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Summary. (and Introduction) In this paper, we present a family of domain
decomposition based on Aitken like acceleration of the Schwarz method seen as an
iterative procedure with linear rate of convergence. This paper is a generalization
of the method first introduced in Garbey and Tromeur-Dervout [2001] that was
restricted to Cartesian grids. The general idea is to construct an approximation of the
eigenvectors of the trace transfer operator associated to dominant eigenvalues and
accelerate these components after few Schwarz iterates. We consider here examples
with the finite volume approximation on general quadrangle meshes of Faille [1992]
and finite element discretization.

1 A General Framework for the Aitken-Schwarz Method

Let us consider formally a linear differential problem

L[U ] = f in Ω, U|∂Ω = g. (1)

We assume that the problem is well posed and has a unique solution U . To
simplify the presentation, we restrict ourselves to a domain decomposition
of two overlapping subdomains Ω1

⋃

Ω2 = Ω, and we consider the additive
version of the Schwarz algorithm (Smith et al. [1996]).We assume implicitly in
the following notations that the Dirichlet boundary condition in (1) is satisfied
by all intermediate subproblems. The Additive Schwarz (AdS) version of the
algorithm writes,

L[u n+1
1 ] = f in Ω1, u n+1

1|Γ1

= u n
2|Γ1

, (2)

L[u n+1
2 ] = f in Ω2, u n+1

2|Γ2

= u n
1|Γ2

. (3)

Because L is linear, the following operator T a is linear:

(u n
1|Γ1

− U|Γ1
, u n

2|Γ2
− U|Γ2

) → (u n+1
1|Γ1

− U|Γ1
, u n+1

2|Γ2

− U|Γ2
). (4)
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Let us proceed with the discretized version of the problem (1), with solution
Uh. For i = 1, 2, let Γ h

i be the set of mesh nodes corresponding to approxi-
mation of U on Γi, Eh

i a finite vector space used to approximate the solution

restricted to the artificial interface Γ h
i , and {bj

i , j = 1...N} a set of basis func-
tions for this vector space. We suppose that both vector space Eh

1 and Eh
2

have the same dimensions and define now the following two linear operators

T a
l : u n

1|Γ1
− UΓ1

→ u n+1
2|Γ2

− UΓ2
(5)

T a
r : u n

2|Γ2
− UΓ2

→ u n+1
1|Γ1

− UΓ1
. (6)

Using the discrete representation of the interface Γ h
i in Eh

i , for i = 1, 2, we
have

(u n+1
2,j − Uj,Γ2

)j=1,..,N = Pl (u n
1,j − Uj,Γ1

)j=1,..,N , (7)

and
(u n+1

1,j − Uj,Γ1
)j=1,..,N = Pr (u n

2,j − Uj,Γ2
)j=1,..,N , (8)

with Pl (resp. Pr) square matrix of T a
l (resp. T a

r ). The matrix of the trace
operator T a has then the characteristic anti diagonal structure

P =

(

0 Pr

Pl 0

)

The Additive Aitken Schwarz algorithm is then

• Step AdS0: compute Pl and Pr.
• Step AdS1: from initial artificial interface condition u 0

1 and u 0
2 compute

the first Schwarz iterate (2, 3).
• Step AdS2: from u 0

i and u 1
i (i = 1, 2) and the linear system (7,8), get the

exact interface value Uj,Γ1
and Uj,Γ2

.

• Step AdS3: starting from the interface condition U|Γ1
=

∑

j=1..N Uj,Γ1
bj
1

and U|Γ2
=

∑

j=1..N Uj,Γ2
bj
2, apply one last Schwarz iterate (2,3) to get

Uh.

Iff ||PlPr|| < 1, the additive Schwarz algorithm converges and the matrix P
associated to (7,8) is non singular. This Aitken-Schwarz algorithm is then an
exact solver.

Step AdS0 is the critical step of this algorithm; a straightforward and very
expansive way to obtain P consist in computing before hand in parallel the
solution of 2N independent sequences of homogeneous problem; alternatively,
one may reconstruct these matrices using 2(N +1) consecutive iterates of the
Schwarz method, but existence of the solution and stability of the numerical
process is not guaranteed(Garbey and Tromeur-Dervout [2002]).

To find a numerically efficient method to compute P or an approximation
of P is the key problem that we will address in the next sections. We are going
to simplify the problem and show that our algorithm can be formulated with
an approximation of the eigenvectors of the trace transfer operator that has
the dominant eigenvalues.
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2 Quasi-Diagonal Aitken-Schwarz Procedure

Let us assume that Pl (resp. Pr) can be diagonalized in the basis of eigenvec-
tors Vj corresponding to eigenvalues Λl

j (resp. eigenvectors Wj corresponding
to eigenvalues Λr

j .)
Let us denote by (ũ n

i,j)j=1,...,N (resp. (û n
i,j)j=1,...,N) (i = 1, 2) the compo-

nents of u n
i|Γi

in basis {Vj , j = 1, ..., N} (resp. {Wj , j = 1, ..., N}).
Then, we have

(ũ n+1
2,j − Ũj|Γ2

)j=1,..,N = Dl (ũ n
1,j − Ũj|Γ1

)j=1,..,N , (9)

with Dl
j,j = λl

j , and in the basis of eigenvectors Wj ,

(û n+1
1,j − Ûj|Γ1

)j=1,..,N = Dr (û n
2,j − Ûj|Γ2

)j=1,..,N , (10)

with Dr
j,j = λr

j , j = 1..N . In order to compute Uj|Γi
, i = 1..2, we express

both identities (9) and (10) in the same basis. We obtain in vector notations
u = (uj)j=1..N , in bi

j , i = 1, 2 basis,

UΓ1
− ΛrUΓ2

= u 1
1 − Λr u 0

2 , (11)

−Λl UΓ1
+ UΓ2

= u 1
2 − Λl u 0

1 , (12)

where Λl = V Dl V −1, and Λr = W Dr W−1.
The Quasi Diagonal Additive Schwarz algorithm writes

• Step QD-AdS0: compute approximate main eigenvectors (V̂j)j=1..q (resp.

(Ŵj)j=1..q) and corresponding approximate eigenvalues (Λ̂l
j)j=1..q (resp.

(Λ̂r
j)j=1..q) of Pl (resp. Pr).

• Step QD-AdS1: from initial artificial interface conditions u 0
1 and u 0

2 , com-
pute the first Schwarz iterate (2, 3).

• Step QD-AdS2: decompose u 0
1 and u 1

1 into the main components u 0
e,1 and

u 1
e,1 (projection on span[V̂1, ..., V̂q]) and the residuals

u
0/1
r,1 = u

0/1
1 −

∑

j=1..q u
0/1
e,j V̂j . Decompose u

0/1
2 in a similar way using

the projection on span[Ŵ1, ..., Ŵq]

• Step QD-AdS3: from the formula (11) restricted to span[Ŵ1, ..., Ŵq] and

(12) restricted to span[V̂1, ..., V̂q] with corresponding approximated eigen-

values, get the (approximated) interface value Ûe,1/2,j , ∀j = 1..q.
• Step QD-AdS4: recompose the interface conditions from the following ap-

proximations (i = 1, 2)

U|Γ1
≈ Û|Γ1

=
∑

j=1..q

(u 1
1,e,j − Λ̂l

ju
0
1,e,j)/(1 − Λ̂l

j) V̂j + u 1
r,1,

(similarly for U|Γ2
, with Λ̂r and span[Ŵ1, ..., Ŵq]), and apply one Schwarz

iterate (2,3) to get an approximation of Uh.
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The following theorem summarizes the impact of the error on eigenvectors,
the error on eigenvalues and the truncation parameter q on the approximation
of the artificial interfaces obtained with the quasi-diagonal additive Aitken
Schwarz algorithm.

Theorem 1. Let {V1, ..., Vq} (resp. {W1, ..., Wq}) be a set of q independent
eigenvectors of the trace transfer operator Pl (resp. Pr). We suppose ||Pl/r || =

O(1). Let {V̂1, ..., V̂q} (resp. {Ŵ1, ..., Ŵq}) be a set of q independent vectors

such that the matrix ǫl (resp. ǫr) of column vectors ǫl,j = V̂j − Vj (resp.

ǫr,j = Ŵj − Wj), has norm ||ǫl/r|| = o(1).

Let us assume that δ
l/r
j = |λ̂

l/r
j −λ

l/r
j | = o(1), ∀j = 1...q, and that dist(u 0

1 −

U|Γ1
, span[V̂1, ..., V̂q]) + dist(u 0

2 −U|Γ2
, span[Ŵ1, ..., Ŵq]) = µ, with µ = o(1),

then

||(Û|Γ1
− U|Γ1

, Û|Γ2
− U|Γ2

)|| =

Ct ||(Id − Λl Λr)−1|| O(||ǫ||) + O(||β||) + O(µ), (13)

with β 2q-vector of components (βl
j =

δl
j

|1−λl
j
|
, βr

j =
δr

j

|1−λr
j
| ).

Proof. See Garbey [2003]

This theorem suggests to get an approximation of the eigenvectors of the
matrices Pl, Pr corresponding to the dominant eigenvectors that is numerically
cheap to compute. The Quasi-diagonal Aitken acceleration plays the role of a
coarse grid preconditioner and can be iterated until convergence. We introduce
in the following two examples of this construction, with respectively finite
element discretization and then finite volume approximation.

3 Finite Element on Tensorial Product of Two-D Grid

We consider the homogenous Dirichlet boundary value problem (1) that has
a separable second order operator L = L1 + L2:

L1 = −∂x(a1∂x) + b1∂x + c1, L2 = −∂y(a2∂y) + b2∂y + c2. (14)

a1, b1, c1 are functions of x, and a2, b2, c2 are functions of y. Ω is a rectangle
with a strip domain decomposition into rectangles. Interfaces of the domain
decomposition are therefore parallel to the y direction. The number of subdo-
mains is arbitrary.

Let us consider the semi-discretisation of the operator in y variable, with
an irregular mesh in y (yi,i = 0, ..., N + 1), Lk

2 a discretization of L2 on the
y-mesh, and ui(x) (resp. f i(x)) an expected approximation of u(x, yi) (resp.
f(x, yi)). The semi-discrete approximation of a subdomain problem analogous
to problem (2) or (3) is solved on a rectangle denoted by R=[e,w]x[n,s] in order
to simplify the notations:
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L1u
i(x) + Lk

2u
i(x) = f i(x), x ∈]e, w[ (15)

ui(w) and ui(e) given, u0(x) = uN+1(x) = 0. (16)

We introduce the eigenvalue problem:

Lk
2Φj = λjΦj , Φ0

j = ΦN+1
j = 0. (17)

We set the hat transform :

ui(x) =
N

∑

j=1

ûj(x)Φi
j ; i = 1, · · · , N (18)

with a similar expansion for f i(x). Applying this hat transform to (15-16)
gives formally:

N
∑

j=1

Φi
j [(L1 + λj)ûj(x) − f̂j(x))] = 0,

N
∑

j=1

Φi
j ûj(e/w) given

Following the notation of Theorem 1, the eigenvectors functions Vj and Wj

of the trace transfer operator are identical and equal to the Φj , j = 1 · · ·N,
functions. More precisely we have the following result for an arbitrary number
of P subdomains,

Theorem 2. Assume problem (17) has N linearly independent real eigenvec-
tors associated to real eigenvalues.Then each semi-discrete approximation of
each subdomain problem is constituted of N uncoupled continuous one dimen-
sional linear problems j = 1, · · · , N :

[L1 + λj ]ûj(x) = f̂j(x), ûj(e/w) given (19)

The hat trace transfer operator is affine on R
2N(P−1) with a block-diagonal

matrix of N blocks.

Proof. See Baranger et al. [2003]

From Theorem 1 one can estimate the number of eigenvectors q that is
worth to compute.

Problem (15-16) is closely related to finite difference point of vue. We now
show that similar results can be obtained from the variational formulation of
the problem.

Let us consider a semi discrete finite element approximation of the vari-
ational problem associated to (14). On a y-mesh we have a finite element
space with basis function ϕm, m = 1, · · · , N . The unknown function is
uk(x, y) =

∑N
m=1 um(x)ϕm(y) with um(w/e) = 0. We obtain then the semi

discrete variational problem:
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∑

m

∫ e

w

[a1∂xum∂xv + · · · ]dx

∫ n

s

ϕmϕjdy...

+
∑

m

∫ e

w

umvdx

∫ n

s

[a2∂yϕm∂yϕj + · · · ]dy =
∫

R
fvϕjdxdy.

(20)

Then the semi discrete variational problem (20) is: for all m = 1, · · · , N find
um in H1

0 (w, e) such that for all v in H1
0 (w, e) and i = 1, · · · , N

∑

m

[βimα1(um, v) + αimβ1(um, v)] = β1(fi, v) (21)

with

α1(u, v) =

∫ e

w

(a1uxvx+b1uxv+c1uv)dx, α2(u, v) =

∫ n

s

(a2uyvy+b2uyv+c2uv)dy

fi(x) =

∫ n

s

fϕidy, β1(u, v) =

∫ e

w

uvdx, β2(u, v) =

∫ n

s

uvdy,

γim = γ2(ϕi, ϕm) (γ = α, β).

Using the generalized Fourier transform (18) we obtain from equation (21):

∑

m

∑

j

[βimα1(ûj , v) + αimβ1(ûj , v) − βimβ1(f̃j , v)]Φjm = 0 (22)

Choosing the Φ’s as the eigenvectors of the spectral problem:

∑

m

αimΦjm = λj

∑

m

βimΦjm, j = 1, · · · , N (23)

gives to equation (22) the uncoupled form:

α1(ûj , v) + λjβ
1(ûj, v) = β1(f̃j , v). (24)

We obtain then a result analogous to Theorem 2. We are going now to show
a second variant of this construction for finite volume approximation with
general quadrangle meshes.

4 An Example with Finite Volume on General

Quadrangle Meshes

We consider an approximation of (1) with the finite volume approximation on
general quadrangle meshes of Faille [1992]. For simplicity we restrict ourselves
to the Poisson operator with homogeneous Dirichlet boundary conditions. We
also consider the multiplicative version of the Schwarz (MuS) algorithm with
two subdomains. Those restrictions are not necessary, but they make the
understanding of the construction easier. For general quadrangle meshes, an
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eigenvector basis of the trace transfer operator T h on the interface un
h|Γ h →

un+1
h|Γ h , cannot be constructed analytically as in the previous section. We recall

that
un

h|Γ h − U|Γ h → un+1
h|Γ h − U|Γ h

is a linear operator and we denote by P h its matrix. Eh is the finite vector
space used to approximate the solution restricted to the interface Γ h.

To represent the functions of Eh in a more compact way, we choose the
space of approximation Eq

1 = span[sin(τ), sin(2 τ), ..., sin(q τ)] where τ ∈
(0, π) is a natural parameterization of the interface Γ. We introduce then the

operator Th/q from Eh,0
1 to Eq

1 that gives the least square approximation of

grid function of Γ h with q-sine expansion:

∑

k=1..q

ak
j sin(k τ).

Vice versa the operator Tq/h collocates the sinus expansions of Eq
1 at grid

points of Γ h. The operator Th/qP
hTq/h is linear. Let us denote by P q its

matrix.
If the trace of the sub-domain solution at the artificial interface is regular

enough, its approximation in Eq will have a much lower dimension than an
approximation in Eh for the same level of accuracy (Gottlieb and Shu [1997]).
Furthermore for the approximation of the Poisson problem or the Helmholtz
operator, in deformed rectangle, the sinus basis is somehow a natural basis.

We compute therefore directly the matrix P q with q much smaller than
the number of grid points. The column of P q are obtained by processing q
independent Schwarz iterates starting from sin(kτ) for the artificial boundary
condition. We choose the set of basis function Vj = Wj , j = 1...q to be the
eigenvectors of P q.

Figure 1 gives the convergence history of our method for a Poisson solver
discretized with the Finite Volume method of Faille [1992] in a complex shape
domain. The continuous line is the convergence history of MuS with no accel-
eration. The curve ’o’ (resp. ’+’, ’*’) is for 2 waves (resp. 4, 8). We see that
the convergence improves as the number of modes increases.

The trigonometric representation of the interface may not be the best so-
lution in the general case, and there are many piecewise polynomial spaces of
functions that might be more appropriate depending on the space of approxi-
mation of the PDE solution. This should be the topic of further investigations.

5 Conclusion

We have shown how to generalized the Aitken-Schwarz method from Carte-
sian grid with finite differences to other discretization such as finite element
on tensorial product of grid or finite volumes on general quadrangle meshes.
Let us emphasis that the implementation of our method can reuse the initial
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Convergence of Steffensen − Additive Schwarz with compact interface representation

Fig. 1. Central Finite Volume discretisation: compact grid interface, overlap is 5
per cent, grid is 81× 81.

coding of the Schwarz method with no change. As a matter of fact, the compu-
tation of dominant eigenvectors of the trace transfer operator can be seen as
a pre-processing step. This step may involve few independent parallel execu-
tions of one Schwarz iteration with the original code. Further the Aitken-like
acceleration procedure itself operates on the trace generated by the Schwarz
code and does not require any change in the data structure of the original
code. As shown in Garbey and Tromeur-Dervout [2002] this approach gives
efficient parallel implementation with slow network. This is the philosophy of
our ongoing work on metacomputing of elliptic problems.
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