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Summary. We are interested in a robust and accurate domain decomposition
method with arbitrary interface conditions on non-matching grids using a finite
volume discretization. We introduce transmission operators to take into account the
non-matching grids. Under compatibility assumptions, we have the well-posedness
of the global problem and of the local subproblems with a new discretization of the
arbitrary interface conditions. Then, we give two error estimates in the discrete H1

norm: the first one is in O(h1/2) with L2 orthogonal projections onto piecewise func-
tions along the interface and the second one in O(h) with transmission conditions
based on a linear rebuilding along the interface. Finally, numerical results confirm
the theory. Particular attention is paid to the situation with non matching grids and
highly heterogeneous coefficients both across and inside subdomains. The addition
of a third very thin subdomain between geological blocks is necessary to ensure a
good accuracy.

1 Introduction

The aim of basin modelling is to simulate maturation of source rocks and mi-
gration of oil in sedimentary basins in order to provide quantitative prediction
about phenomena leading to oil accumulations. A sedimentary basin is divided
by faults in several blocks, which are themselves composed of several layers
of different lithology. In order to account for these heterogeneities, the mesh
used in each block follows the stratigraphic layers. Blocks displacement along
faults results in sliding and therefore leads to non matching grids between
two adjacent blocks (eventually between two adjacent layers). Our objective
is to develop numerical methods based on finite volume discretization (as it
is well adapted to multiphase flow modelling), and to handle efficiently non-
matching grids. We work in the context of domain decomposition techniques
which offer a general framework to handle non matching grids.
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As a first simplified model, we consider the following problem in Ω,
bounded polygonal subset of IRd (d = 2, 3):

(η − ∆)(p) = f in Ω and p = 0 on ∂Ω (1)

where η > 0. For the sake of simplicity, we assume that the domain Ω is
divided in two non overlapping subdomains Ωi (i = 1, 2), with grids that do
not match on the interface.
Previous works have shown that Robin or more general interface conditions
in domain decomposition methods ensure robustness and efficiency of the
iterative domain decomposition Faille et al. [2000], Achdou et al. [1999]. A
continuous domain decomposition formulation of (1) reads:

(η − ∆)(pn+1
i ) = f in Ωi and pn+1

i = 0 on ∂Ω ∩ ∂Ωi

∂pn+1

i

∂ni
+ αjp

n+1
i = −

∂pn
j

∂nj
+ αjp

n
j on ∂Ωj ∩ ∂Ωi, i, j = 1, 2 and i 6= j

(2)

where αj > 0. Our aim is to combine this domain decomposition algorithm
with a cell centered finite volume discretization, while satisfying the following
properties. First, the method should be robust enough (at least existence and
uniqueness of the discrete solution). Then it should allow a wide range of
values for Robin coefficients or even more general interface conditions and
it should be accurate enough as our ultimate goal is to consider grids that
do not match between layers. Finally, as sliding blocks are considered, the
discretization in one block should not depend on the grid of the adjacent
block. In the framework of finite volume or mixed finite element method,
several discretization methods for non-matching grids have been developed
Arbogast et al. [1996], Ewing et al. [1991], Achdou et al. [2002],Cautrés et al.
[2000], Aavatsmark et al. [2001] but these methods do not use Robin conditions
or loose finite volume accuracy.

The rest of the paper is organized as follows. In the next section, we de-
scribe the finite volume discretization inside a subdomain. In § 3, we introduce
the transmission operators used to match the unknowns. In § 5, error estimates
are given. In § 6, numerical results are shown. In § 7, discontinuous coefficients
are taken into account.

2 Finite volume discretization

We consider a finite volume admissible mesh Ti associated with each sub-
domain Ωi Eymard et al. [2000] which is a set of closed polygonal subsets
of Ωi such that Ωi = ∪K∈Ti

K and EΩi
is the set of faces of Ti. We shall

use the following notations: Let ǫi be a face of EΩi
located on the boundary

of Ωi, K(ǫi) denotes the control cell K ∈ Ti such that ǫi ∈ K, Ei is the
set of faces of domain Ωi located on the interface, E(K) is the set of faces
of K ∈ Ti, Ei(K) is the set of faces of K ∈ Ti which are on the interface,
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Ni(K) = {K ′ ∈ Ti : K ∩ K ′ ∈ EΩi
} is the set of the control cells adjacent to

K and [K, K ′] denotes the face K ∩ K ′.
We introduce pi

K an approximation of p(xK) (where xK is a point inside the
control cell K), pi

ǫ an approximation of p(yǫ) (where yǫ is the center of the
face ǫ ∈ Ei) and ui

ǫ an approximation of the flux ∂pi

∂ni
(yǫ) outward Ωi through

Ei. Then, not taking into account the Dirichlet boundary condition, a finite
volume scheme for (1) can be defined by the set of equations Eymard et al.
[2000].

ηpi
Km(K) −

∑

K′∈Ni(K)

pi
K′ − pi

K

d(xK′ , xK)
m([K, K ′]) −

∑

ǫ∈Ei(K)

ui
ǫm(ǫ) = F i

K (3)

with ui
ǫ =

pi
ǫ − pi

K

d(yǫ, xK)
for ǫ ∈ Ei (4)

for all control cells K of Ti and where m(A) is the measure of A ⊂ Ω. Dis-
cretized Robin interface conditions or more general interface conditions on Ei

are introduced in the next section.

3 Transmission operators

We introduce the operators Qi : P 0(Ej) 7→ P 0(Ei) (i, j = 1, 2 i 6= j) where
P 0(Ei) is the space of piecewise constant functions on Ei.
Assumption 1 Operators Q1 and Q2 are transposed of each other for the
standard L2 scalar product.

Method Constant The first type of transmission operators that we consider
are the restrictions on P 0(Ej) of P c

i the L2 orthogonal projection onto P 0(Ei).
They satisfy Assumption 1.

Method Linear The second type of transmission operators uses a linear re-
building to ensure a more accurate transmission than P c

i . We introduce for
i = 1, 2

• the interface grid: E2
i coarsening by a factor 2 of Ei

• P 1
d (E2

i ) discontinuous piecewise linear functions on E2
i .

• interpolation operator Ii : P 0(Ei) 7−→ P 1
d (E2

i ) and its transpose It
i

(w.r.t. the scalar product L2(Γ ), ∀u ∈ P 0(ǫi) and ∀v ∈ P 1(ǫ2i ) <
Ii(u), v >L2(Γ )=< u, It

i (v) >L2(Γ )).
• PL

i L2 orthogonal projection on P 1
d (E2

i )

The definitions of the transmission operators are inspired by previous
works Arbogast et al. [1996] in mixed finite element method:
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Fig. 1. Linear rebuilding and transmission operators

Q1 = It
1P

L
1 (5)

Q2 = PC
2 I1

They satisfy Assumption 1 but are not projections.

4 Interface Conditions

In analogy with Bernardi et al. [1994], transmission operators are used to
write discrete matching conditions ensuring continuity of the solution and of
its normal derivative on the interface:

p2 = Q2(p1) on E2 and u1 = Q1(−u2) on E1 (6)

where pi ∈ P 0(Ei) is the approximate pressure on Ei and ui ∈ P 0(Ei) is the
approximate flux outward Ωi on Ei (pi = (pǫ

i)ǫ∈Ei
and ui = (uǫ

i)ǫ∈Ei
). In mor-

tar terminology Bernardi et al. [1994], domain Ω1 is called the master because
it imposes the pressure and Ω2 is called the slave.
These matching conditions are made compatible with arbitrary interface con-
ditions defined via operators Si : P 0(Ei) 7−→ P 0(Ei) which satisfy
Assumption 2 Si is positive definite
The corresponding interface conditions read:

Q1(S2(Q2(p1))) + u1 = Q1(S2(p2) − u2) (7)

p2 + Q2(S
−1
1 (Q1(u2))) = Q2(p1 − S−1

1 (u1)) (8)

Examples of interface conditions are:

• Discrete Steklov-Poincaré operator (Si = (DtNi)h)
• Robin interface conditions de Si = diag(αi

ǫ), Si = diag(αi
opt)

• optimized of order 1 or 2 (Si tridiagonal)

Lemma 1. Under Assumptions 1 and 2, mortar matching conditions (6 ) and
arbitrary interface conditions (7)-(8) are equivalent.
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5 Error Estimates

It is proved in Saas et al. [2002] that under Assumptions 1 and 2,

• the global problem defined by the set of equations (3)-(4)-(6) is well-posed
and stable.

• the local problem defined in Ω1 by the set of equations (3)-(4)-(7) and the
local problem defined in Ω2 by the set of equations (3)-(4)-(8) are both
well-posed and stable.

Under Assumptions 1 and 2 and additional assumptions on the mesh:
Assumption 3 ∃C > 0 such that ∀ǫ ∈ Ei, diam(ǫ) ≤ Cd(xK(ǫ), yǫ)

1/2

error estimates can be derived

Theorem 1. The H1 discrete norm of the error is in O(h1/2) when the piece-
wise constant projections are used (Qi = P c

i ).
The H1 discrete norm of the error is in O(h) when the linear rebuilding (5)
is used.

6 Numerical Results in the homogeneous case

Numerical tests have been done with the equation in four subdomains:

p − ∆p = x3y2 − 6x2y2 − 2x3 + (1 + x2 + y2)sin(xy) in Ω

p = p0 on ∂Ω

This results have been compared to the analytical solution which is p(x, y) =
x3y2+sin(xy). The domain decomposition method is reformulated with a sub-
structuring method and is solved with a GMRES algorithm. For asymptotic
study, we use an initial non conforming mesh which we refine successively by
a factor 2. We compare different methods TPFA (Two point flux approxima-
tion, see Cautrés et al. [2000]), Ceres (like TPFA but a linear interpolation is
performed in order to have a consistent flux approximation on the interface,
see Faille et al. [1994]), New Cement (Achdou et al. [2002]), Constant and
Linear (§ 3). For all these methods, we take different values for Si = diag(α)
with α = 1 or α = 1/h or α = αopt = 1/h1/2. The numerical solution depends
on the choice of Si only for the New Cement method. Accuracy is given in
figure 2 and iteration counts of the GMRES algorithm in figure 3.

7 Numerical Results in the heterogeneous case

We consider now the problem with discontinuous coefficients

ηp − div(κ∇p) = f in Ω and p = 0 on ∂Ω (9)
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Fig. 2. Slopes: Linear ≃ 1.3; New Cement: (Si = cte: ≃ 1.3), (Si = 1/h1/2: ≃ 0.9),
(Si = 1/h: ≃ 0.6), Constant: ≃ 0.5, TPFA: ≃ 0.5

Fig. 3. Iteration counts for the GMRES algorithm

where η > 0 and κ are highly discontinuous, typically two or three orders of
magnitude, see figure 4. For Test 2 for instance, with a very coarse grid meth-
ods Constant and Linear (see § 3) work very poorly especially compared to
TPFA and Ceres methods. Typically we have the following relative errors: Lin-
ear: 60%, Constant 10%, TPFA 3.2% and Ceres 2%. The errors are computed
thanks to a computation on a very fine mesh since we don’t have analytic
solutions in these cases. Poor results for methods Linear and Constant are
due to the fact that the flux on the interface is a very discontinuous function
whose jumps are located on the jumps of the coefficients on both blocks. In
Ceres and TPFA, a subgrid containing all locations of the jumps of the coeffi-
cients on the interface is involved which is not the case for methods Constant
and Linear. In order to remedy this situation, a very thin third subdomain
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Fig. 4. Heterogeneous media

is introduced between the blocks. The mesh of this additional subdomain
along the interface is the intersection of the grid interfaces of the neighboring
blocks, see figure 5. Methods Constant and Linear are then applied to this
three subdomains case. The improvement is dramatic. The relative errors are
then: Linear: 1.6%, Constant 1.6% (compared to respectively 60% and 10%
in the two-subdomain case).

Fig. 5. Addition of a third subdomain

8 Conclusion

We have introduced matching operators to take into account the non-matching
grids. Under compatibility assumptions, we have the well-posedness of the
global problem and of the local subproblems with a new discretization of the
arbitrary interface conditions. We give two error estimates in the discrete H1

norm: the first one is in O(h1/2) with L2 orthogonal projections onto piecewise
functions along the interface and the second one in O(h) with transmission
conditions based on a linear rebuilding along the interface. The error esti-
mates depend only on the transmission operators, see § 3. But, the numerical
solutions are independent of the interface conditions whose discretizations
are given by (7)-(8). Particular attention was paid to the situation with non
matching grids and highly heterogeneous coefficients both across and inside
subdomains. The addition of a third very thin subdomain between geological
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blocks is necessary to ensure a good accuracy. Extension to a finite element
discretization would be interesting.
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