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Summary. We present overlapping Schwarz methods for the numerical solution
of two model problems of delay PDEs: the heat equation with a fixed delay term,
and the heat equation with a distributed delay in the form of an integral over
the past. We first analyze properties of the solutions of these PDEs and find that
their dynamics is fundamentally different from that of regular time-dependent PDEs
without time delay. We then introduce and study overlapping Schwarz methods of
waveform relaxation type for the two model problems. These methods compute the
local solution in each subdomain over many time-levels before exchanging interface
information to neighboring subdomains. We analyze the effect of the overlap and
derive optimized transmission conditions of Robin type. Finally we illustrate the
theoretical results and convergence estimates with numerical experiments.

1 Introduction

Delay differential equations model physical systems for which the evolution
does not only depend on the present state of the system but also on the past
history. Such models are found, for example, in population dynamics and epi-
demiology, where the delay is due to a gestation or maturation period, or in
numerical control, where the delay arises from the processing in the controller
feedback loop. Delay differential equations have been studied extensively (and
almost exclusively) in the context of ordinary differential equations. An ordi-
nary delay differential equation is an equation of the form

ẏ(t) = F (t, y(t), yt), t ∈ [0, T ], (1)

where yt denotes a function segment extending over a time-interval of length
τ into the past: yt(s) = y(t + s), s ∈ [−τ, 0]. Equation (1) is usually com-
plemented with an initial condition of the type y0(s) = g(s), where g(s) is a
given function over the interval s ∈ [−τ, 0]. A good starting point to study the
analysis and numerical computation of ordinary delay differential equations
is Bellen and Zennaro [2003], and the references therein.
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Delay PDEs are less well understood. They are typically of the form

∂

∂t
u(t, x) = Lu(t, x, u(t,x)) + f(t, x), (2)

where u(t,x) is a function segment, which can extend both in the past and over
some region in space: u(t,x)(v, w) = u(t + v, x + w), (v, w) ∈ [−τ, 0]× [−σ, σ].
Equation (2) has to be completed with boundary conditions and an initial
condition, which, typically, have to be specified over some initial and boundary
regions around the domain of definition of the delay PDE. A set of examples,
illustrating the wide range of existing delay PDE models can be found in Wu
[1996]. A characteristic example from numerical control is the equation

∂u

∂t
= D

∂2u

∂x2
+ v(g(u(t − τ, x)))

∂u

∂x
+ c[f(u(t − τ, x)) − u(t, x)],

which models a furnace used to process metal sheets. Here, u is the temper-
ature distribution in a metal sheet, moving at a velocity v and heated by a
source specified by the function f ; both v and f are dynamically adapted
by a controlling device monitoring the current temperature distribution. The
finite speed of the controller, however, introduces a fixed delay of length τ .
An example from population dynamics is the so-called Britton-model,

∂u

∂t
= D∆u + u(1 − g ⋆ u) with g ⋆ u =

∫ t

t−τ

∫

Ω

g(t − s, x − y)u(s, y) dy ds.

Here, u(t, x) denotes a population density, which evolves through random
migration (modeled by the diffusion term) and reproduction (modeled by the
nonlinear reaction term). The latter involves a convolution operator with a
kernel g(t, x), which models the distributed age-structure dependence of the
evolution and its dependence on the population levels in the neighborhood.

There is little experience with numerical methods for solving delay PDEs.
Zubik-Kowal [2001] and Huang and Vandewalle [2003] analyze the accuracy
and stability of spatial and temporal discretization schemes. Zubik-Kowal and
Vandewalle [1999] analyze the convergence of a waveform relaxation scheme
of Gauss-Seidel and Jacobi type, for solving the discretized problems. In this
paper we present a first analysis of domain decomposition based waveform
relaxation methods for the solution of two model delay PDEs. Waveform re-
laxation schemes using domain decomposition in space for parabolic equations
without delay were introduced in Gander and Stuart [1998] and independently
in Giladi and Keller [2002], and further analyzed in Gander [1998] and Gander
and Zhao [2002], see also the references therein. In those papers, it was shown
that domain decomposition leads to a fundamentally faster convergence rate
than the classical waveform relaxation methods. The performance of these
methods can however still be drastically improved using better transmission
conditions between subdomains, see Gander et al. [1999]. Our goal is to anal-
yse whether such optimization is also possible in the parabolic delay PDE
case.



Schwarz Methods for Time-Delay PDEs 293

The structure of the paper is as follows. In §2 we define two characteristic
models of delay PDEs, and we analyze the stability of the solution of those
problems as a function of the parameters appearing in the model. In §3, we
analyze the performance of the classical overlapping Schwarz waveform re-
laxation method when used as a solver for delay PDEs. An algorithm using
optimized Robin type transmission conditions is studied in §4. Finally, in §5,
the theoretical results are verified by some numerical experiments.

2 Analysis of Delay PDEs

We consider two representative model problems: a PDE with a constant delay
and one with a distributed delay. By analyzing the properties of their solu-
tions, we hope to gain some insight into the behavior of solutions to the more
complex problems introduced in §1. The constant delay PDE is given by

∂u

∂t
=

∂2u

∂x2
+ au(t − τ), with

{

x ∈ R, t ∈ R
+,

a ∈ R, τ ∈ R
+.

(3)

Using separation of variables, we arrive at solutions of the form u(t, x) =
eλt · eikx. The constants λ ∈ C and k ∈ R satisfy the so-called characteristic
equation λ = −k2 + ae−λτ . Separating real and imaginary parts, λ = η + iω,
we obtain the system of equations

{

η = −k2 + ae−ητ cos(ωτ),
ω = − ae−ητ sin(ωτ).

(4)

The natural question that arises therefore is for what (a, τ)-pairs the charac-
teristic equation has only solutions with η ≤ 0 and thus solutions of the delay
PDE stay bounded for all time. To answer this question of stability, we dis-
tinguish two cases. First, we identify the region in the (a, τ) parameter space
where unstable solutions exist corresponding to real roots λ; next we treat
the unstable, oscillatory solutions case, i.e. corresponding to complex-valued
roots with non-vanishing imaginary part ω.

Setting ω = 0 and η > 0, equation (4) simplifies to η = −k2 + ae−ητ . For
positive a, and a given k, this equation has a unique solution η, as illustrated in
Figure 1 (left). If k2 <a, the corresponding η is positive. Hence, for any a > 0
there always exist modes (with k small enough) that grow exponentially. A
similar graphical argument shows that, for a < 0, any roots η must necessarily
be negative. Hence, there are no unstable real modes in that case.

Next, by setting ω > 0 and η = 0 in (4) we determine the boundary
of the (a, τ)-region where unstable oscillatory modes exist. This leads to the
conditions k2 = a cos(ωτ) and −ω = a sin(ωτ). An analysis of these conditions
reveals that they can only be satisfied for a < 0 if ± ωτ ∈ [π/2, π] + 2πn
with n an arbitrary positive integer; for a > 0 the corresponding condition
becomes ± ωτ ∈ [3π/2, 2π] + 2πn.
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Fig. 1. Left: stability analysis of the constant delay PDE, the case of real roots.
Right: stable and unstable regions in the (a, τ ) parameter space.

The curves aτ = −ωτ/ sin(ωτ), for ωτ = π/2+πn are especially important.
They determine the (a, τ)-values at which the constant mode, k=0, becomes
unstable, with an oscillation determined by the corresponding ω. It can be
shown that the constant mode is the first mode to become unstable; this
leads to the theorem below. In Figure 1 (right) the stability region is shown
in white. In the other regions each unstable mode is of a specific multiplicity.

Theorem 1. The solution to the constant delay PDE (3) is stable if −π/2 ≤
aτ ≤ 0.

The second model problem is a distributed delay PDE,

∂u

∂t
=

∂2u

∂x2
+ a

∫ 0

−τ

u(t + s) ds with

{

x ∈ R, t ∈ R
+,

a ∈ R, τ ∈ R
+.

(5)

Now, the characteristic equation is given by λ = −k2+ a
λ(1−e−λτ ). Separating

real and imaginary parts as we did before, one obtains the system
{

η2 − ω2 + ηk2 = a(1 − cos(ωτ)e−ητ ),
2ηω + ωk2 = a sin(ωτ)e−ητ .

(6)

We determine the (a, τ)-pairs for which the characteristic equation has only
solutions with η ≤ 0. An elementary graphical argument reveals that any
positive a admits unstable real roots, i.e., with ω = 0. There are no such
roots for a < 0. Setting η = 0 in (6), we arrive at two equations, which can
only be satisfied for a < 0 and for ± ωτ ∈ [π, 2π] + 2πn. As before, the
constant mode, with k=0, is the stability determining one. The curves aτ2 =
−ω2τ2/(1 − cos(ωτ)) for ωτ = π + 2πn determine the (a, τ)-values where a
constant mode instability appears. Figure 2 shows the stability region.

Theorem 2. The solution to the distributed delay PDE (5) is stable if −π2/2 ≤
aτ2 ≤ 0.
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Fig. 2. Stable and unstable regions for the distributed delay PDE.

3 Domain Decomposition

The classical Schwarz algorithm. We decompose the domain of PDE (3)
into two overlapping subdomains Ω1 =(−∞, L) and Ω2 =(0,∞), with overlap
L > 0. The classical Schwarz waveform iteration is then given by

{

∂un

1

∂t =
∂2un

1

∂x2 + aun
1 (t − τ) on Ω1, un

1 (t, L) = un−1
2 (t, L),

∂un

2

∂t =
∂2un

2

∂x2 + aun
2 (t − τ) on Ω2, un

2 (t, 0) = un−1
1 (t, 0),

(7)

starting with some initial guesses u0
1(t, L) and u0

2(t, 0). For the analysis we will
assume those to be in L2. Using Laplace transforms, we can rewrite (7) as an
iteration in ‘frequency space’ and explicitly solve for the Laplace transform of
the solutions un

1 (t, L) and un
2 (t, 0). Using arguments very similar to the ones

in Gander et al. [1999] we arrive at the following result.

Theorem 3. Assume a and τ satisfy the stability condition of Theorem 1.
Then, the classical Schwarz waveform relaxation algorithm (7) for the constant
delay PDE (3) converges linearly, i.e., with en

1 = u − un
1 and en

2 = u − un
2 ,

||en
1 (·, L)||2 + ||(en

2 (·, 0)||2 ≤ ρn(||e0
1(·, L)||2 + ||e0

2(·, 0)||2), (8)

where ρ := ρcla = supω∈R

∣

∣

∣
e−

√
iω−ae−iωτ L

∣

∣

∣
< 1.

The full details of the derivation are given in the companion report Vandewalle
and Gander. Using elementary, but very technical arguments, the convergence
rate ρcla can be bounded, as a function of the problem parameters and the
size of the overlap.

Corollary 1. The convergence rate of the classical Schwarz method for prob-

lem (3) satisfies ρcla ≤ e−
√

−a cos(aτ)/2L, provided −aτ < 1.



296 Stefan Vandewalle and Martin J. Gander

Next, we consider the Schwarz algorithm for the distributed delay PDE,






∂un

1

∂t =
∂2un

1

∂x2 + a
∫ 0

−τ
u1(t + s) ds on Ω1, un

1 (t, L) = un−1
2 (t, L),

∂un

2

∂t =
∂2un

2

∂x2 + a
∫ 0

−τ
u2(t + s) ds on Ω2, un

2 (t, 0) = un−1
1 (t, 0).

(9)

With a Laplace transform analysis similar to that for the constant delay case,
and some technical arguments, we derive the following theorem and corollary.

Theorem 4. Assume a and τ satisfy the stability condition of Theorem 2.
Then, the classical Schwarz algorithm (9) for delay PDE (5) converges linearly

as in (8), where ρ := ρcla = supω∈R

∣

∣

∣
e−

√
iω+i a

ω
(1−e−iωτ ) L

∣

∣

∣
< 1.

Corollary 2. The convergence rate of the classical Schwarz method for prob-

lem (5) satisfies ρ ≤ e−
√√

−a sin(
√
−2aτ)/2 L.

The optimized Schwarz algorithm. We introduce new transmission con-
ditions in (7) and (9), using B+ and B− to denote ( ∂

∂x +p) and ( ∂
∂x−p),

B+un
1 (t, L) = B+un−1

2 (t, L), B−un
2 (t, 0) = B−un−1

1 (t, 0). (10)

Theorem 5. Assume a and τ satisfy the stability condition of Theorem 1.
Then, the Schwarz waveform relaxation algorithm (7) with the Robin trans-
mission conditions (10) converges as stated in (8), where

ρ := ρopt(p) = sup
ω∈R

∣

∣

∣

∣

∣

√
iω − ae−iωτ − p√
iω − ae−iωτ + p

e−
√

iω−ae−iωτ L

∣

∣

∣

∣

∣

< 1. (11)

Defining the curve Γ = {z : z =
√

iω − ae−iωτ , ω ∈ R}, the optimal choice of
the parameter p is the value p⋆ which solves the min-max problem

min
p

max
z∈Γ

∣

∣

∣

∣

z − p

z + p
· e−z L

∣

∣

∣

∣

. (12)

In Figure 3 we graphically depict the curve Γ , together with the contour lines
of the function that appears in the min-max problem, for the case L=0.

In a numerical computation, ω ∈ [−ωmax, ωmax], because a numerical grid
in time with spacing ∆t can not carry arbitrary high frequencies; an estimate
of ωmax is ωmax = π

∆t . This simplifies the min-max problem (12) to a problem
in a bounded domain, but it is still difficult to solve analytically, even for the
special case L = 0. We therefore propose to solve the min-max problem over
the bounding box given in Figure 3 containing the curve. This problem can
be solved in closed form for L = 0.

Theorem 6. Let L = 0 and set b = ℜ(
√

i(ωmax + 2π/τ) − ae−iωmaxτ ). As-
sume −aτ ≤ 1. If b ≥ −a cos(aτ) + 1/ cos(aτ), then the solution of the ap-
proximate min-max problem is given by p⋆ =

√

2 cos(aτ)b + a; otherwise it is

p⋆ =
√

2a2 cos2(aτ) − a.
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The parameter p⋆ guarantees a lower bound on achievable acceleration,

ρopt(p
⋆) ≤

√

(p⋆ − q)2 + q2 − a

(p⋆ + q)2 + q2 − a
· ρcla, q = −a cos(aτ). (13)

A similar analysis can also be done for the distributed delay PDE, leading to
a min-max problem as in (12), along a curve

Γ̃ = {z : z =

√

iω + i
a

ω
(1 − e−iωτ ), ω ∈ R}. (14)

One can show that Γ̃ belongs to the same bounding box as the curve Γ . Hence,
using the value of p⋆ from Theorem 6, a similar convergence acceleration will
be achieved over the classical algorithm as in (13).

4 Numerical Results

We investigate the influence of the overlap L on the convergence of the classical
Schwarz algorithm, and the influence of the parameter p in the Robin trans-
mission conditions, on the convergence of the optimized Schwarz method. The
results presented are for the constant delay PDE. We chose the parameters
a = −1.55, τ = 1, i.e., within the stability region, and x ∈ [0, 2], t ∈ [0, 10],
∆x = 1

50 and ∆t = 1
50 . In Figure 4 (left) we show the evolution of the error

as a function of the iteration index n, for various values of the overlap. The
convergence improvement with increasing overlap is evident. The influence
of the parameter in the Robin transmission conditions is shown in Figure 4
(right). Here, a minimal overlap of size L = ∆x was used.

Our experiments show clearly that the transmission conditions play a very
important role for the performance of the algorithm. Compared to the overlap,
where an increase corresponds to an increase in the subdomain solution cost,
a change in p does not increase the subdomain solution cost.
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Fig. 4. Left: influence of the overlap on the performance of the classical Schwarz
waveform relaxation algorithm for the constant delay PDE problem. Right: influence
of the parameter p in the Robin transmission condition on the performance of the
optimized Schwarz algorithm.
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