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Summary. In this work we discuss parallel preconditioning techniques for the bido-
main equations, a non-linear system of partial differential equations which is widely
used for describing electrical activity in cardiac tissue. We focus on the solution of
the linear system associated with the elliptic part of the bidomain model, since it
dominates computation, with the preconditioned conjugate gradient method. We
compare different parallel preconditioning techniques, such as block incomplete LU,
additive Schwarz and multigrid. The implementation is based on the PETSc library
and we report results for a 16-node HP cluster. The results suggest the multigrid
preconditioner is the best option for the bidomain equations.

1 Introduction

The set of bidomain equations (see Keener and Sneyd [1998]) is currently the
mathematical model that best reflects the electrical activity of the heart. The
non-linear partial differential equations (PDEs) model both the intracellular
and extracellular domains of cardiac tissue from an electrostatic point of view.
The coupling of the two domains is done via non-linear models describing the
current flow through the cell membrane. Such models are based on experi-
mental data that quantify different ionic contributions, as first proposed by
Hodgkin and Huxley [1952].

Unfortunately, the bidomain equations are computationally very expen-
sive. Modern membrane models involve more than 20 non-linear equations.
One way to avoid the solution of a large non-linear PDE system at every time
step is to use an operator splitting approach (Vigmond et al. [2002], Sundnes
et al. [2001], Keener and Bogar [1998], Weber dos Santos [2002]). The nu-
merical solution reduces to the solution of a parabolic equation, a non-linear
system of ordinary differential equations, and an elliptic system. It is the latter
that dominates computation (Vigmond et al. [2002]).

An efficient way of solving the large linear algebraic system that arises
from the discretization of the bidomain equations has been a topic of re-
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search since 1994 (see Hooke et al. [1994]). Many different approaches have
been employed with the preconditioned conjugate gradient method (CG) be-
coming the standard choice for an iterative method. Diagonal preconditioner
was used for the bidomain equations by Eason and Malkin [2000], Skouib-
ine and Krassowska [2000]. Incomplete LU factorization (ILU) was imple-
mented by Pavarino and Franzone [2004], Street and Plonsey [1999], Vig-
mond et al. [2002]. The Symmetric-Successive-Over-Relaxation (SSOR) pre-
conditioner was investigated by Pennacchio and Simoncini [2002], Weber dos
Santos [2002]. In Weber dos Santos [2002] it was shown that incomplete fac-
torization and SSOR achieved comparable results and were at least two times
faster than the diagonal preconditioner.

Another way of reducing the computation time is cluster computing. The
use of such parallel environment is supported by standard communication
libraries such as the Message Passing Interface library [1994] (MPI). The
solution of the bidomain equations has been efficiently implemented with MPI
on small clusters (16 to 32 processors), see Pavarino and Franzone [2004],
Pormann [2000], Yung [2000], Weber dos Santos [2002].

In this work we focus on the solution of the linear algebraic system as-
sociated with the elliptic part of the bidomain model. We employ CG and
compare different parallel preconditioning techniques, such as block incom-
plete LU (ILU), the additive Schwarz method (ASM), and multigrid (MG).
Both overlapping and non-overlapping domain decomposition techniques are
investigated. The implementation is based on the PETSc C library (Balay
et al. [2002]), which uses MPI. The results taken from a 16-node HP-Unix
cluster indicate that the multigrid preconditioner is at least 13 times faster
than the single-level Schwarz-based techniques.

2 Mathematical formulation

We simulated a two-dimensional piece of cardiac tissue in contact with a
perfusing bath as previously described by Weber dos Santos et al. [2003], We-
ber dos Santos and Dickstein [2003]. The model that we present here was
successfully used to reproduce an in-vitro experiment which explored the ef-
fects of lapine cardiac tissue micro-structure (see Weber dos Santos et al.
[2003]). The simulated square region Ω = Ωt ∪Ωo with Ω̄t ∩ Ω̄o = Γto, where
Ωo accounts for the perfusing bath and Ωt for the cardiac tissue sample. The
geometric information of Ωt was extracted by image processing techniques and
is represented by a mask vector M , Mi,j = 1.0, for (i, j) ∈ Ωt, Mi,j = 0.0,
otherwise. In Figure 1 the tissue regions are represented by the gray color.

The bath was modeled as an isotropic conductor with conductivity σo.
The electric potential φo : Ωo × [0, tf ] → ℜ satisfies σo∆φo = 0. The cardiac
tissue is modeled by the bidomain equations.
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Fig. 1. Tissue geometry and fiber orientation extracted from a histological picture
(courtesy of E. Hofer and D. Sanchez-Quintana) (left). Solution of the extracellular
potential (φe and φo) at time 2.6ms (right).

χ

(

Cm
∂φ

∂t
+ f(φ, υ)

)

= ∇.(σi∇φ) + ∇.(σe∇φe), (1)

∇.((σe + σi)∇φe) = −∇.(σi∇φ), (2)

∂υ

∂t
= g(φ, υ), φ = φi − φe, (3)

where φe and φi: Ωt × [0, tf ] → ℜ are the extracellular and intracellular
potentials; φ: Ωt × [0, tf ] → ℜ is the transmembrane voltage; υ: Ωt × [0, tf ] →
ℜm represents the ionic current variables; σi and σe are conductivity tensors
of the intracellular and extracellular spaces; Cm and χ are capacitance per
unit area and surface to volume ratio respectively; f : ℜ × ℜm → ℜ and g:
ℜ×ℜm → ℜm model ionic currents and specify the cell membrane model. We
used the rabbit atrial model (m = 27) of Lindblad et al. [1996].

An image processing technique (see Weber dos Santos et al. [2003]) was ap-
plied to extract the cardiac fiber orientation θ: Ωt → ℜ. Conductivity tensors
were derived from the curved cardiac fibers based on θ by applying

σ∗ =

(

σ∗l cos2 θ + σ∗t sin2 θ (σ∗l − σ∗t) cos θ sin θ
(σ∗l − σ∗t) cos θ sin θ σ∗t cos2 θ + σ∗l sin2 θ

)

,

where σ∗l and σ∗t are longitudinal and transversal fiber conductivities (∗ =
i, e). The boundary conditions for the bath to tissue interface were set to (see
Krassowska and Neu [1994])

φe = φo, (4)

σe∇φe.η = σo∇φo.η, (5)

σi∇φi.η = 0, onΓto × [0, tf ]. (6)

The other boundaries are assumed to be electrically isolated, modeled by
imposing homogeneous Neumann-like conditions
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σi∇φi.η = σe∇φe.η = σo∇φo.η = 0, on∂Ω × [0, tf ]. (7)

The numerical results presented in the next sections were obtained with the
following parameters: Cm = 1 µF/cm

2
, χ = 2000 /cm, σil = 3 mS/cm, σit =

0.31 mS/cm, σel = 2 mS/cm, σet = 1.35 mS/cm and σo = 20 mS/cm. Ω is a
square of sides equal to 2.6mm.

3 Operator splitting and boundary conditions

We approached the non-linear system of PDEs with an operator splitting
technique (Strang [1968]). The solution reduced to a three-step scheme that
involved the solution of a parabolic PDE, an elliptic system, and a non-linear
system of ordinary differential equations at each time step. Since the CFL
condition of the parabolic PDE severely restricted the time step, we solved this
equation via the Crank-Nicolson method. The large non-linear ODE system
was solved via a forward-Euler scheme:

1. (1 −
∆t

2
Ai)ϕ

k+1/2 = (1 +
∆t

2
Ai)ϕ

k + ∆t Ai(ϕe)
k, (8)

2. ϕk+1 = ϕk+1/2 − ∆t f(ϕk+1/2, νk)/(χCm) (9)

νk+1 = νk + ∆t g(ϕk+1/2, νk) (10)

3. (Ai + Ae)(ϕe)
k+1 = −Aiϕ

k+1, (11)

Aoϕo
k+1 = 0, (12)

where Ai, Ae and Ao are the ∇.(σi∇)/(χCm), ∇.(σe∇)/(χCm) and σo∆
operators; ∆t is the time step; ϕk, ϕk

e , ϕk
o and νk are time discretizations of

φ, φe, φo and υ, respectively, for time equal to k∆t, with 0 ≤ k ≤ tf/∆t. A
von Neumann analysis of the linearized system shows that the above scheme
is unconditionally stable.

The elliptic equations of the third step are coupled by the boundary condi-
tions (4), (5) and (6). The implementation of these and the other homogeneous
Neumann-like conditions deserve further discussion. Without loss of general-
ity, we initially focus on equation (11). By writing the boundary condition in
the form −(σi + σe)∇ϕk+1

e .η = g, the compatibility condition is

∫

∂Ω

σi∇ϕk+1.η =

∫

Ω

∇.(σi∇ϕk+1) = −

∫

Ω

∇.((σi + σe)∇ϕk+1
e )

= −

∫

∂Ω

(σi + σe)∇ϕk+1
e .η,⇒

∫

∂Ω

(σi∇ϕk+1 − g).η = 0. (13)

Explicit schemes (see Latimer and Roth [1998], Skouibine and Krassowska
[2000], Saleheen and Kwong [1998]) have been implemented with boundary
conditions σi∇ϕk+1.η = −σi∇ϕk

e .η, σe∇ϕk+1
e .η = 0 on ∂Ω, applied to (8)

and (11), respectively. Condition (13) becomes
∫

∂Ω
σe∇(ϕk+1

e − ϕk
e).η = 0
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and thus does not always hold. Perhaps such violation was not critical for the
explicit schemes, since the CFL condition restricts ∆t to very small values. In
Sundnes et al. [2001], the following conditions were applied to (8) and (11):
σi∇ϕk+1.η = 0, −(σi + σe)∇ϕk+1

e .η = 0 on ∂Ω, which satisfy (13). These
conditions are equivalent to (7) only if σi = ασe, α ∈ ℜ, i.e., when both intra-
and extracellular domains have equal anisotropy ratios. Therefore, they were
used as approximations of (7), but did not properly implement the electric
isolation for the general case of unequal anisotropy ratios, which is the case
with cardiac tissue.

We implemented the following boundary conditions

σi∇ϕk+1.η = −σi∇ϕk
e .η, (14)

−(σi + σe)∇ϕk+1
e .η = σi∇ϕk+1.η on ∂Ω, (15)

applied to (8) and (11), respectively. (14)-(15) are natural approximations
of (7) and satisfy the compatibility condition (13). In addition, since we use
the finite element method, conditions (14)-(15) are naturally implemented by
the numerical scheme. The same properties apply to our bath-tissue interface
conditions and to the homogeneous Neumann condition for φo:

σo∇ϕk+1
o .η = σe∇ϕk+1

e .η, (16)

σi∇ϕk+1.η = −σi∇ϕk+1
e .η, onΓto. (17)

σo∇ϕk+1
o .η = 0 on∂Ω. (18)

All boundary conditions cancel each other in the variational formulation:

∫

Ωt

v∇.((σi + σe)∇ϕk+1
e ) +

∫

Ωo

vσo∆ϕk+1
o = −

∫

Ωt

v∇.(σi∇ϕk+1),

∫

Ωt

∇v(σi + σe)∇ϕk+1
e −

∫

∂Ω+Γto

v(σi + σe)∇ϕk+1
e .η +

∫

Ωo

∇vσo∇ϕk+1
o

−

∫

∂Ω+Γto

vσo∇ϕk+1
o .η = −

∫

Ωt

∇vσi∇ϕk+1 +

∫

∂Ω+Γto

vσi∇ϕk+1.η,

where v is a test function. Using (15)-(18), all boundary integrals vanish:

∫

Ωt

∇v(σi + σe)∇ϕk+1
e +

∫

Ωo

∇vσo∇ϕk+1
o = −

∫

Ωt

∇vσi∇ϕk+1,

which is used to generate the finite element numerical approximation

Ax = b, (19)

where A is the stiffness matrix, b is the load vector and x is the discretization
of φe and φo. A uniform mesh of squares and bilinear polynomials were used.
Spatial discretization was set to ∆x = 3.3µm and the time step to ∆t = 10µs.
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4 Parallel preconditioners

We used CG to solve the linear system (19). We compare different precon-
ditioners: ILU, additive Schwarz method (ASM) and multigrid (MG). The
solution of (19) is implemented in parallel using the PETSc C library v2.1.5
(Balay et al. [2002]), which uses MPI. CG is parallelized via a linear domain
decomposition. The spatial domain is decomposed into proc domains with
equal sizes, where proc is the number of processors involved in the simulation.

The non-overlapping parallel version of the ILU preconditioner uses block
Jacobi, i.e., an incomplete factorization is performed over the main diagonal
block of the local part of the matrix A, thus avoiding extra communication.
ILU has as parameter the level of fill-in, fill.

The ASM preconditioner implements an overlapping decomposition of the
spatial domain Ω. Each processor block overlaps to the neighboring domain
block by the amount ovl. An ILU is performed over each processor block. A
greater ovl means more communication is necessary between the processors.
The way the overlapping regions affect the residual can be controlled by the
parameter method (basic, restrict, interpolate or none, see Balay et al. [2002],
Cai and Sarkis [1999]).

The MG preconditioner performs a few iterations of PETSc’s native geo-
metric multigrid method. The parameter levels indicates the number of dif-
ferent spatial grids involved in the solution. Based on the finest regular grid
G0, coarser regular grids were successively generated with half of the nodes
on each direction (Gl, l = 0 to levels− 1). For each grid pair, Gl and Gl+1, a
prolongation rectangular matrix, Pl, was generated using a bilinear interpo-
lation scheme. The restriction operators were set to PT

l and used to generate
coarser tissue masks and conductivity tensors. For every grid level, a matrix
Al was generated by applying the finite element method. The smoother used
for all but the coarsest level was a number of iterations, smooth, of the CG
method which was, in turn, also preconditioned by ILU. For the coarsest level,
we used a direct LU solver with nested dissection reordering. This was not
done in parallel, i.e., it was repeated on every processor, avoiding any com-
munication. In addition to the parameters levels, smooth and fill, we could
control the type of multigrid (multiplicative, additive, full and kaskade) and
the cycle (v or w) (Balay et al. [2002]).

All complete and incomplete factorizations were performed only once, in
the first time step of the simulation, so that the cost was amortized over
the whole simulation. For the global preconditioned CG algorithm associated
with (19) the stop criterion adopted was based on the unpreconditioned and
absolute L2 residual norm, ||Axi − b||2 < tol, where xi was the solution at
iteration i and tol was a tolerance which was set to 10−3. Although this is not
the most efficient stop criteria for the CG, it is the fairest one when comparing
different preconditioning methods.
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5 Results

We performed several comparisons of the different preconditioners on a 16-
node HP Unix cluster, each node equipped with McKinley 900 MHz processors
and 2 GB of DRAM and connected by a 1Gbit/s Ethernet switch. The elec-
trical activity was initiated on the left side of the 2.6 × 2.6 mm tissue-bath
preparation (640,000 nodes) and propagated to the right (see figure 1). The
performance measurements reported in this section are relate to the solution
of the elliptic system which is responsible for around 70% of the whole sim-
ulation time. We simulate 10ms of electrical activity (100 time steps). It is
interesting to note that if the parabolic equation (8) was solved with an ex-
plicit method such as the forward-Euler method, the CFL condition would
severely restrict ∆t. An approximation of the CFL condition can be derived
by assuming equal anisotropy ratios (σi = ασe) and straight fibers:

∆t ≤
χCm∆x2

2(σl + σt)
= 0.07µs, (20)

where σ∗ = σi∗σe∗/(σi∗ + σe∗) , (∗ = l, t). Numerically we verified that with
∆t = 0.07µs the forward-Euler scheme already did not converge. Thus, the
semi-implicit based scheme allows ∆t to be more than 100 times greater than
one restricted by an explicit based method.

5.1 Parameter tuning

Several preconditioner parameters were tuned: fill for ILU; method, ovl and
fill for ASM; levels, type, cycle, smooth and fill for MG. Table 1 shows for
different numbers of processors, the optimal parameter values, those combi-
nations yielding the fastest execution time. The parameter fill was set to 0,
1, 2, 5, 10, and 15; method to basic, interpolate, restrict and none; ovl to 1,
2, 4, 6, 8 and 10; levels to values from 2 to 7; type to multiplicative, additive,
full and kaskake; cycle to v and w; and smooth to values from 1 to 3. In
addition, all parameters were tuned for best execution time on 1, 8 and 16
processors. A total of 3042 simulations were performed during more than two
weeks of computation time.

ILU ASM MG
proc fill method ovl fill levels type smooth fill

1 15 3 kaskade 1 0

8 5 basic 4 10 6 kaskade 1 0

16 5 basic 4 10 6 kaskade 1 0

Table 1. Values of parameters leading to the quickest solution time as a function
of the number of processors (proc).
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For the ILU preconditioner, as proc increased from 1 to 16, the optimal
value for fill decreased from 15 to 5, i.e., as the domain was decomposed, it
became less effective to increase fill since the preconditioner became more
expensive, but did not speed up the convergence. This was improved by ASM
which took advantage of higher values of fill by increasing communication,
i.e., increasing ovl. The optimal values were ovl = 4 and fill = 10. For MG,
the optimal value of levels depended on proc. On a single processor, levels = 3
was fastest. In parallel, since the coarsest grid was solved sequentially, the
cost of fewer grid levels rivaled the gains of parallelism. Therefore, as proc
increased, the optimal levels also increased to 6. The other MG parameters
indicate that the cheapest MG method was the best option, i.e, the kaskade
method with a single iteration of the CG smoother preconditioned by ILU(0).
On the other hand, the best ASM method was the expensive basic one which
included all off-processor values in the interpolation and restriction processes.

5.2 Performance comparison and parallel speedup

Table 2 shows the execution time and number of CG iterations/time step
as well as memory consumption (mem(MB))/processor for all preconditioners
with the optimal parameters. The ASM preconditioner achieved better perfor-
mance results than the non-overlapping ILU. ASM was 1.4 (1.5) times faster
than ILU but required 20% (55%) more memory than ILU on 8 (16) procs.
MG was between 15.5 (proc = 1) and 20.6 (procs=8) times faster than ILU
and it required between 44% less memory (proc=1) and 7% more memory
( procs=8) than ILU. Compared to ASM, MG was 14.9 (13.7) times faster
than ASM and required 11% (32%) less memory than ASM on 8 (16) proces-
sors. All preconditioners achieved low parallel speedup (execution time with

1 proc 8 procs 16 procs

t(s) it mem(MB) t(s) it mem(MB) t(s) it mem(MB)

ILU 96.2 98.7 1157.2 28.8 428.5 96.6 20.1 540.8 50.1

ASM 20.9 205.9 116.2 13.7 228.3 77.7

MG 6.3 7.7 649.6 1.4 11.3 103.4 1.0 13.6 52.5

Table 2. Best results of the preconditioners for different numbers of processors.
Execution time per time step in seconds, t(s); CG iterations per time step, it; and
memory usage per processor in MBytes, mem(MB).

proc=1/execution time) results with procs=16: 4.8 for ILU; 7.0 for ASM (re-
lated to ILU with proc=1); and 6.3 for MG. The reason was mainly due to
the increase of the CG iterations with proc. The number of iterations was in-
creased by a factor of 5.6 (2.4) by increasing proc from 1 to 16 for ILU (ASM).
MG suffered less from this problem with an increase of only 1.7 times. Never-
theless, the speedup was poor. We believe the explanation lies for MG in the
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sequential direct solver. The cost of this was not reduced by increasing proc,
and, thus, limited the total parallel speedup. For smaller proc, all precondi-
tioners presented reasonable speedup, around 4.5 with proc=8.

5.3 Conclusions

In this work, we employed the conjugate gradient algorithm for the solution of
the linear system associated with the elliptic part of the bidomain equations
and compared different parallel preconditioning techniques, such as ILU, ASM
and MG. The results taken from a 16-node HP-Unix cluster indicate that
the multigrid preconditioner is at least 13 times faster than the single-level
Schwarz based techniques and requires at least 11% less memory.
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