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Summary. Two techniques are coupled to solve a model problem relative to the
scattering of a 2D time-harmonic electromagnetic wave by an obstacle including an
electrically deep cavity. Both of them are based on a boundary element method. The
first technique uses a domain decomposition procedure to reduce the contribution
of the cavity to a set of equations supported by the aperture. The second one is an
additive Schwarz procedure to solve the problem after the reduction of the cavity.
Numerical results are reported to give an insight into the approach.
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1 Introduction

It is a well-known fact for experts in stealth technology that a cavity residing
in a scatterer can significantly contribute to the Radar Cross Section (RCS).
Because of several difficulties, standard methods cannot be applied to solve
this type of problem. Indeed, the size of the problem and the complexity of the
involved phenomena (diffraction, resonance, etc.) prevent the use of available
methods either direct or fast (like the fast multipole method) or asymptotic
(like physical optics or geometrical theory of diffraction).

Several approaches, based on domain decomposition (DD) or hybrid meth-
ods have already been proposed: finite element-boundary integral (FE-BI) for-
mulations (Jin [1993], Liu and Jin [2003]), multi-methods (Barka et al. [2000])
based on generalized scattering matrices, etc. However, in our opinion, none
of these approaches can be considered as completely satisfactory in general.
Some well-known dispersion deficiencies of FE methods can seriously dam-
age the accuracy of the solution. Similarly, the determination of scattering
matrices can rapidly become unwieldy.

We have investigated two new directions based on BI formulations to en-
hance the solution procedure. The first technique consists in exploiting the
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geometry of the cavity as in (Liu and Jin [2003]) to reduce its contribution
to a set of equations supported only by the aperture. However, to avoid the
dispersion flaws present in FE schemes, we use a BI formulation as well as a
DD method to reduce the computing time and the memory storage. The sec-
ond one is an additive overlapping Schwarz method for solving the equations
on the aperture of the cavity and the rest of the boundary.

2 Nonoverlapping Domain Decomposition Method

2.1 The full problem

The geometrical data of the scattering problem are depicted in Fig. 1. They
are related to a 2D model for the scattering of an electromagnetic wave by
an open-ended thick cavity, indeed a time-harmonic Hz-wave. The scatterer
is endowed with the perfect conducting boundary condition on Γ. The sur-
rounding medium Ω is assumed to be the free-space. The unit normal to Γ
inwardly directed to Ω is denoted by n.

Assuming an implicit time dependence in e−iωt, we are led to solve the
following boundary-value problem (see e.g., Jin [1993])











∆u + k2u = 0 in IR2,

∂nu = 0 on Γ,

lim
|x|→+∞

|x|1/2
(

∂|x|(u − uinc) − ik(u − uinc)
)

= 0.
(1)
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Fig. 1. The full problem. Fig. 2. The decomposition of
the cavity.

2.2 Domain decomposition and problem formulation

The cavity is sliced into N domains Ωi (i = 1, . . . , N) as shown in Fig. 2. The
unbounded part ΩN+1 of this DD of Ω lies outside the cavity. The interfaces
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Σi between the subdomains are sectional surfaces of the cavity. Finally, the
unit normal to the boundary ∂Ωi of Ωi outwardly directed to Ωi is denoted
by ni.

Denoting by ui := u|Ωi
and by Γi the part of ∂Ωi on Γ, we are led to the

following equivalent formulation of problem (1)






∆ui + k2ui = 0 in Ωi,

∂nui = 0 on Γi,

}

for i = 1, . . . , N+1,

lim|x|→+∞ |x|
1/2

(

∂|x|

(

uN+1 − uinc
)

− ik
(

uN+1 − uinc
))

(x) = 0,

(2)

subject to the following matching conditions

ui = ui+1 and ∂niui + ∂ni+1
ui+1 = 0 on Σi, for i = 1, . . . , N. (3)

The most used BI formulations reduce the determination of ui in Ωi to its
Cauchy data λi := ui|∂Ωi

and pi := ∂ni
ui|∂Ωi

(e.g. Jin [1993]). Denoting the
restriction of these Cauchy data to some part of ∂Ωi in an obvious way, we
directly obtain the following relations from the above boundary and matching
conditions

pΓi

i = 0, (4)

λΣi

i = λΣi

i+1 and pΣi

i + pΣi

i+1 = 0. (5)

We use Rumsey’s reactions principle to express the boundary and matching
conditions variationally with testing functions λ′

i and p′i subject to the same
conditions as Cauchy data (4) and (5):

N+1
∑

i=1

∫

∂Ωi

(∂niuiλ
′
i − uip

′
i) ds = 0. (6)

Expressing ui|∂Ωi
and ∂niui|∂Ωi

through their integral representation in
terms of λi and pi, we obtain the following integral equations in a straight-
forward way

N+1
∑

i=1

{

λ
′ T

i p
′ T

i

}

Zi

{

λi

pi

}

=
{

λ
′ T

N+1 p
′ T

N+1

}

U inc. (7)

The integrodifferential operator Zi becomes a complex dense matrix repre-
senting the interactions between the unknowns related to subdomain Ωi once
λi, λ

′

i, pi and p
′

i have been discretized as in (Bendali and Souilah [1994]) for
instance.

Clearly, this variational system has the same structure as the usual ones
associated with a substructuring procedure in FE methods. It yields a linear
system of the type depicted in Fig. 3. A Schur complement procedure, dealing
with one subdomain at a time, can hence be used to reduce the equations rela-
tive to the cavity to a matrix coupling the Cauchy data on the aperture λΣN

N+1

and pΣN

N+1
. The procedure saves computing time and storage in a significant

way.



152 Nolwenn Balin, Abderrahmane Bendali, and Francis Collino

















=

































++
inc

N

N

N

N

UX
X

X

X

X

Z
Z

Z

Z

Z

0

0

0

0

0

0

1

3

2

1

1

3

2

1

Fig. 3. Linear system

2.3 Numerical results

To give an insight into the performance of the method, we consider the CO-
BRA JINA test case. To examine the effect of the exterior structure, we add
a thickness (see Fig. 1) and fix the frequency at 8 GHz.

Figure 4 represents the CPU time necessary to compute the monostatic
RCS for 361 incidences and for several decompositions of the cavity. Splitting
the domain Ω into only two subdomains reduces this CPU time by a quite
good factor of 65%, the optimal number of subdomains being 4 for the case
at hand. Meanwhile the memory storage is reduced by a factor of 60%.
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Fig. 5. Error (L2-norm) on the cur-
rents (dashed line) and RCS (solid
line)

The currents on the external boundary ΓN+1 and the RCS (in m) are
compared to those obtained using the direct solution (Fig. 5). Although the
introduction of Cauchy data on the interfaces induces an error on the currents,
they remain small and do not increase in a significant way with the number
of subdomains.



DD and AS Techniques in the Scattering by a Deep Cavity 153

3 Additive Overlapping Schwarz Method

3.1 Introduction

The Schwarz methods (Lions [1988]) are efficient iterative processes for solv-
ing usual boundary value problems. The principle is to solve only small size
problems in each subdomain in each iteration. We give an adaptation of the
additive version of the Schwarz algorithm (Frommer and Szyld [1999] for ex-
ample) for the problem set on the boundary of ΩN+1, obtained once the cavity
has been reduced, to efficiently deal with its solution.

3.2 Boundary decomposition

We start from a generic problem like the following one

X
′T

BX = X
′T

U (8)

assuming that this system is related to the nodal values X and X
′

of re-
spectively unknown and test functions defined on the boundary Γ. For the
subsequent description, it will be more meaningful to denote the components
of X and X

′

as X(x) and X
′

(x) respectively, x being a node on Γ.
We consider Γi (i = 1, . . . , N) an overlapping decomposition of Γ (Fig. 6)

as well as a partition of unity αi associated with this covering of Γ.
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Fig. 6. Domain decomposition and partition of unity

Starting from this decomposition of the boundary, we can decompose X

as follows
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X(x) =

N
∑

j=1

αj(x)Xj(x), for all node x, Xj = IjX. (9)

Ij is the matrix obtained from the identity matrix I with the same size than
B by removing all the rows corresponding to a node x where αj(x) = 0. Now
expressing the vector with the same size as Xj and whose components are
αj(x)Xj(x) by means of a diagonal matrix still denoted by αj as αjXj, we
can write (9) in the form of a matrix product as follows

X =

N
∑

j=1

I
T
j αjXj. (10)

Inserting (9) in (8) and testing by X
′ T

i αiIi, we are led to

X
′ T

i Bii Xi = X
′ T

i Ui − X
′ T

i

N
∑

j=1

j 6=i

Bij Xj (11)

where
Bij = αiIiBI

T
j αj , Ui = αiIiU. (12)

We can then reconstruct X to show that it solves the following fixed point
problem

X =

N
∑

i=1

αiXi =

N
∑

i=1

αi



B−1
ii

(

Ui −
∑

j 6=i

BijXj

)



 . (13)

This system corresponds to the classical form of the additive Schwarz
algorithm (Frommer and Szyld [1999]). Once derived for a linear system CX =
D, it can be solved by the GMRES algorithm.

3.3 Numerical results

This method has been tested on the COBRA cavity with thin walls at a fre-
quency of 30 GHz. This is known to be a difficult problem for the convergence
of iterative methods.

Distribution of the eigenvalues

Figure 7 depicts the eigenvalues of the matrix of the initial system and those
of the matrix obtained by the Schwarz procedure using a decomposition of
the boundary into 75 patches. All the eigenvalues of the new matrix lie in
the right half plane whereas the initial matrix has an important number of
eigenvalues almost uniformly distributed in a circle centered at zero. It is well-
known that distributions of the eigenvalues of the latter type are the worst
cases relatively to the convergence of iterative methods whereas the former is
much more adapted to this convergence.
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(a) (b)

Fig. 7. Eigenvalues repartition: (a) initial matrix; (b) matrix resulting from the
Schwarz method

Convergence

The results of this method have been compared to those obtained by a SParse
Approximate Inverse (SPAI) preconditioning technique. The Krylov method
which has been used is the GMRES algorithm with a restart every 20 itera-
tions.

Figure 8 represents the norms of the residuals relative to the initial ma-
trix, without any preconditioning and with a SPAI preconditioner and for
the Schwarz procedure. As expected, the Schwarz technique shows a better
convergence rate than the method without the preconditioner. Furthermore,
the convergence rate is almost the same as that one of the SPAI method. It
is worth noting that we have considered a cavity with thin walls, correspond-
ing in fact to an open surface, which is the most unfavourable case for the
convergence of the iterative process, to check its robustness.
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4 Conclusion and forthcoming studies

The solution procedure proposed here has been fully validated in the 2D case
and has efficiently handled several deep cavity problems. Work on extensions
to 3D is currently going on. We have been inspired to do so by a prospective
work in 3D case by M. Fares. The authors would like to acknowledge this
invaluable information as well as the support of CINES which has provided the
possibility in terms of massively parallel platforms to deal with such problems
of really huge size.
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