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Summary. In the last decade, non-conforming domain decomposition methods
such as the mortar finite element method have been shown to be reliable tech-
niques for several engineering applications that often employ complex finite element
design. With this technique, one can conveniently assemble local subcomponents
into a global domain without matching the finite element nodes of each subcom-
ponent at the common interface. In this work, we present computational results
for the convergence of a mortar finite element technique in three dimensions for a
model problem. We employ the mortar finite element formulation in conjunction
with higher-order elements, where both mesh refinement and degree enhancement
are combined to increase accuracy. Our numerical results demonstrate optimality
for the resulting non-conforming method for various discretizations.

1 Introduction

As computational resources are rapidly increasing, numerical modeling of
physical processes is being performed on increasingly complex domains. Often
an analysis may be performed by decomposing the global domain into several
local subdomains, each of which can be modeled independently. The global
domain can then be reconstructed by assembling the subdomains appropri-
ately. In the standard conforming method, it is required that the corners of
a given element intersect other elements only on their corners, that is, cor-
ners must not coincide with edges of other elements. It is often infeasible
or inconvenient to coordinate the decomposition and reassembly processes so
that the subdomains conform at the common interfaces. The use of a non-
conforming method circumvents this difficulty. In practical applications, the
non-conforming method has two noteworthy advantages. First, the discretiza-
tion of the domain can be selectively increased in localized regions, such as
around corners or other features where the error in the solution is likely to be
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greatest. This allows for greater accuracy in the method without the computa-
tional load associated with increasing the discretization of the entire domain.

Another practical benefit of the non-conforming method is that the process
may be utilized to connect independently analyzed substructures in a large
problem. For example, in the construction of an aircraft, the fuselage and
wing structures may have been analyzed independently by different engineers,
possibly in different organizations. It is highly unlikely that the independently
constructed meshes of each subcomponent would coincide when assembled.
Moreover, transition meshing could become highly complex and expensive to
achieve. The non-conforming approach eliminates this need.

The mortar finite element method (Bernardi et al. [1993], Belgacem [1999],
Seshaiyer and Suri [2000b], D. Braess and Wieners [2000], Wohlmuth [2000]
and references therein) is an example of a non-conforming technique. In the
last decade, there has been a lot of research on the theoretical and compu-
tational aspects of this domain decomposition technique (Seshaiyer and Suri
[1998], Seshaiyer [2003], Ewing et al. [2000], Braess et al. [1999]). It has been
well-established that the mortar finite element method yields optimal results
both in the presence of highly non-quasiuniform meshes and high polynomial
degree (Seshaiyer and Suri [2000a]) and also preserves the optimal rates af-
forded by conforming h, p, and hp discretizations for a variety of applications
(Belgacem et al. [2000, 2003]).

In the last few years, the extension of the mortar finite element technique
has been analyzed (see Belgacem and Maday [1997], Braess and Dahmen
[1998], Kim et al. [2001] and references therein). In Belgacem and Maday
[1997] the mortar finite element method was extended for the special case
of linear polynomials. However, the method is difficult to generalize for a
general mesh of parallelograms for any polynomial degree. To circumvent this,
a variant of the mortar method, M1, was introduced in (Seshaiyer and Suri
[2000a], Seshaiyer [2003]) which easily extends the technique to any number of
dimensions. The computational performance of this method, however, was not
tested which is the focus, herein. In this paper, we computationally validate
the convergence behavior for the mortar finite element formulation for a time-
dependent model problem in three-dimensions. In particular, we show via
numerical experiments that the M1 mortar method is stable and behaves as
well as the conforming finite element method.

2 Model problem and its discretization

Consider the model problem for x = (x1, x2, x3) ∈ Ω, t > 0:

∂u(x, t)

∂t
−∇ · (P (x)∇u(x, t)) +Q(x)u(x, t) = f(x, t), (1)

where P is uniformly positive and Q is a nonnegative function in the bounded
domain Ω, with the boundary and initial conditions
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u(x, t) = 0 for x ∈ ∂Ω, (2)

u(x, 0) = g(x). (3)

Discretizing time using a backward Euler scheme yields

−∇ · (P(0)∇un) +Q(0)un = fn(0), (4)

where P(0) = (∆t)P , Q(0) = 1 + (∆t)Q, and fn(0) = un−1 + (∆t)fn.
Let us for simplicity, decompose Ω into two geometrically conforming non-

overlapping subdomains Ω1 and Ω2, which share a common interface Γ (de-
noted by the dotted line). For each subdomain Ωi, we consider a regular
sequence of geometrically conforming triangulations τi. Note that, no com-
patibility is assumed between meshes in different subdomains, i.e. the meshes
of Ω1 and Ω2 need not match on Γ . This is illustrated in the figure 1.

Ω Ω1 Ω2

Fig. 1. Geometrically conforming decomposition of Ω partitioned into Ω1 and Ω2

with non-conforming meshes

Let u
(i)
n denote the interior solution in each Ωi, which satisfies the global

continuity restriction u
(1)
n (x) = u

(2)
n (x) for x ∈ Γ . Due to the non-conformity

of the grids across Γ , we enforce this continuity in a weak sense as

b(un, ψ) :=

∫

Γ

(u(1)
n − u(2)

n ) ψ dx = 0 ∀ψ ∈ H−1/2(Γ ). (5)

Let us now describe the weak formulation of our model problem (4) as a
mixed method formulation, which is a convenient method for implementation.
Using standard Sobolev space notation, define H1

D(Ωi) = {v ∈ H1(Ωi)|v =
0 on ∂Ωi

⋂

∂ΩD}. The weak form of (4) then becomes: For i = 1, 2, find

u
(i)
n ∈ H1

D(Ωi) such that for all vi ∈ H1
D(Ωi),

∫

Ωi

P(0)∇u
(i)
n · ∇vi dx−

∫

Γ

P(0)
∂u

(i)
n

∂n
vi ds+

∫

Ωi

Q(0)u
(i)
n vi dx =

∫

Ωi

fn(0)vi dx.

(6)

Let λ = −P(0)
∂u

(1)
n

∂n
= P(0)

∂u
(2)
n

∂n
. Define the spaces Ṽ = {v ∈ L2(Ω), v|Ωi

∈

H1
D(Ωi)} and Λ = {ψ ∈ D′(Γ ), ψ|Γ ∈ H− 1

2 (Γ )} (where D′ is the Schwarz set
of distributions) equipped with their respective norms.
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For each T ∈ τi, denote the set Sp(T ) to be all polynomials generated
by the serendipity (or trunk) space families. Hence S2(T ) has 20 degrees of
freedom. We have used these spaces for our computations in the next section.

Assume the finite element spaces V
(i)
F = {u ∈ H1(Ωi) | u|T ∈ Sp(T ), u =

0 on ∂Ωi ∩ ∂ΩD} are given. We can then define the non-conforming space

ṼF = {u ∈ L2(Ω) | u|Ωi
∈ V

(i)
F } ⊂ Ṽ .

To define the finite-dimensional Lagrange multiplier space, let us sup-
pose that the mesh on the interface Γ matches the mesh on Ω1 (Note
that this choice is arbitrary). For K ⊂ R

2, we denote by Qp,s(K) the
set of polynomials on K which is of degree p in x and s in y (so that
Qp,p(K) = Qp(K)). Let us denote the rectangles in the mesh on the in-
terface Γ by Kij , 0 ≤ i, j ≤ N . Then the Lagrange multiplier space will be

defined as ΛF =
{

χ ∈ C(Γ ) : χ|Kij
∈ Qp−1(Kij)

}

⊂ Λ (see Figure 2). The

Q Q Q

Q

Q

Q

Q

Q

Q

p-1

p-1

p-1 p-1

p-1

p-1 p-1

p-1

p-1

Fig. 2. Lagrange multiplier space for M1 method

associated mortar method is called the M1 mortar finite element method, and
has been implemented in the next section. It can be shown that this choice of
the Lagrange multiplier space leads to optimal results in three-dimensions by
extending the arguments of Seshaiyer and Suri [2000a] and Seshaiyer [2003].

Let us now define
0

VΓ
F = {u|Γ , u ∈ V

(i)
F }∩H1

D(Γ ). Then for any z ∈ L2(Γ ),

we define the space XΓ
F (z) = {w ∈

0

VΓ
F ,

∫

Γ

(w − z) χ ds = 0 ∀ χ ∈ ΛF }. Let

us now make the following restriction.

Condition I: XΓ
F (z) 6= ∅ for all z ∈ L2(Γ ).

If Condition I holds, then one can prove that the mixed formulation sat-
isfies the inf-sup condition:

inf
λ∈ΛF
λ6=0

sup
v∈ṼF

b(v, λ)

||v||Ṽ ||λ||Λ
> 0

Let the finite dimensional spaces V
(i)
F and ΛF be spanned by basis func-

tions {Ψ
(i)
j }Ni

j=1 and {Φj}
Nλ

j=1 respectively. Writing u
(i)
n =

∑Ni

k=1 a
(i)
k Ψ

(i)
k and

λ =
∑Nλ

k=1 bkΦk respectively, (6) and (5) yield a discrete system of integral
equations, which can be written in block matrix form as:
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A1 0 B1

0 A2 B2

BT
1 BT

2 0









a(1)

a(2)

b



 =





F1

F2

0



 (7)

Here a(i) = {a
(i)
1 , a

(i)
2 , . . . , a

(i)
Ni
}, b = {b1, b2, . . . , bNλ

} and

Ai(sj) =

∫

Ωi

P
(i)
(0)∇Ψ

(i)
s · ∇Ψ

(i)
j dx+

∫

Ωi

Q
(i)
(0)Ψ

(i)
s Ψ

(i)
j dx

B1(js) =

∫

Γ

ΦsΨ
(1)
j ds B2(js) = −

∫

Γ

ΦsΨ
(2)
j ds Fi(j) =

∫

Ωi

f
(i)
n(0)Ψ

(i)
j dx

for i = 1, 2. Note that the invertibility of the stiffness matrix in (7) is related
to Condition I.

3 Numerical Results

In this section, we demonstrate the performance of the numerical technique
described. Our computations were performed for the model problem (1) on
the domain Ω = (−1, 1) × (−1, 1) × (−1, 1), and we decompose this domain
into Ω1 = (−1, 1) × (−1, 0) × (−1, 1) and Ω2 = (−1, 1)× (0, 1) × (−1, 1). We
take h1 subintervals along the x, y, and z axes for Ω1, and h2 subintervals for
Ω2. A sample partition of Ω into two subdomains with h1 = 3 and h2 = 2 is
shown in Figure 1. Note that the grids do not match on the interface. For our
experiments, we consider uniform polynomial degrees p in both subdomains.

Steady-state, constant coefficients

Our initial experiment involves a steady-state (∂u
∂t = 0) equation with constant

coefficients P = Q = 1. We choose the right hand side f such that our exact
solution is u(x, y, z) = (1 − x2)(1 − y2)(1 − z2).

We consider the h-version for the non-conforming method for the combina-
tions (h1, h2) = {(3, 3), (3, 4), (4, 4), . . . , (7, 8), (8, 8)} with polynomial degrees
p = 1 and p = 2. The results are demonstrated for both the L2 (Figure 3(a))
and H1 (Figure 3(b)) errors. For our computations, we have used tensor prod-
ucts of one-dimensional Gauss-Legendre quadratures for numerical integration
and the errors have been computed at the Gauss points on the rectangular
grids. Due to our simplified geometry with a smooth regular solution, we not
only get optimal solutions but one can also observe superconvergence rates.
Although not obvious, one may need to perform a detailed analysis for the
mixed mortar method, to study this superconvergence behaviour following the
details Ewing and Lazarov [1993].

Figure 4 demonstrates the performance of the non-conforming method ver-
sus the conforming method for p = 2. For this experiment, the L2 error for
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Fig. 3. Steady-state convergence: (a) L2 error, (b)H1 error
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Fig. 4. Conforming versus non-conforming method

the conforming meshes (h1, h2) = {(3, 3), (4, 4), . . . , (8, 8)} (circles) is plotted
against the non-conforming meshes (h1, h2) = {(3, 4), (4, 5), . . . , (7, 8)} (aster-
isks). The results indicate that the non-conforming method performs no worse
than the conforming method in higher dimensions.

Steady-state, varying coefficients

Next, we performed computations for the steady-state problem with P (y) =
sin y + 2 and Q(y) = cos y + 2. The results of this experiment are shown in
Table 1. We denote by DOF the number of degrees of freedom, which is the
size of the stiffness matrix in (7). L2 andH1 denote the errors in the respective
norms, and L2% and H1% are the respective relative errors.
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Table 1. Nonconstant coefficients, p = 2

h1 h2 DOF L2 L2% H1 H1%

3 3 136 0.004798 0.435505 0.062567 1.948016
3 4 244 0.003711 0.336868 0.048629 1.514050
4 4 361 0.001307 0.118605 0.024271 0.755660
4 5 553 0.001238 0.112389 0.020820 0.648217
5 5 756 0.000491 0.044614 0.011831 0.368343
5 6 1056 0.000395 0.035888 0.009703 0.302095
6 6 1369 0.000222 0.020174 0.006605 0.205649
6 7 1801 0.000190 0.017269 0.005602 0.174420
7 7 2248 0.000114 0.010382 0.004051 0.126116
7 8 2836 0.000096 0.008694 0.003458 0.107656
8 8 3441 0.000065 0.005862 0.002658 0.082762

Table 2. Convergence in ∆t

n L2 8:8 H1 L2 7:8 H1 L2 7:7 H1

2 0.550825 1.605919 0.550899 1.606458 0.554554 1.629562
4 0.435470 0.802964 0.275490 0.803821 0.279264 0.838348
8 0.137706 0.401490 0.137790 0.402982 0.141801 0.458332
16 0.068853 0.200759 0.068948 0.203510 0.073412 0.290824
32 0.034427 0.100407 0.034545 0.105592 0.039823 0.228157
64 0.017214 0.050257 0.017377 0.059764 0.023938 0.208207

Time-dependent case

Our final experiment confirmed convergence for the unsteady equation. The
exact solution was chosen to be u(x, y, z, t) = t(1 − x2)(1 − y2)(1 − z2). We
considered several matching and non-matching mesh combinations and the
results for the combinations (h1, h2) = {(8, 8), (7, 8), (7, 7)} for polynomial
degree 2, are presented in Table 2. Our computations were run from time
t = 0 to time t = 1, with varying numbers of time steps n. The results not
only demonstrate convergence as we refine the time discretization but also
suggest that the errors for the non-matching combination (8, 7) are between
the matching combinations (7, 7) and (8, 8) as one should expect.

Conclusion

A non-conforming finite element method for non-matching grids in three di-
mensions was described and implemented. Our numerical results for a model
problem clearly demonstrate that the technique performs as well as the stan-
dard conforming finite element method in higher dimensions.
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