
Nonlinear Positive Interpolation Operators for

Analysis with Multilevel Grids

Xue-Cheng Tai⋆

Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5007,
Bergen, Norway. (http://www.mi.uib.no/~tai/)

Summary. We introduce some nonlinear positive and negative interpolation oper-
ators. The interpolation need to preserve positivity or negativity of a function. In
addition, the interpolation must be pointwise below or above the function. Some of
the operators also have the pointwise monotone property over refined meshes. It is
also desirable that the interpolation have the needed approximation and stability
estimates. Those operators could be used in the convergence analysis for domain
decomposition and multigrid methods for obstacle problems.

1 Introduction

We are interested in the convergence rate analysis of multigrid and domain
decomposition methods for variational inequalities, i.e. we want to solve a
convex minimization problems with some convex constraints, c.f. Kornhu-
ber [1994], Tai [2003]. It is well known that both domain decomposition and
multigrid methods can be regarded as space decomposition and subspace cor-
rection techniques. For a given space decomposition technique, we need two
constants to measure the quality of the decomposition. One constant is called
the constant for the strengthened Cauchy-Schwarz inequality. The other con-
stant is for the partition lemma, which is also called Lions’s lemma. For linear
problems, these constants are well established, see Xu [1992]. The concepts of
using these constants to analyse the convergence rate for space decomposition
techniques was extended to nonlinear problems in Tai [1994b], Tai and Xu
[1999], Tai [1994a], Tai and Xu [2002], Tai and Tseng [2002], Tai [2003]. To
be more specific, we shall consider the following problem in this work:

min
v∈K

F (v). (1)

For simplicity, we just assume that

K = {v| v ∈ H1
0 (Ω), v ≥ 0}, F (v) =

∫

Ω

1

2
|∇v|2 − fv. (2)
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In order to use domain decomposition or multigrid methods for the above
problem, we need to construct finite element or finite difference meshes that
are nested and refined (the problem with non-nested mesh is much more
complicated and shall not be considered here). For the partition lemma for
the above problem, we need to interpolate functions from K to the different
meshes or we need to interpolate functions from fine meshes to coarser meshes.
The interpolation operators need to satisfy the following properties:

1. (Positivity): It shall preserve the positivity or negativity, i.e. the inter-
polation of a positive function shall be positive or the interpolation of a
negative function shall be negative.

2. (Approximation): The interpolation shall have the needed approximation
properties.

3. (Stability): The interpolation shall be stable in the needed norms.
4. (Pointwise above or below): The interpolation of a given function shall be

pointwise below or above the function.
5. (Monotonicity with mesh refinement): When interpolating a function to

finer or coarser meshes, it is desirable that the interpolation over a finer
mesh should be pointwise bigger or smaller than the interpolation over a
coarser mesh.

For problem (1)–(2), the standard nodal point linear Lagrangian finite element
interpolation operators are not applicable in many context. In Nochetto and
Wahlbin [2002] and Chen and Nochetto [2000], some interpolation operators
are given which preserve positivity. These operators are linear and satisfy the
approximation and stability requirements, but do not have properties that
the interpolation is below or above the interpolated functions and also do
have pointwise monotonicity with respect to refined meshes. In Nochetto and
Wahlbin [2002], it was proved that linear positive interpolation operators may
not exist if we require more than first order accuracy at extreme points. In
this work, we shall introduce some operators which are not linear, but satisfy
all the needed properties.

2 Some nonlinear positive interpolation operators

Let Th be a quasi-uniform triangulation of the domain Ω ⊂ Rd, d = 1, 2, 3
with a mesh size h and Sh ⊂ H1

0 (Ω) be the corresponding piecewise linear
finite element space on Th. In the analysis, we need to use finite element spaces
with different mesh sizes. It will be assumed that h is always the smallest mesh
size. For an H > h, we consider the case that Th is a refinement of TH . In the
following, the definition of some nonlinear interpolation operators from Sh to
SH will be given. Denote by NH =

{

xi
0

}n0

i=1
all the interior nodes for TH . For

a given xi
0, let ωi be the union of the mesh elements of TH having xi

0 as one
of its vertexes, i.e.

ωi := ∪{τ ∈ TH , xi
0 ∈ τ̄}. (3)

Let
{

φi
0

}n0

i=1
be the associated nodal basis functions satisfying φi

0(x
k
0) = δik,

φi
0 ≥ 0, ∀i and

∑

i φi
0(x) = 1. It is clear that ωi is the support of φi

0.
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In the following, standard notations for Sobolev norms will be used, i.e.
‖ · ‖0 stands for the L2(Ω) norm, ‖ · ‖1 and | · |1 are the norms and seminorms
for H1(Ω), etc.

2.1 A nonlinear positive interpolation operator below the function

Given a nodal point xi
0 ∈ NH and a v ∈ Sh, let

Iiv = min
ω̄i

v(x). (4)

The interpolated function is then defined as

I⊖Hv :=
∑

xi
0
∈NH

(Iiv)φi
0(x).

From the definition, it is easy to see that

I⊖Hv ≤ v, ∀v ∈ Sh, (5)

I⊖Hv ≥ 0, ∀v ≥ 0, v ∈ Sh. (6)

Moreover, the interpolation for a given v ∈ Sh on a finer mesh is always no
less than the corresponding interpolation on a coarser mesh due to the fact
that each coarser mesh element contains several finer mesh elements, i.e.

I⊖h1
v ≤ I⊖h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (7)

In addition, the interpolation operator also has the following approximation
properties, c.f. p. 767 of Tai [2003].

Theorem 1. For any u, v ∈ Sh, it is true that

‖I⊖Hu − I⊖Hv − (u − v)‖0 ≤ cdH |u − v|1, (8)

‖I⊖Hv − v‖0 ≤ cdH |v|1, (9)

|I⊖Hu − I⊖Hv|1 ≤ cd|u − v|1, (10)

where cd = C if d = 1; cd = C
(

1 +
∣

∣log H
h

∣

∣

1

2

)

if d = 2 and cd = C
(

H
h

)
1

2 if

d = 3. Here and later, the generic constant C is used to denote constants that
are independent of the mesh parameters.

2.2 A nonlinear negative interpolation operator above the function

However, if we define

Iiv = max
ω̄i

v(x) I⊕Hv :=
∑

xi
0
∈NH

(Iiv)φi
0(x). (11)
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Then it is easy to see that

I⊕Hv ≥ v, ∀v ∈ Sh, I⊕Hv ≤ 0, ∀v ≤ 0, v ∈ Sh. (12)

Moreover, the interpolation for a given v ∈ Sh on a finer mesh is always no
bigger than the corresponding interpolation on a coarser mesh, i.e.

I⊕h1
v ≥ I⊕h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (13)

From theorem 1, it is easy to see that the following is correct (Tai [2003]).

Theorem 2. There exists an interpolation operator I⊕H : Sh 7→ SH such that

I⊕Hv ≥ v, ∀v ∈ Sh,

I⊕Hv ≤ 0, ∀v ≤ 0, v ∈ Sh,

‖I⊕Hu − I⊕Hv − (u − v)‖0 ≤ cdH |u − v|1,

‖I⊕Hv − v‖0 ≤ cdH |v|1, |I⊕Hu − I⊕Hv|1 ≤ cd|u − v|1, ∀v ∈ Sh.

2.3 A nonlinear interpolation operator above or below the function

For some cases, we need an interpolation operator which has the properties
of I⊕H in some part of the domain Ω and has the properties of I⊖H in the rest
of Ω. The operator we shall define in the following is a simplified version of
the operator used in p.133 of Tai et al. [2002]. For any given v ∈ Sh, we let

v+(x) = max(0, v(x)), v−(x) = min(0, v(x)).

It is easy to see that v(x) = v+(x) + v−(x). The new interpolation operator
is then defined as:

IHv :=
∑

xi
0
∈NH

(min
ω̄i

v+ + max
ω̄i

v−)φi
0(x). (14)

We have minω̄i
v+ ≥ 0 and v−|ωi

= 0 if v ≥ 0 in ωi. We have maxω̄i
v− ≤ 0

and v+|ωi
= 0 if v ≤ 0 in ωi. In case that v has both negative and positive

values in ωi, then we have minω̄i
v+ = 0 and maxω̄i

v− = 0. For a given v, we
let

Ω+ = {x| v(x) ≥ 0}, Ω0 = {x| v(x) = 0}, Ω− = {x| v(x) ≤ 0}.

It is easy to see that

IHv ≥ 0 in Ω+, IHv ≤ 0 in Ω−, IHv = 0 in Ω0.

Moreover, we have that

IHv ≤ v in Ω+, IHv ≥ v in Ω−.
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If we interpolate a function into a sequence of refined meshes, then the in-
terpolation value is increasing on finer meshes over the region Ω+ and the
interpolation value is decreasing on finer meshes over the region Ω−. These
pointwise monotone properties are visualized in Figure 1. Similarly, the fol-
lowing approximation and stability properties are valid:

‖IHu − IHv − (u − v)‖0 ≤ cdH |u − v|1, ∀u, v ∈ Sh,

|IHu − IHv|1 ≤ cd|u − v|1, ∀u, v ∈ Sh.

The proof for the above estimations can be done similarly as in Tai [2003].
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c) Plot of Ih.

Fig. 1. Plots of the interpolation operators over a sequence of refined meshes.
If the mesh is refined, the interpolation I

⊖

H
v increases, while I

⊕

H
v decreases. The

interpolation IHv increases in Ω
+ and decreases in Ω

−. I
⊖

H
v is always below v,

while I
⊕

H
v is always above v. IHv is below v in Ω

+ and above v in Ω
−.

3 Some other nonlinear interpolation operators

The interpolation operators given in §2 only preserve constants locally and
this can only have first order of convergence. In this section, we will introduce
an operator which preserves linear functions locally and thus it can have
higher oder approximation accuracy, but we will lose the pointwise monotone
property enjoyed by the operators defined in §2.
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For a given v ∈ Sh, let vI
0 = IHv to be the standard nodal Lagrangian

interpolation of v into SH . For the coarser mesh SH , let x0
i and ωi be as

defined in §2, c.f. (3). We shall construct a new interpolation function v0 by
defining its nodal values as

v0(x
0
i ) = vI

0(x0
i ) − max

x∈ωi

(

vI
0(x) − v(x)

)

, ∀x0
i . (15)

For simplicity, we define ρ0(x) ∈ SH to be the coarse mesh function having
the nodal values

ρ0(x
0
i ) = max

x∈ωi

(

vI
0(x) − v(x)

)

, ∀x0
i .

It is easy to see that v0 = vI
0 − ρ0. Moreover, ρ0(x) ≥ vI

0(x) − v(x), which
implies

v0(x) = vI
0(x) − ρ0(x) ≤ vI

0(x) − (vI
0(x) − v(x)) = v(x).

In addition,
‖v0 − v‖0 ≤ ‖vI

0 − v‖0 + ‖ρ0‖0.

As ρ0 ∈ SH , it is known that the L2-norm is equivalent to

‖ρ0‖
2
0 = CHd

n0
∑

i=1

|ρ0(x
0
i )|

2.

Using a linear mapping to transform ωi into a domain of unit size and applying
the well-known estimate of Bramble and Xu [1991], we get that

‖ρ0‖
2
0 ≤ CHd

n0
∑

i=1

‖vI
0 − v‖2

0,∞,ωi
≤ CH2c2

d|v|
2
1.

In the above inequality, we have used the regularity of the meshes, i.e. under
the minimum angle condition, the number of elements around a nodal point
is always less than a constant. Using the inverse inequality, we know that
‖ρ0‖1 ≤ CH−1‖ρ0‖0. In case that we want to use the H2 norm for v, we have

‖ρ0‖
2
0 ≤ CHd

n0
∑

i=1

‖vI
0 − v‖2

0,∞,ωi
≤ CH2|v|22.

Denote v0 by Ia
Hv. Combining these estimates with standard estimates for

v − vI
0 , we have proved the following lemma.

Theorem 3. Let SH and Sh be defined as above. There exists an interpolation
operator Ia

H : Sh 7→ SH such that

Ia
Hv ≤ v, ‖Ia

Hv‖1 ≤ cd‖v‖1,

‖Ia
Hv − v‖0 ≤ cdH |v|1, ‖I

a
Hv − v‖0 ≤ H2|v|2,
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From the inequality

|max
ω̄i

u − max
ω̄i

v| ≤ ‖u − v‖0,∞,ωi
,

it is also easy to prove the following estimates using the techniques of Tai
[2003]

Theorem 4. For any u, v from Sh, we have

‖Ia
Hu − Ia

Hv − (u − v)‖0 ≤ cdH |u − v|1,

‖Ia
Hu − Ia

Hv − (u − v)‖0 ≤ cH2|u − v|2,

‖Ia
Hu − Ia

Hv‖1 ≤ cd‖u − v‖1.

In addition, the operator Ia
H have the following property which is not valid

for the operators given in §2:

Ia
H(v + vH) = Ia

Hv + vH , ∀v ∈ Sh, vH ∈ SH , (16)

i.e. the operator Ia
H is invariant for functions from the coarse mesh space SH .

The interpolation Ia
Hv is always below the function v, but it may not

preserve positivity. It is also easy to define another operators which are always
above the function or above the function in part of the domain and below the
function in the rest of the domain.

4 Applications to multigrid decomposition

Assume that we have a sequence of shape regular meshes Thj
that are produced

by refining a coarse mesh. The mesh sizes hj , j = 1, 2, · · · , J are decreasing
and satisfies c1γ

2j ≤ hj ≤ c2γ
2j and 0 < γ < 1. Let Mj be the piecewise

linear finite element spaces over the meshes. For a given v ≥ 0 and v ∈ MJ

we shall decompose it into v =
∑J

j=1
vj such that vj ≥ 0 ∀j. In addition,

we also need that ‖vj‖1 ≤ cd‖v‖1. Such a decomposition is needed for the
proof of the partition lemma for Tai [2003] and Tai et al. [2002]. Using the
operators defined in §2, we see that the following functions vj satisfy the
needed properties:

vj = I⊖hj
v − I⊖hj−1

v, j = 1, 2, · · ·J − 1, vJ = v − I⊖hJ−1
v.

In order to show that vj ≥ 0 we need to use the pointwise monotone properties.
In order to show the stability of vj in H1 we need the corresponding estimates
for I⊖. In fact, the operators defined in §2 and §3 can be used in different
context in the convergence analysis of domain decomposition and multigrid
methods for problems like (1).

The interpolation operator I⊕H is needed for the analysis given above if we
change the constraint set K given in (2) to K = {v| v ∈ H1

0 (Ω), v ≤ 0}. The
interpolation operator IH is needed if we shall work with two-obstacles, i.e.
one obstacle above the solution and one obstacle below the solution.
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