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Summary. The simulation of flow in porous media is a computationally demand-
ing task. Thermodynamical equilibrium calculations and complex, heterogeneous
geological structures normally gives a multiphysics/multidomain problem to solve.
Thus, efficient solution methods are needed. The research simulator Athena is a
3D, multiphase, multicomponent, porous media flow simulator. A parallel version
of the simulator was developed based on a non-overlapping domain decomposition
strategy, where the domains are defined a-priori from e.g. geological data. Selected
domains are refined with locally matching grids, giving a globally non-matching,
unstructured grid. In addition to the space domain, novel algorithms for parallel
processing in time based on a predictor-corrector strategy has been successfully
implemented.

We discuss how the domain decomposition framework can be used to include
different physical and numerical models in selected sub-domains. Also we comment
on how the two-level solver relates to multiphase upscaling techniques.

Adding communication functionality enables the original serial version to run on
each sub-domain in parallel. Motivated by the need for larger time steps, an implicit
formulation of the mass transport equations has been formulated and implemented
in the existing parallel framework. Further, as the Message Passing Interface (MPI)
is used for communication, the simulator is highly portable. Through benchmark
experiments, we test the new formulation on platforms ranging from commercial
super-computers to heterogeneous networks of workstations.

1 Introduction

The simulation of flow in porous media is a computationally demanding task.
Thermodynamical equilibrium calculations and complex, heterogeneous ge-
ological structures normally gives a multiphysics/multidomain problem to
solve. When studying e.g. various faulted and fractured porous media, im-
portant features that can have a large impact on the flow characteristics are
localized in space and exist on a much smaller scale than the characteristic
length scale of the domain of interest.
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In order to give a full three dimensional description of geometrical and
physical properties of such a case, efficient numerical tools are necessary. A
natural approach to resolve the geometrical details, are local grid refinement
(LGR) techniques. The goal of such methods is to reduce the overall size of the
problem while retaining a fairly good numerical resolution. A domain decom-
position based LGR technique was implemented in an in-house, 3D, research
simulator for porous media flow called Athena, see Reme and Øye [1999]. By
adding communication functionality, the original serial version was extended
to run on each sub-domain in parallel, see Øye and Reme [1999]. The commu-
nication is enabled through an object oriented, C++ library called OOMPI.
This library is based on the Message Passing Interface (MPI) standard.

The framework included in the Athena simulator allows various aspects
of domain decomposition strategies to be explored. In the space domain dif-
ferent models and discretizations can be used within the total domain. In
a similar way, the time domain can be split and solved in parallel. This is
achieved through a predictor-corrector strategy in which a coarse time step
simulation (predictor) provides initial values for solving fine sub-intervals in
parallel (corrector).

As an application, we will show how the domain decomposition framework
can be used for modeling flow in fractured porous media. Specifically, we
suggest applying a discrete fracture network model in selected domains. Such
a model is a flexible and accurate tool to describe the complex geometries of
fractures, but at the cost of larger systems of equations. This problem can be
solved by using parallel computations and upscaling.

The mathematical model describing multiphase porous media flow includes
equations for the mass transport. Previously, these equations were solved by
a forward Euler time stepping scheme. Motivated by the need for larger time
steps, an implicit formulation of the mass transport equations was formu-
lated. Here we will describe how the implicit formulation is included in the
framework of a parallel version of the Athena simulator.

We compare the implicit formulation on platforms ranging from commer-
cial super-computers to heterogeneous networks of PC workstations.

In Sect. 2 we recall the mathematical model of porous media flow with
multiple phases and thermal effects. Then, in Sect. 3, we present the domain
decomposition and local grid refinement framework. The approach which com-
bines fracture modeling and domain decomposition is given in Sect. 4 and a
parallel implementation of implicit mass transport formulation in Sect. 5. Sec-
tion 6 includes an example that combines aspects of the framework presented
above. We end with a summary and conclusion in Sect. 7.

2 Mathematical Model

The mathematical model describing multiphase flow in porous media with
multiple components and thermal effects constitutes a complex set of coupled
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equations. These equations involve a set of primary variables and additional
constraints imposed by secondary variables. Since the model we use has al-
ready been described in detail in e.g. Reme et al. [2000], we will only briefly
present the equations for the primary variables. The 2 +nc primary variables
are the temperature, T , the water pressure, pw, and the molar masses, Nν , of
each component. Here ν = 1, 2, . . . , nc, is the component index, and nc is the
number of components. Further, we let V denote a finite control volume of a
porous medium having the closed surface, S. In order to simplify notation we
leave the summation index unspecified when summing over phases, i.e.

∑

ℓ

≡
∑

ℓ=w,o,g

.

The temperature within a control volume, V, is governed by a heat flow
equation. This equation expresses conservation of energy by relating the tem-
perature gradient, ∇T , the heat capacity, ρu, convective flux, hρu, and heat
sinks/sources q:

∂

∂t

∫

V

(ρu)dV −

∫

S

(

k
˜
∇T − hρu

)

· dS =

∫

V

qdV. (1)

An equation for the water pressure is derived by requiring that the pores
are totally filled, i.e. that the residual pore volume, R(t) = 0, ∀t. A Taylor’s
expansion of R(t+∆t) then gives:

∂R

∂pw

∂pw

∂t
+

nc
∑

ν=1

∂R

∂Nν

∂Nν

∂t
= −

R

∆t
−
∂R

∂W

∂W

∂t
. (2)

The overburden pressure W = σ + p is the sum of effective stress, σ, and
pore pressure, p. This derivation of the pressure equation gives a sequential
formulation of the mathematical model.

Finally, we have nc equations expressing conservation of the molar mass
of component ν:

∂

∂t

∫

V

(

φp

∑

ℓ

Cℓ
νξ

ℓSℓ
)

dV = −

∫

S

(

∑

ℓ

Cℓ
νξ

ℓvℓ
)

· dS +

∫

V

qνdV. (3)

Here, φp is the rock porosity, Cℓ
ν is the fraction of component ν in phase ℓ,

and ξℓ, Sℓ and vℓ are the corresponding molar density, phase saturation and
generalized Darcy velocity respectively.

In order to solve these equations numerically, we use a standard, cell cen-
tered, piecewise constant finite volume discretization in space. Details on how
the resulting systems of equations are solved in each time step are given in
the next section.



102 Erlend Øian, Magne S. Espedal, I. Garrido, and G. E. Fladmark

3 A Two-level Solver

Here we present an iterative solver which we use to solve the linear systems.
The solver is equivalent to the so called Fast Adaptive Composite method, see
e.g. Teigland [1998], Briggs et al. [2000]. It can also be viewed as a two-level
domain decomposition method, see Smith et al. [1996] and references therein.

Assume that a matching, but possibly non-regular, coarse grid, Ω̂ is de-
fined. Further, let a subset, Ωf , of coarse cells be refined. Each of the coarse
cells in this subset defines a sub-domain, Ωfi , that is refined independently of
the other sub-domains with a locally matching, non-regular grid. The result-
ing composite grid, Ω, is generally non-regular and non-matching and consists
of some (or no) true coarse cells, Ωc, and several (or all) refined sub-domains

Ωf =

p
⋃

i=1

Ωfi , (4)

where p is the number of refined sub-domains.
Let the number of composite grid cells in the composite grid be N . The

underlying coarse grid has N̂ cells. The index set of fine cells within coarse
cell number î is denoted Mî. Further, we associate to this cell a basis vector
ψî ∈ R

N defined as

ψî = {ψî
k}. (5)

The vector components, ψî
k, have value one for refinement cell, k, in coarse

cell/sub-domain number î, i.e.

ψî
k =

{

1, ∀ k ∈ Mî,

0, otherwise.
(6)

Then, let RT ∈ R
N×N̂ be the matrix representation of interpolation from the

coarse grid, Ω̂, to the composite grid, Ω. The columns of this operator consist
of the basis vectors ψî. Thus representing constant interpolation. Correspond-

ingly, the restriction operator is R ∈ R
N̂×N . Further, the restriction operator

Si ∈ R
Ni×N , returns the vector coefficients defined on sub-domain Ωi, i.e.

xΩi = Six, xΩi ∈ R
Ni , x ∈ R

N . (7)

Finally, the combination of RT and Si provides a mapping RT
i ∈R

Ni×N̂ from
the coarse grid to sub-domain Ωi:

RT
i = SiR

T . (8)

The numerical solution of the equations in the preceding section entails solving
linear systems of the form Ax = b. This can be written in block matrix form,
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[

Acc Acf

Afc Aff

] [

xc

xf

]

=

[

bc

bf

]

(9)

where the system matrix is decomposed according to the domains of the grid.
We use the various transfer operators defined above to define a two-level
solution algorithm for the system in Eq. (9) defined on the composite grid.

We proceed by introducing the two-level iterated solution x(s) of Eq. (9).
Let an updated/improved solution be defined by

x(s+1/2) = x(s) + RT d̂(s), (10)

where d̂(s) ∈ R
N̂ is a coarse grid correction. Substituting x(s) for the update

x(s+1/2) and restricting to the coarse grid, we get

RART d̂(s) = R
(

b −Ax(s)
)

. (11)

The solution of this equation gives the next step, iterated solution for the
non-refined coarse cells, and an intermediate update of the refined sub-domain
solutions defined by

x(s+1)
c = x(s+1/2)

c = x(s)
c + RT

c d̂(s), (12)

x(s+1/2)
r = x(s)

r + RT
r d̂(s), r = 1, . . . , p. (13)

The intermediate solutions x
(s+1/2)
r enable the composite problem in Eq. (9)

to be split into independent sub-domain problems for all the sub-domains
q = 1, . . . , p

Aqqx
(s+1)
q = bq −

∑

r 6=q

Aqrx
(s+1/2)
r , (14)

where summation index r also includes the set of true coarse cells. The itera-
tion proceeds until the scaled difference between two consecutive iterations is
below some prescribed tolerance.

Our group is also working on applying the two-level scheme above to the
time domain, following a parallel technique proposed in Baffico et al. [2002]. A
coarse time step solution acts as a predictor by providing boundary values for
each sub time interval of the coarse step. Then, each sub time step problem
is solved, determining a correction to the coarse solution for the next step of
the iteration, see Garrido et al..

4 Using the Domain Decomposition Framework

The domain decomposition based local grid refinement strategy we have im-
plemented is similar to what is know as multiblock reservoir simulation, see
e.g. Lee et al. [2002] and Lu et al. [2002]. Multiblock grids allows different
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gridding in each block, i.e. coarse domain, with possibly non-matching grid-
lines at block boundaries, Lee et al. [2003]. The two-level solver for composite
grids in Sect. 3 can be described as a multiblock method. An important advan-
tage of this approach is that it combines the simplicity of globally structured
grids with the flexibility of fully unstructured discretizations. Further, since
the coarse (Galerkin) operator of Eq. (11) is defined simply as a summation
of the fine scale operators, it can be constructed independently of the type of
mathematical model which is used on each sub-domain.

A basic requirement in the cell centered finite volume method, is that flux
is continuous across interfaces of the grid. In our case, we want the mass to
be conserved, i.e. we want continuity of mass flux. For composite interfaces,
we introduce ghost cells and calculate the composite interface fluxes by inter-
polating real cell pressure (potential) values onto the ghost cells. Currently,
we only use a constant interpolation.

The so called mortar methods provide a general framework that treats
composite interfaces in a systematic way, see e.g. Ewing et al. [2000] et al. for
a finite volume element variant and references therein.

Due to our relatively crude composite interface approximation, we cur-
rently require that the coarse block interfaces are located away from large gra-
dients and boundaries between regions of different physical properties/models.
This implies that the transition zone between e.g. a single phase and a multi-
phase flow region should be included within a multiphase model coarse block.
Another case is flow through faulted porous media. We use such an example
to illustrate the use of our framework in Sect. 6 below.

4.1 Discrete Fracture Network Model

As an application of the multiblock/multiphysics and parallel processing ca-
pabilities of our simulator, we consider flow in fractured porous media. In
particular, we are working on combining structured, Cartesian discretizations
with discrete network models in selected domains, Øian [2004]. This applies
to fractured porous media simulations, where the fractures occur in localized
swarms and the traditional dual continuum approach might not be appropri-
ate. In Karimi-Fard et al. [2003] and Karimi-Fard and Firoozabadi [2003] a
discrete fracture model is presented. It is based on unstructured grids and
allows for both two and three-dimensional systems. An important aspect of
this method is that control volumes at the intersection of fractures can be
removed, thus relaxing the restrictions on the stable time step in the simula-
tions. Due to the flexibility of this method in modeling complex geometries,
fine scale effects are resolved accurately. This method might easily introduce
too many details, though, if it is used on the global domain. The multiblock
framework enables us to localize this method to selected domains based on the
geological description. In the rest of the domain, we can use traditional, less
expensive discretizations. This is illustrated in Fig. 1, where only the upper
right domain is discretized with the discrete fracture network model.
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Fig. 1. The figure illustrates using a discrete fracture model in a single domain.

4.2 Upscaling Issues

Since geological models of porous media are highly detailed, direct simulations
on such models are typically not efficient or feasible. The standard approach to
tackle this scale discrepancy problem, is to use various methods of coarsening
or upscaling. For single phase flow simulations it is common to calculate an
upscaled, effective absolute permeability through either analytical averaging
techniques or local numerical methods. Such (quasi-)local methods, may not
be adequate in many situations. Typically, these methods can be sensitive to
the boundary conditions used. In contrast, global methods use full fine scale
simulations to determine the coarse scale parameters and are thus better at
capturing coarse scale flow features, but at the expense of more computations.
These methods all focus on upscaling of the permeability. Other variants cal-
culate transmissibilities directly.

When we turn to multiphase flow problems, the effect of relative perme-
abilities and capillary pressures must also be considered. It is common to
upscale the various parameters independently. The problem, though, is that
combining these upscaled parameters might not give a coarse model which
captures the coarse scale features of the flow. Several authors have suggested
that due to the complexity and uncertainty in such an approach, upscaling of
the solution variables directly should be considered.

The coarse solver found in many preconditioning techniques/multilevel it-
erative methods directly incorporates all the fine scale information. Multigrid-
upscaling methods are based on the idea/observation that these coarse oper-
ators might be good approximations of the coarse scale effect of the fine scale
differential operator. Various work on upscaling within a multigrid context
are given in e.g. Moulton et al. [1998] and Knapek [1998, 1999].

The two level multigrid solver that is implemented in the Athena simu-
lator fits this framework. In Aarnes et al. and Reme et al. [2002] a Galerkin-
based upscaling procedure was presented. The main idea is to use existing
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information on the fine scale in the coarse averaging system, i.e. to capture
some of the fine grid flow internal to each coarse grid block without solving the
full fine grid problem. It is important to note that by using piecewise constant
interpolation we ensure that mass is conserved. By solving an inverse problem
based on the coarse solution, effective parameters can be calculated. In the
single phase case, using Darcy’s law on the coarse scale with volume averaged
velocities and pressures provides a set of equations for the components of the
permeability tensor.

Based on some upscaled parameters, a coarse solve is performed. The
coarse solution provides boundary conditions for local fine scale simulations
in order to determine domains for further refinement. As this process is only
performed once (or a few times) during the course of a simulation, the overhead
of the fine scale simulations is permissible. We propose an algorithm which
includes both a local simulation approach and multigrid upscaling. The local
solve includes improved boundary conditions stemming form a global coarse
solve. This is similar to the coupled local-global approach in Chen et al. [2003].
This could serve as a background permeability for a full multiphase simulation.
But, more research is needed in order to fully understand the implications of
such an approach.

5 Implicit Molar Mass Formulation

Discretizing e.g. fractured domains using locally refined grids, leads to small
spatial scales. Previously the mass transport equations were integrated using
an explicit, forward Euler scheme. To avoid the severe time step restrictions
given by the CFL-condition, an implicit formulation using a backward Euler
scheme has been formulated, see Chaib et al. [2002], Øian et al. [2003], Garrido
et al..

We start by noting that the molar mass of component ν is equal to the
integral on the left hand side of Eq. (3). We let V ℓ denote the volume of phase
ℓ and introduce the volume factor aℓ = 1/V ℓ. Further, we define the molar
mass of component ν in phase ℓ as N ℓ

ν = Cℓ
νN

ℓ = Cℓ
νV

ℓξℓ. Then, integrating
Eq. (3) over a control volume Vi, with surface Si in a numerical grid and using
up-stream weighting, we get

∂Nνi

∂t
+
∑

is∈Si

(

∑

ℓ

(

aℓN ℓ
ν

)

in
θℓ
is

)

= Qνi , (15)

where θℓ
is = vℓ

is · nisAis is the Darcy volume flux. Here nis and Ais is the
outward normal and area of subsurface “is” of Si respectively. Subscript “in”
indicates evaluation in the upstream cell and is phase dependent.

After a Newton-Raphson linearization step, we get

δN (t+1)
νi

∆t
+
∑

is∈Si

∑

ℓ

[(

aℓn∑

µ

(

∂N ℓ
ν

∂Nµ

)(t)

δN (t+1)

µ

)

in

θℓn

is

]

= β(t)

νi
. (16)
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The right hand side is given by

β(t)

νi
= Qn

νi
−
N (t)

νi
−Nn

νi

∆t
−
∑

is∈Si

∑

ℓ

[(

aℓn

N ℓ(t)

ν

)

in
θℓn

is

]

.

In matrix notation the molar mass equation for component ν can be expressed
as

∑

µ

J (t)
ν,µδN

(t+1)
µ = b(t)

ν , ν, µ = w, o, g. (17)

As a simplifying step, we continue by neglecting off-diagonal blocks represent-
ing coupling between different components, i.e.

∂N ℓ
ν

∂Nµ
= 0, ν 6= µ. (18)

We get then the following decoupled systems for each component (we drop
the ·ν,ν sub-script on the Jacobian matrix)

J (t)δN(t+1)

ν = b(t). (19)

In order to solve the linear system in Eq. (19) we use the domain decomposi-
tion based iterative method presented in Sect. 3. Thus, the two-level iterated
solution is now N(s)(t)

ν and the incremented solution is defined as

δN(s)(t)

ν = N(s)(t)

ν − N(t)

ν . (20)

Following Eq. (10) the updated/improved solution is then

N(s+1/2)(t)

ν = N(s)(t)

ν + RT d̂(s), (21)

and the coarse grid equation for the molar mass is

RJ (t)RT d̂(s) = R
(

b(t) − J (t)δN(s)(t)

ν

)

. (22)

The independent equations for the sub-domains q = 1, . . . , p, are

J (t)

qq δN
(s+1)(t)

νq
= b(t)

νq
−
∑

r 6=q

J (t)

qr δN
(s+1/2)(t)

νr
, (23)

where summation index r includes the set of true coarse cells. The right hand
side terms involving intermediate solutions N(s+1/2)(t)

νr
are given by

N(s+1)(t)

νc
= N(s+1/2)(t)

νc
= N(s)(t)

νc
+ RT

c d̂(s), (24)

N(s+1/2)(t)

νr
= N(s)(t)

νr
+ RT

r d̂(s), r = 1, . . . , p. (25)
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5.1 Parallel Implementation

The parallel version of the Athena code is based on the concept of a “sim-
ulator parallel model”. The idea is that the original serial simulator is used
on each sub-domain. To incorporate the solver described in Sect. 3, the main
modifications consist of adding functionality for communicating between the
domains. This is implemented through a Communicator class, which has the
various objects to be communicated as member classes. We use the object
oriented MPI library OOMPI, Squyres et al. [2003], to achieve this. OOMPI
is a thin layer on top of the MPI, see e.g. Snir et al. [1996], which enables
easy creation and communication of user defined objects. Since OOMPI is
a fairly lightweight library and introduces little overhead, we have chosen
to continue with this in the implementation of the implicit mass transport
solver. In Skjellum et al. [2001] a comparison of different design strategies
for an object oriented interface to MPI is given. Due to the success of MPI
in defining a standard for distributed, parallel programming, the simulator is
highly portable.

Following the existing framework and based on the mathematical model,
we have introduced two classes inherited from OOMPI Datatype. These are the
RefinedMM class, which contains the values needed for upstream evaluation
of the Jacobian matrix terms

aℓn

(

∂N ℓ
ν

∂Nν

)(t)

and aℓn

N ℓ(t)

ν , (26)

and the CoarseMM class, which contains the sub-domain terms contributing
to the system Jacobian and right hand side given in Eq. (11).

Communicator

RefinedMM CoarseMM

Fig. 2. The figure shows the collaboration of the Communicator class and the
classes storing data between refinements, RefinedMM, and data for the coarse solve,
CoarseMM.

5.2 Numerical Experiments

We perform a numerical experiment using the implicit mass transport for-
mulation. The main goal of the experiment is to evaluate the parallel perfor-
mance on various platforms. At the current stage of implementation, we map
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domains onto CPUs in a one-to-one fashion. In the case where other consid-
erations than just getting an even number of grid cells dictate the choice of
domain decomposition, this approach is not optimal. Work on allowing a more
flexible load balancing of the simulator is in progress.

We use SGI and IBM SP2 super computers, a dedicated IBM Linux cluster
and on a network of PC workstations running Linux. Even though high-speed
super computers are an important target platform for the simulator, it is
also interesting to see how the code performs on lower bandwidth networks
of regular workstations, as this is available to a lot of users. Consequently,
we have run the simulations on three super-computing platforms and on two
commodity off-the-shelf hardware platforms, see Table 1. To avoid the com-

Table 1. The table lists various hardware platforms and compilers.

index platform C++ compiler MPI implementation

I SGI Origin 3800 MIPSpro Irix
II IBM p690 AIX IBM
III IBM Linux cluster Intel LAM
IV Linux cluster GNU MPICH
V Linux workst. netw. GNU MPICH

plicating effect of calculating equilibrium in the beginning of the simulation,
we do our experiments using restarts at times when equilibrium (hydrostatic)
is established.

The test case domain is depicted in Fig. 3. In this case the porous medium
is initially saturated with water. The simulation domain is 366m × 671m ×
52m in x-, y- and z-direction respectively and is decomposed into six domains
with an equal number of fine cells. Oil and gas phases migrate from one corner
of the domain. For a fixed simulation time interval, we have measured the

Fig. 3. The figure shows the domain decomposition (left) and gas saturation at a
given time (right).
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Table 2. Timing (seconds) of simulations on various platforms.

platform I platform II platform III platform IV platform V

total 2908 764 2472 1056 1801
pressure 711 195 502 252 489
mass 2081 497 1778 725 1194

total CPU time and CPU times for pressure solution and molar mass solve
separately. The results are given in Table 2. More detailed timing results,
including a conceptual fault zone case, will be presented in Øian [2004].

6 A Geometrically Complex Case

We demonstrate the simulator framework in use through a multiphase flow
case in a faulted porous medium, see Fig. 4. Oil and gas phases migrate
through a water saturated layer and into a high permeable fault zone. The

Fig. 4. The top part of the figure shows the domain decomposition including hori-
zontal and vertical flow regions. Red color indicates high permeability. Oil and gas
saturations are plotted at the same time level in the bottom left and right parts of
the figure respectively, where only a middle section of the grid is visualized.
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background lithology is a low permeable shale. Due to the density differences
of water, oil and gas, a segregation process occurs in the vertical fault zone
accompanied by much higher flow rates than in the horizontal layers.

As mentioned in Sect. 4 above, we place the transition between the hor-
izontal and vertical flow regions inside the coarse blocks. The implicit mass
transport formulation improves the allowed time step within the vertical flow
region. Also, the two-level solver enables the mass transport equations to be
solved in parallel, which is important if we want to make a more refined dis-
cretization. In Øian [2004] further computational results will be given.

7 Conclusion

We have presented a domain decomposition framework which is implemented
in a parallel version of the flow simulator Athena. The two-level, iterative
solver allows multiblock/multiphysics domains to be built. This is because the
coarse operator is based on an algebraic combination of the fine scale operators
(Galerkin) rather than an explicit coarse scale discretization. Consequently,
by defining the domain decomposition a-priori, we can allow different models
or discretizations in different domains. Work is in progress on applying this
method on modeling flow in fractured porous media.

Another issue is that the Galerkin coarse scale operator can be viewed as
an upscaled model. Traditional upscaling methods typically treat each param-
eter separately. Combining these into an upscaled model might be incorrect.
In the multiphase case, the Galerkin operator gives a combined averaged rep-
resentation by directly incorporating the fine scale, nonlinear processes caused
by changes in absolute and relative permeability and capillary forces.

A sequential, implicit formulation of the mass transport equations has been
implemented within the existing object oriented parallel framework. A timing
experiment illustrated that the code performs better on high performance,
shared memory supercomputers than distributed memory systems. This is
the typical behavior for domain decomposition based methods. As we have a
sequential, i.e. decoupled, solution procedure for solving the pressure and mo-
lar mass equations, the number of iterations to achieve convergence in either,
depend on the time steps. The implicit molar mass equations allows larger
time steps, but might introduce more iterations in the pressure solve. This
will have an effect on the observed parallel efficiency since communication is
involved in each iteration. Work is in progress to implement the simultaneous
solution of pressure and masses, i.e. fully implicit.

A flexible load balancing scheme has not yet been implemented in the
simulator. The effect of this is apparent on networks with low bandwidth
connections and will also influence the scaling properties on supercomputers.
With a queue system, e.g. running parallel jobs at night time, a network of
workstations would still be a valuable parallel platform. Specially for devel-
opment purposes and setting up simulation cases, this opportunity is useful.
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