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Summary. For flow problems in multi-layered porous media, one can define a natu-
ral non-overlapping domain decomposition (DD). The simplest way to obtain DDMs
is to distribute interface conditions (pressure and flux continuity) for each pair of
adjacent subdomains and to use the Dirichlet-Neumann (D-N) algorithm. A differ-
ent way is the use of two Robin conditions (RC) also distributed for each subdomain
(Robin-Method). The main inconvenience of both methods is that the convergence
is not ensured. To obtain efficient methods, we retain from previous works two basic
ideas: an acceleration of Aitken type for the D-N algorithm and finding optimized
coefficients for the Robin-Method. In the present paper, we analyze these improved
algorithms in 1-D and 2-D framework for flow problems in heterogeneous porous
media and we present a numerical comparison.

1 Introduction

Flow in heterogeneous porous media is to be solved in many hydrological
or engineering applications, as oil recovery (Faille et al. [2001]), earthquake
prediction (Calugaru et al. [2002]), radioactive wastes, etc. The reservoir is
usually a multi-layered domain composed by some superposed aquifers sep-
arated by less permeable layers. In addition, fractured zones can divide the
domain in blocks which can slide between each other. The steady one phase
flow equation in saturated porous media is derived from the mass conservation
law and the linear Darcy’s law and can be written (in its simplest form) as:

−div (k∇u) = f (1)

where the unknown u is the pressure, k is the permeability and f denotes a
possible sink/source term. Obviously, the flow problem is obtained by adding
some boundary conditions. For the multi-layered porous media, each layer is
assumed homogeneous and the permeability is a piecewise constant function.
Therefore, the interfaces between the layers represent the discontinuities of the
permeability, but the intrinsic variables (pressure and flux) are continuous in
all the domain, notably on interfaces.
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2 Non-overlapping DDMs

From the DD point of view, the geological layers induce a natural non-
overlapping decomposition. The DD being already set, we must define appro-
priate algorithms to obtain efficient DDMs. For simplicity of the description,
we consider only two layers, i.e. the domain Ω is decomposed in two subdo-
mains Ω1, Ω2, with Γ the common interface and ki the permeability of layer
i. The steady flow problem can be written as a transmission problem:

−k1∆u1 = f in Ω1 , −k2∆u2 = f in Ω2 (2)

u1|Γ = u2|Γ , k1∂u1/∂n1|Γ = −k2∂u2/∂n2|Γ (3)

with appropriate boundary conditions on ∂Ω.
The multiplicative D-N algorithm requires to solve successively (n ≥ 0):

{
−k1∆un+1

1 = f in Ω1

un+1
1 |Γ = un

2 |Γ

{
−k2∆un+1

2 = f in Ω2

−k2∂un+1
2 /∂n2|Γ = k1∂un+1

1 /∂n1|Γ

Since it uses both physical interface conditions (3), this algorithm seems the
simplest and the most adapted to the physics of the problem.

An alternative to the D-N algorithm is the Robin-Method in which
weighted sums of physical conditions are used:

α1 u1|Γ + β1 k1∂u1/∂n1|Γ = α1 u2|Γ − β1 k2∂u2/∂n2|Γ
α2 u2|Γ + β2 k2∂u2/∂n2|Γ = α2 u1|Γ − β2 k1∂u1/∂n1|Γ

(4)

The use of RC for non-overlapping DD has been firstly proposed by P.-L. Li-
ons (Proc. DDM3, 202-223, 1990). It is easy to prove that, if α1β2+α2β1 6=0,
then conditions (3) and (4) are algebraically equivalent. In addition, condi-
tions αiβi ≥ 0 have to be verified to obtain well-posed sub-problems. Since
conditions (3) can be obtained from (4) by considering α1=β2=1, α2=β1=0,
the D-N algorithm could be seen like a particular case of Robin-Method.

Both algorithms present the same inconvenience: the convergence is not en-
sured. Indeed, as shown in the next sections, the convergence of the Dirichlet-
Neumann algorithm depends on the interface conditions distribution between
the domains, while the convergence of the second algorithm depends on the
choice of the Robin’s coefficients αi, βi.

3 Improved non-overlapping DDMs

To cure such an inconvenience, several methods have been already proposed
in DD literature (with or without overlap) for linear elliptic problems.

A recent method is an acceleration of Aitken type of the iterative solutions
obtained by Schwarz algorithm and restricted to the interfaces. This method
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has been introduced by Garbey and Tromeur-Dervout (Proc. DDM12, 325-
339, 2000), and studied theoretically and numerically by Garbey and Tromeur-
Dervout [2002] for the additive Schwarz algorithm and 1-D decompositions.
Some numerical experiences have also been described for the D-N algorithm.
The basic idea of the Aitken technique is to accelerate independently each
mode of the sine expansion of the iterative solutions restricted to the inter-
faces. In these papers, the method is developed at semi-discrete level (the
problem is uniformly discretized in the interface direction). Some develop-
ments have been proposed to generalize Aitken acceleration for irregular grids
(Baranger et al., Proc. DDM13, 287-294, 2001) or for non-matching grids
(Baranger et al., Proc. DDM14, 341-348, 2002). The case of 2-D decomposi-
tions is treated considering some 1-D decompositions in a recursive manner
(Garbey and Tromeur-Dervout, Proc. DDM13, 53-65, 2001) or accelerating
the signals obtained by representing the discrete interface solutions in Fourier
spaces (Calugaru and Tromeur-Dervout, Proc. Parallel CFD 2003, to appear).

A second method is to find RC which allow a fast convergence. This idea
has been introduced by Després et al. [1992] for Helmholtz and Maxwell prob-
lems, and by Nataf et al. [1994] for convection-diffusion equations. It has been
also used for flow problems in heterogeneous porous media (Faille et al. [2001]).
In general, one can suppose βi = 1 and then only αi coefficients are searched.
Optimized Robin conditions (ORC) could be also introduced as the best ze-
roth order approximations of optimal interface conditions (see for instance,
Gander et al. [2002] for Helmholtz equation). In this context, it is possible
to define other interface conditions (as for example, second order approxima-
tions), but which are not investigated in this paper.

A third method (the first in chronological order) was proposed by Funaro,
Quarteroni and Zanolli (SIAM J. Num. Anal., 25(6), 1213-1236, 1988) and
consists of modifying the multiplicative D-N algorithm by using a relaxation
procedure at the end of each iteration. If the relaxation parameter is conve-
niently chosen, then the convergence is obtained.

In the next sections, for flow problems in multi-layered porous media, we
investigate only two multiplicative algorithms: the D-N algorithm accelerated
by an Aitken technique (A-D-N) and the Robin-Method. The convergence of
these methods is studied in 1-D and 2-D frameworks and a numerical com-
parison is presented.

4 Convergence in 1-D framework

Let us consider the problem (2)-(3) for Ω = (a, b), with Dirichlet boundary
condition uD and Γ = {λ} ⊂ (a, b) the common interface.

The (multiplicative) Robin-Method reads:
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−k1(u
n+1

1 )
′′

= f in (a, λ)
un+1

1 (a) = uD(a)

α1 un+1

1 (λ) + β1 k1(u
n+1

1 )
′

(λ) = α1 un
2 (λ) + β1 k2(u

n
2 )

′

(λ)






−k2(u
n+1
2 )

′′

= f in (λ, b)
un+1

2 (b) = uD(b)

α2 un+1
2 (λ) − β2 k2(u

n+1
2 )

′

(λ) = α2 un+1
1 (λ) − β2 k1(u

n+1
1 )

′

(λ)

where u0
2(λ), (u0

2)
′

(λ) are arbitrarily chosen.
To analyze the convergence of this algorithm, it suffices by linearity to

consider homogeneous problem (f ≡ 0, uD ≡ 0) and to analyze convergence
to zero. Solving successively the above ODEs and denoting d1=λ−a, d2=b−λ,
we obtain un+2

1 (λ)=ρ(α1, β1, α2, β2)u
n
1 (λ), with the convergence rate:

ρ(α1, β1, α2, β2) =
α1d2 − β1k2

α1d1 + β1k1

·
α2d1 − β2k1

α2d2 + β2k2

(5)

4.1 Aitken-Dirichlet-Neumann algorithm

For he D-N algorithm the convergence rate becomes: ρDN = −d2/d1 · k1/k2.
Therefore, the convergence of the D-N algorithm is determined only by the
ratios of subdomains lengths and of permeabilities. These values being fixed,
if the algorithm diverges, it is not possible to adjust any parameter to achieve
convergence. The only one possibility is the inter-changing of the interface
conditions, but this technique is not easy to handle in practice, where complex
basins presenting many porous blocks with extreme contrasts in permeability
have to be taken into account. Moreover, in some situations the inter-changing
of the interface conditions may lead to an ill-posed problem (only Neumann
conditions on all boundaries of a subdomain), which is the typical “danger”
of the D-N algorithm.

To transform the D-N algorithm into an attractive algorithm, we use the
Aitken acceleration of the traces of the iterative solutions on the common
interface. This method is based on the linear behavior of the error at interfaces
for the D-N algorithm applied to a linear elliptic operator, as it is here. Indeed,
as shown by Garbey and Tromeur-Dervout [2002] in linear cases, the error of
the multiplicative D-N algorithm satisfies:

un+1

2 (λ) − u∞
2 (λ) = δ(un

2 (λ) − u∞
2 (λ)) for all n ∈ N (6)

The first step of the Aitken technique is to compute the damping factor δ.
For the considered problem, its value is already known (it is exactly ρDN ).
Then, we can pass directly to the Aitken acceleration step, which gives the
exact value u∞

2 (λ) from (6) as follows: u∞
2 (λ)=(u1

2(λ)−δu0
2(λ))/(1−δ), after

one D-N iteration. An additional iteration suffices to obtain solution in all
domain. In conclusion, for the considered problem, we need only two iterations
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of D-N algorithm. For other problems, the second step remains non-changed,
but only the first step (computation of δ) is modified. This can be done in
analytical way, when the operator is still relatively simple. Elsewhere, one can
compute the damping factor δ numerically, by performing two iterations of
D-N algorithm (and using the obtained iterative solutions on the interface in
(6), for n = 0, 1). Therefore, in the general linear case, we need three iterations
of D-N algorithm to obtain the exact solutions in all domain.

4.2 Optimized Robin-Method

In 1-D framework, the coefficients that minimize the convergence rate are
obtained immediately from (5). Indeed, considering β1=β2=1, we obtain
ρORC=0 for the following optimal coefficients: α1,opt = k2/d2, α2,opt = k1/d1.
Consequently, after only one iteration one obtains exact interface values. As
for the A-D-N algorithm, an additional iteration (using exact interface val-
ues) allows the complete computation of the solution. Then, for the considered
problem, this method requires only two iterations.

If we have a different problem to solve, the convergence rate expression
must be analytically deduced and one obtains a relation similar to (5). For
usual operators, optimal coefficients can be directly deduced from such an ex-
pression in order to obtain a null convergence rate. Then, the exact solution is
still obtained after only two iterations. However, a more complicated operator
can lead to a more complicated expression of the convergence rate, and it is
possible to be not able to deduce analytically the optimal coefficients or/and
the optimal rate is not zero. In this case, a numerical optimization procedure
can be used or/and the method is not exact, but iterative.

5 Convergence in 2-D framework

Consider now the problem (2)-(3) in 2-D framework. Firstly, we consider an
infinite domain Ω = R

2, with Ω1 = (−∞, 0)×R, Ω2 = (0,∞)×R and suppose
that the solution is bounded. Using the Fourier transform in the y direction
(with ξ the frequency variable), the Robin-Method yields in Fourier space:
{
−k1[(û

n+1

1 )xx(x, ξ) − ξ2ûn+1

1 (x, ξ)] = f̂(x, ξ), in (−∞, 0) × R

α1û
n+1

1 (0, ξ) + β1k1(û
n+1

1 )x(0, ξ) = α1û
n
2 (0, ξ) + β1k2(û

n
2 )x(0, ξ), ξ ∈ R

{
−k2[(û

n+1

2 )xx(x, ξ) − ξ2ûn+1

2 (x, ξ)] = f̂(x, ξ), in (0,∞) × R

α2û
n+1

2 (0, ξ) − β2k2(û
n+1

2 )x(0, ξ) = α2û
n+1

1 (0, ξ) − β2k1(û
n+1

1 )x(0, ξ), ξ ∈ R

As in 1-D framework, solving successively the above ODEs with bounded-
ness conditions for ûn+1

1 , ûn+1

2 , we obtain the convergence rate:

ρ(α1, β1, α2, β2, ξ) =
α1 − β1k2|ξ|

α1 + β1k1|ξ|
·
α2 − β2k1|ξ|

α2 + β2k2|ξ|
, ∀ξ ∈ R (7)



534 Dan-Gabriel Calugaru and Damien Tromeur-Dervout

5.1 Aitken-Dirichlet-Neumann algorithm

For the D-N algorithm, the convergence rate becomes: ρDN (ξ) = −k1/k2, for
all ξ ∈ R, i.e. all frequency components have the same convergence rate.
Then, the algorithm converges or diverges according to the distribution of
interface conditions in the two subdomains. This convergence rate being also
valid in the physical space, the Aitken acceleration can be applied directly to
the iterative solutions in each point within the subdomains.

However, the results obtained in analysis of unbounded cases can be not
relevant for the bounded case. We can illustrate this situation, considering the
domain is bounded only in x direction, as for instance, Ω = (0, 1) × R, with
common interface Γ = {λ} ×R, 0 < λ < 1. On the lateral boundaries, homo-
geneous Dirichlet conditions are imposed. Using the same Fourier analysis as
above, one obtains the convergence rate:

ρDN (ξ) =
k1

k2

·
1 − e2|ξ|

1 + e2|ξ|
·
1 + e−λ|ξ|

1 − e−λ|ξ|
, ∀ξ ∈ R (8)

In this semi-bounded case, each frequency component has its own own linear
damping factor. The Aitken acceleration is no longer possible in the physical
space, but can be applied for each frequency component by using the numerical
1-D procedure described in §4.1.

For realistic domains (bounded in both directions), we use the Aitken tech-
nique as follows: let {Pi}i=1,...,N the discrete representation of the common
interface Γ (we consider a regular discretization in Γ direction). When D-N
algorithm is applied, at discrete level we obtain the traces of iterative discrete
solutions, denoted

{
un

2,i

}
i=1,...,N

which are transformed in periodic signals,

and then represented in mode’s Fourier space. Then, the Aitken acceleration
is possible for each mode, since each mode is damped linearly. Using acceler-
ated modes, the solution is recomposed in the physical space.

5.2 Optimized Robin-Method

Let β1=β2=1 in (7). Applying the technique introduced by Nataf and co-
authors in papers cited above, for the considered problem, we obtain optimized
Robin coefficients α1,opt, α2,opt by solving the min-max problem:

min
α1,α2 > 0

(
max
ξ ∈R

∣∣∣∣
α1 − k2|ξ|

α1 + k1|ξ|
·
α2 − k1|ξ|

α2 + k2|ξ|

∣∣∣∣

)
(9)

Since real computations are performed on bounded domains and discretized
operators, the range of ξ can be bounded in an interval (ξmin, ξmax). Even
with this simplification, the problem (9) is still difficult to solve analytically.
The method given by Faille et al. [2001] divides the previous problem into
two auxiliary min-max problems for α1 and respectively for α2, which are
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formulated as for homogeneous media. The problems are similar to optimal
parameter search in ADI Peaceman-Racheford method and have the solutions:

α1,opt = k2

√
ξminξmax , α2,opt = k1

√
ξminξmax (10)

Another method retained here is to solve (9) at discrete level, for the hetero-
geneous case, by considering α1=α2≡α. For instance, we replaced L∞−norm
by the discrete L1-norm of frequency components in (ξmin, ξmax) and then,
the αopt,L1 is obtained by seeking the minimum for a fine mesh for α.

6 Numerical results

We consider the problem (2)-(3) for Ω1 = (0, π)2, Ω2 = (π, 2π) × (0, π),
f(x, y) = 2k1k2 sin x sin y and the Dirichlet condition u = 10. The exact solu-
tion is u1(x, y) = 10 + k2 sinx sin y, u2(x, y) = 10 + k1 sin x sin y. We consider
k1 = 10, k2 = 1, and u0

2(π, y) = (u0
2)x(π, y) = 0, for y ∈ (0, π).

Figure 1 shows the evolution of the error with respect to the iterations for
the investigated algorithms. One can observe that even if the D-N algorithm
diverges rapidly, the Aitken acceleration (A-D-N on the Figure 1) allows a
fast convergence of the algorithm.
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Figure 1. Figure 2.

The Robin-Method can diverge if the RC are chosen arbitrarily, as for
instance, using αi = ki (curve IRCarb). Now, let us consider optimized RC.
Two optimized Robin-Methods have been investigated: the ORChom method
which gives α1,opt = 3, α2,opt = 30 from (10) and the ORCL1 method which
gives αopt,L1 ≃ 7. For the two methods, the obtained results are relatively
close: in 10 iterations the error is reduced by a factor of 107.

Both ORC are obtained by solving (9). However, this problem being de-
duced with a Fourier analysis at continuous level for unbounded domain, the
obtained ORC are not necessarily optimal at the discrete level for the bounded
domain used in the numerical experiment. To verify how the coefficients ob-
tained with ORCL1 method approach the optimal discrete coefficients, Figure
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2 shows the error reduction obtained numerically, after 4 iterations, using var-
ious values for α = α1 = α2. We observe that the coefficient obtained by the
optimization procedure (∼ 7), is not very close of the discrete optimum, but
it can give values which are effective for numerical experiments. Using the dis-
crete optimum (∼ 8.5), the obtained error after 10 iterations (curve ORCnum)
is better with a factor 102 with respect to the ORCL1 method.

7 Conclusions

We studied two non-overlapping methods for flow problem in heterogeneous
porous media: A-D-N method and Optimized Robin-Method. Both methods
use the Fourier analysis but at different level. In the A-D-N method, the
discrete solution is represented in modes’s space, accelerated and transformed
back in the physical space. For the second method, the Fourier analysis is used
only to determine optimized Robin coefficients. Both methods show good con-
vergence properties, especially the Aitken method. However, there are several
possibilities to improve the Optimized Robin-Method, as the use of a Krylov
acceleration, or the use of second order optimized interface conditions (OIC2).
It is also possible to apply Aitken acceleration to the Robin-Method (not
necessarily optimized), because it is still linear. The two methods, although
studied here for only 2 subdomains have been already used to an arbitrary
number of subdomains, in 1-D or 2-D framework (Calugaru and Tromeur-
Dervout, Proc. Parallel CFD 2003, to appear, for the A-D-N method and
Faille et al. [2001] for the Robin-Method). We are currently investigating a
comparison of these extensions in the context of parallelization methods.
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