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Summary. In this contribution, we are concerned with electrothermomechanical
coupling problems as they arise in the modeling and simulation of high power elec-
tronic devices. In particular, we are faced with a hierarchy of coupled physical effects
in so far as electrical energy is converted to Joule heat causing heat stresses that
have an impact on the mechanical behavior of the devices and may lead to mechani-
cal damage. Moreover, there are structural coupling effects due to the sandwich-like
construction of the devices featuring multiple layers of specific materials with dif-
ferent thermal and mechanical properties. The latter motivates the application of
domain decomposition techniques on nonmatching grids based on individual finite
element discretizations of the substructures. We will address in detail the modeling
aspects of the hierarchy of coupling phenomena as well as the discretization-related
couplings in the numerical simulation of the operating behavior of the devices.

1 Introduction

We consider the application of heterogeneous domain decomposition method-
ologies in the simulation of electrothermomechanical coupling problems. Such
multiphysics coupling problems occur in many applications such as Micro-
Electro-Mechanical-Systems (MEMS) and in high power electronics. In the
latter case, a characteristic feature of the operational behavior of the de-
vices and systems is that electric energy is converted to Joule heat causing
heat stresses which in turn lead to deformations of the underlying mechanical
structure and even to damage, if no appropriate cooling is provided.
Basically, the modeling is done in the macroscopic regime by using a contin-
uum mechanical approach. On the other hand, failure mechanisms such as
crack initiation and propagation strongly depend on microstructural details
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which additionally are taken into account by means of an empirical crack
model.
As algorithmic tools in the numerical simulation of the appropriately dis-
cretized coupled system of PDEs, we use adaptive multilevel methods and
domain decompositions on nonmatching grids. As we shall see, the decom-
position of the computational domain is in a natural way given by the ge-
ometrical structure of the devices featuring subdomains of strongly different
aspect ratios and consisting of materials with largely different thermomechan-
ical properties.
The paper is organized as follows: In section 2, as an example for a device
whose operational behavior is based on electrothermomechanical coupling, we
consider an Integrated High Voltage Module. Section 3 provides the math-
ematical modeling of the coupling problem, whereas section 4 addresses the
algorithmic tools used in the numerical simulation. Finally, in section 5 we
present simulation results illustrating the distribution of the temperature and
equivalence stresses as well as the initiation of cracks in critical parts of the
module.

2 Integrated High Voltage Modules

In high power electronics, Integrated High Voltage (IHV) Modules are used
as converters for high power electromotors. They consist of specific semicon-
ductor devices, as for instance, Insulated Gate Bipolar Transistors (IGBTs)
and power diodes serving as switches for the electric currents (see the topmost
blocks in Figure 1 referred to as Ω1 in the sequel).

Wire bonds
(300 µm)

IGBT, Diode (3300 V)

Hard cast

AIN-DCB-Substrate

Cu ground plate

Current contacts (300A ... 1800 A) Housing

Soft cast

Soldered
joints

Fig. 1. Schematic representation of an Integrated-High-Voltage Module

Due to high currents up to several kiloamperes, electric energy is converted
to Joule heat which leads to a considerable self-heating of the device. In order
to facilitate an appropriate distribution of the heat, these blocks are fixed on
several layers of different materials (copper and aluminum-nitride) attached
to each other by thin soldered joints. The union of these blocks will be denoted
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by Ω2. Finally, the copper ground plate is mounted on a cooling device. With
regard to failure, the critical parts of the device are the wire bonds connecting
the current contacts with the semiconductor devices and the soldered joints.

3 The mathematical model

The operational behavior of the IHV Module involves processes on two dif-
ferent time scales: There is a fast time scale which is the operation of the
semiconductor devices having switching times of less than 100 nanoseconds,
and there is a slow time scale with regard to the temporal evolution of the
temperature in the module which occurs in the range of minutes.
As a model simplification, these two processes are decoupled in the sense that
the semiconductor device equations, considered in Ω1, are treated first to com-
pute the generated Joule heat as an input for the heat equation considered in
Ω2.
We use the classical drift-diffusion model consisting of a potential equation
for the electric potential ψ that is coupled with the continuity equations for
the carrier concentrations n and p where Jn and Jp denote the densities of
the electrons and holes, respectively.

− ∇ · ε∇ψ + Ndop(n, p) + q(n− p) = 0 , (1)

∂n

∂t
= + q−1∇Jn + G(Jn,Jp,E) − R(n, p) , (2)

∂p

∂t
= − q−1∇Jp + G(Jn,Jp,E) − R(n, p) , (3)

Jn = − q µn n ∇ψ , Jp = − q µp p ∇ψ . (4)

Here, q stands for the elementary charge, whereas µn and µp refer to the
mobilities of the electrons and holes. Moreover, E = −∇ψ is the electric field
whereas Ndop , G and R refer to the doping profile, the generation and the
recombination. The dominant heat source is Joule heat HJ = |Jn|

2/(qµnn)+
|Jp|2/(qµpp), while other sources based on the Seebeck and Nernst effect can
be neglected.
The temporal and spatial distribution of the temperature T is described by the
heat equation considered in the domain Ω2 occupied by the aluminum-nitride
and copper blocks as well as the joints.

ρ c
∂T

∂t
= ∇ · (κ ∇T ) in Q2 := Ω2 × (t0, t1) , (5)

n · κ ∇T = HJ(t) on Γ0 × (t0, t1) , (6)

n · κ ∇T = h (T ∗ − T ) on Γ1 × (t0, t1) , (7)

n · κ ∇T = 0 on Γ2 × (t0, t1) , (8)

T (·, t0) = T0(·) in Ω2 . (9)
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Here, ρ , c, and κ stand for the density, heat capacity, and heat conductivity,
respectively. The Joule heat through the part Γ0 of the upper boundary of the
computational domain Ω2 attached to the semiconductor devices serves as the
source term. We further assume a heat exchange at the lower boundary Γ1

between the copper ground plate and the cooling device where h stands for the
heat transition coefficient and T ∗ denotes the ambient temperature. On the
other boundaries of Ω2 we assume perfect insulation. We note that the thermal
properties of the materials such as the heat capacity and the heat conductivity
are quite different which means that we experience jumping coefficients across
subdomain boundaries. As mentioned before, the self-heating of the devices
leads to heat stresses causing mechanical deformations. For all parts of the
module except the wire bonds and the joints, we assume the equations of
linear elasticity:

div σ(u) =
α (1 − ν) E

(1 + ν) (1 − 2ν)
∇(T − T0) in Ω2 , (10)

u = 0 on Γ1 , n · σ(u) = 0 on Γ0 ∪ Γ2 . (11)

Here, u and σ(u) stand for the displacement vector and the stress tensor.
Moreover, α denotes the thermal expansion coefficient, and E and ν refer
to Young’s modulus and Poisson’s ratio which are also strongly different for
the various materials. The wire bonds and the solders are possibly subject to
plastic deformation. Here, we assume stationary plasticity with the von Mises
yield criterion where the set K of admissible stresses is given in terms of the
Frobenius norm ‖ · ‖F of the deviatoric stress tensor and the von Mises yield
stress σY by K := {σ | ‖dev(σ)‖F ≤

√

2/3 σY }. The computational domains
are those occupied by the wires and the joints, respectively.
Cracks typically occur in the bonding zone where the wires are attached to
the chips and in the soldered joints ([Ramminger, Seliger, and Wachutka,
2000]). There exist empirical crack models that are based on macroscopic
data combined with microstructural data due to the nucleation and growth of
pores. For instance, the modified Gurson-Model ([Tvergaard, 1989]) consists
of a flow rule that reduces to the von Mises yield rule in case of vanishing
voids in the microstructure of the material:

σ2
E

σ2
Y

− 1 + 2 q f cosh((2σY )−1σii) − (q f)2 = 0 . (12)

Here, σE refers to the von Mises equivalence stress and σY stands for the
yield stress whereas σii is the trace of the Cauchy stress tensor. Moreover, f
denotes the pore volume fraction and q is a material parameter.

In case of plastic deformation, micropores nucleate and grow at places
of defects in the crystallographic structure. The pore evolution consists of
two parts, namely the nucleation of pores and the growth of already existing
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pores. For the latter, the growth rate is assumed to be proportional to the
hydrostatic part of the stress tensor whereas the nucleation part is controlled
by the plastic deformation. Altogether, this leads to an evolution equation for
the pore volume fraction f :

∂f

∂t
= (1 − f)

∂ε
p
ii

∂t
+ dN exp(−

1

2

(εp
M − εN )2

sN

)
∂εN

∂t
, f(t0) = f0 . (13)

Here,
∂ε

p

ii

∂t
is the trace of the plastic equivalent rate tensor, εN stands for

the mean nucleation equivalent plastic strain and εp
M denotes the equivalent

plastic strain of the matrix material. Moreover, sN refers to the standard
deviation and dN is a material parameter depending on the volume fraction
of void nucleating particles.

4 Algorithmic tools for numerical simulation

The discretization of the drift diffusion model (1)-(4) is done by conforming P1
elements for the potential equation and mixed hybrid finite elements involving
the lowest order Raviart-Thomas elements RT0(K),K ∈ Th, for the continuity
equations with respect to an adaptively generated hierarchy of triangulations
Th of Ω1. Denoting by Pk(D), k ∈ lN0, the set of polynomials of degree k on
D and by F int

h the set of interior faces of Th, we set

RT−1
0 (Ω1; Th) :=

∏

K∈Th

RT0(K) ,

W0(Ω1; Th) := {vh : Ω1 → lR | vh|K ∈ P0(K) , K ∈ Th} ,

M0(Ω1;F
int
h ) := {µh : ∪F∈Fint

h
F → lR | µh|F ∈ P0(F ) , F ∈ F int

h } .

The discretized continuity equations are solved by a Gummel type iteration
where each iteration step requires the solution of the following problem (cf.,
e.g., [Brezzi, Marini, and Pietra, 1989]):
Find (jh, uh, λh) ∈ RT−1

0 (Ω1; Th) ×W0(Ω1; Th) ×M0(Ω1;F int
h ) such that for

all qh ∈ RT−1
0 (Ω1; Th) , vh ∈ W0(Ω1; Th), and µh ∈M0(Ω1;F int

h ) there holds

∑

K∈Th

(

∫

K

a−1jh · qhdx +

∫

K

uh divqhdx−
∑

F∈Fh(K)

∫

F

λh[nF · qh]Jdσ
)

= 0,

∑

K∈Th

(

∫

K

divjh vhdx−

∫

K

buhvh dx
)

= −

∫

Ω

fvh dx,

∑

K∈Th

∑

F∈Fh(K)

∫

F

µh [nF · jh]Jdσ = 0 .
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Here, [nF · jh]J denotes the jump of the normal component of jh across in-
nerelement faces F ∈ Fh(K). Static condensation of jh and uh in the resulting
algebraic saddle point problem leads to a Schur complement system which
can be shown to be equivalent to a nonconforming Petrov-Galerkin approach
([Brezzi, Marini, and Pietra, 1989]). Denoting by CR1(Ω1; Th) the lowest or-
der nonconforming Crouzeix-Raviart space and by B(Ω1; Th) the space of
quartic bubble functions associated with each K ∈ Th, the problem is to find
uNC ∈ CR1(Ω1; Th) ⊕B(Ω1; Th) such that for all vh ∈ CR1(Ω1; Th)

∑

K∈Th

∫

K

[

Pa−1(a ∇uNC) · ∇vh + b PuNC Pvh

]

dx = (Pf, vh)0;Ω1
.

where P : L2(Ω1) → W0(Ω1; Th) and Pa−1 : L2(Ω1)
2 → RT−1

0 (Ω1; Th) are
the orthogonal L2- resp. weighted L2-projection. Taking advantage of this
equivalence, a multilevel preconditioned iterative solver can be used, where the
multilevel preconditioner is the associated conforming one, put into effect by
transforming the nonconforming Crouzeix-Raviart space onto its conforming
counterpart (for details as well as for the realized adaptive grid refinement
based on a residual-type a posteriori error estimator we refer to [Hoppe and
Wohlmuth, 1997]).

As far as the discretization of the thermomechanical coupling problem
is concerned, we discretize in time by embedded Singly Diagonally Implicit
Runge Kutta (SDIRK) methods. For discretization in space, we use domain
decomposition methods on nonmatching grids. We consider a nonoverlapping,
geometrically conforming decomposition Ω2 = ∪n

i=1Ω2,i , Ω2,i ∩Ω2,j = ∅, 1 ≤
i 6= j ≤ n, of the computational domain given by the sandwich like structure of
the module (cf. Figure 1) and refer to S = ∪n

i=1(∂Ω2,i\∂Ω2) as the skeleton of
the decomposition. As we can see from the schematic representation of the IHV
Module, we are faced with subdomains of different aspect ratios. Moreover,
we know that the thermal and mechanical properties of the materials in the
individual subdomains are quite different resulting in strongly discontinuous
coefficient of the heat and mechanical equations across subdomain boundaries.
Therefore, we use individual triangulations Ti of the subdomains Ω2,i that do
not necessarily match on the interfaces between adjacent subdomains and
take care of the resulting nonconformity by mortar element methods based
on discretizations of the subdomain problems by continuous, piecewise linear
finite elements denoting by S1,ΓD

(Ω2,i; Ti) the associated finite element spaces.
For Γij ⊂ S, we refer to γm

ij and γnm
ij as the mortar and nonmortar inheriting

its triangulations from Ti and Tj , respectively. We construct the multiplier
space Mh(γnm

ij ) in the meanwhile standard way under special consideration of

cross points. Setting Vh =
∏n

i=1 S1,ΓD
(Ω2,i; Ti) and Mh =

∏

Γij⊂S Mh(γnm
ij ),

the mortar finite element approach reads as follows: Find (uh, λh) ∈ Vh ×Mh

such that
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ah(uh, vh) + bh(vh, λh) = ℓ(vh) , vh ∈ Vh , (14)

bh(uh, µh) = 0 , µh ∈Mh , (15)

where a(·, ·) : Vh × Vh → R is the bilinear form associated with the FE
discretized subdomain problems and

bh(vh, µh) = −
∑

Γij⊂S

∫

Γij

µh [vh]J dσ

is the bilinear form that realizes the weak continuity constraints across the
interfaces. The resulting algebraic saddle point problem is solved by multi-
level preconditioned Lanczos iterations with a block diagonal preconditioner,
where the first diagonal block consists of subdomain preconditioners, that
can be chosen as, for instance, BPX-preconditioners for the discretized sub-
domain problems, and the second diagonal block is an interface preconditioner
being spectrally equivalent to the Schur complement resulting from static con-
densation (for details we refer to [Hoppe, Iliash, Kuznetsov, Vassilevski, and
Wohlmuth, 1998]).
The stationary plasticity problems for the joints and the wire bonds have been
solved by the standard return-mapping algorithm.

5 Simulation results

Based on the mathematical models and the numerical methods described in
the previous sections, we have performed simulations of the operational behav-
ior of the IHV Module. Figure 2 displays the distribution of the temperature
and the von Mises equivalence stresses in a cross section of the upper soldered
joints. Temperature peaks of more than 1000C and the largest equivalence
stresses occur in the center of the joints located below the IGBTs and power
diodes. The simulation results are in good agreement with experimentally
observed data.

Fig. 2. Temperature distribution (left) and distribution of the equivalence stresses
(right) in the upper soldered joint
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We further consider the initiation and propagation of cracks in the wire
bonding zone. Figure 3 shows a light microscopy of a crack opening in the wire
bonding zone (left) as well as the plastic strain behavior at the beginning
of the bonding zone (right) along the interface direction (solid lines) and
perpendicular to it (dotted lines). Close to the crack tip, the wire is under
tension in x-direction (upper curves) and under compression in y-direction
(lower curves).
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Fig. 3. Light microscopy of a crack (left) and the computed plastic strain at the
beginning of the bonding zone (right)
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