcing terms as described in Section
2. Ten tests are run for Reynolds numbers ranging from 103 to 104, with
an increment of 103. All results are obtained by on a 128×128 mesh using
16(=4×4) processors. We see that nonlinear residuals of INB with all choices
of forcing terms behave similarly. Except for a few cases with low Reynolds
numbers, INB nonlinear residuals stagnate around 10−3 without any progress
after about the first 15 iterations. Different choices of forcing terms do not help
much. On the other hand, ASPIN converges for the whole range of Reynolds
numbers. Furthermore, ASPIN preserves the local quadratic convergence of
Newton when the intermediate solution is near the desired solution.

To understand the robustness of ASPIN and INB, we next compare the
minimum values of cos(θ) for ASPIN and INB with different forcing terms in
Table 1. The values marked with asterisks in the table indicate that INB fails
to converge either after 150 nonlinear iterations, or the backtracking step fails.
For INB, the minimum value of cos(θ) is tiny when INB fails. This agrees well
with estimate (2), since κ(J) is expected to be very large for this high Re. On
the other hand, the minimum value of cos(θ) for ASPIN is always away from
zero and is not sensitive to the change of Re as well as the refinement of the
mesh.

Table 1. Comparison of the minimum values of cos(θ) for ASPIN and INB.

Re = 103 Re = 5× 103 Re = 104

Mesh size: 64× 64

Choice 0 1.68e-03 8.50e-12∗ 6.70e-11∗

Choice 1 4.21e-03 6.22e-08∗ 1.09e-04∗

Choice 2 4.80e-03 4.91e-05∗ 1.54e-04

ASPIN 7.37e-03 1.74e-03 1.82e-03

Mesh size: 128 × 128

Choice 0 8.65e-04 1.97e-07∗ 3.31e-07∗

Choice 1 3.78e-03 3.30e-05∗ 1.82e-08∗

Choice 2 3.33e-03 1.20e-04∗ 9.27e-05∗

ASPIN 2.98e-03 2.94e-03 3.90e-03

Scalability is an important issue in parallel computing and the issue be-
comes significant when we solve large scale problems with many processors.
Table 2 shows that the number of ASPIN iterations does not change much,
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while the average number of GMRES iterations increases when the number
of processors increases from 4 to 16 on a fixed 128×128 mesh. The increase of
GMRES iteration numbers is not unexpected since we do not have a coarse
space in the preconditioner. The number of GMRES iterations can be kept
near a constant if a multilevel ASPIN is used Cai et al. [2002], Marcinkowski
and Cai [2003].

Table 2. Varying the number of processors and the Reynolds number on a 128×128
mesh.

np Re = 103 Re = 5× 103 Re = 104

ASPIN iterations

2× 2 = 4 11 13 19

4× 4 = 16 14 13 20

Average GMRES iterations

2× 2 = 4 67 71 74

4× 4 = 16 128 132 140
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Fig. 1. Nonlinear residual curves of ASPIN and INB with three different forcing
terms. Re ranges from 103 to 104.
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