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Summary. We shortly review the uncoupling-coupling method, a Markov chain
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ficient computation of biomolecular conformations. One crucial step of UC is the
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1 Introduction

Application of Markov chain Monte Carlo (MCMC) to biomolecular systems
has to tackle the trapping problem, i.e., the Markov chain remains for a very
long time in one part of the state space before it moves on to another part.
Such undesirable behavior of the Markov chain is caused by metastable sets
(also called modes or conformations) in the state space, between which tran-
sitions are extremely rare. There exists a huge body of literature addressing
this notoriously difficult problem (Ferguson et al. [1999], Liu [2001]).

We herein review a novel approach to overcome the trapping problem, the
uncoupling-coupling scheme (UC), which has recently been introduced by one
of the authors (AF) (Fischer [2003], Fischer et al. [2002]). UC combines sta-
tistical reweighting techniques with a hierarchical decomposition of the state
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space into metastable sets. The key idea is to regard metastable sets as almost
invariant sets w.r.t. the Markov chain.

It has been shown recently that these metastable sets are strongly con-
nected to the spectral structure of the Markov propagation operator associ-
ated with the Markov chain (Schütte et al. [1999]), and that it is even possible
for a wide range of problem classes to identify metastable sets by computing
dominant eigenvalues of this operator (Deuflhard et al. [2000]). Once n dom-
inant metastable sets are identified, significantly improved convergence prop-
erties are achieved by uncoupling, i.e., by parallel simulation of n independent
chains, each one restricted to one of the metastable sets. Subsequently, infor-
mation lost in the uncoupling step, i.e., the weighting factors between the n
metastable sets, is reconstructed by means of the stationary distribution of an
appropriate (n × n) coupling matrix. We present the uncoupling step in the
context of MCMC in Sect. 2, and the underlying uncoupling-coupling scheme
in its simplest form in Sect. 3.

In its final section this article is devoted to the demonstration that the UC
idea can be translated into a domain decomposition technique for eigenvalue
problems of specific partial differential operators. The translation is possible
since Markov propagation operators of specific Markov processes (e.g., those
governed by stochastic differential equations) are generated by partial differen-
tial operators. In such cases the decomposition of state space into metastable
sets is strongly connected to the dominant eigenmodes of the generator, and
the UC scheme for the propagation operator can be translated into an anal-
ogous scheme for the generator. This relation may make uncoupling-coupling
techniques as used in biomolecular simulations accessible for research in the
direction of domain decomposition.

2 Uncoupling-Coupling Markov Chain Monte Carlo

For biomolecular simulations, MCMC is the method of choice for the task of
drawing samples from the canonical distribution. In the presence of strong
metastabilities slow convergence can be avoided by uncoupling-coupling,
where the state space is decomposed into metastable sets.

Metropolis Algorithm

The Metropolis (or Metropolis-Hastings) algorithm is the most widely used
form of MCMC and essentially builds upon Markov chain theory (Brémaud
[1999], Liu [2001]).

Suppose that we are interested in a distribution given by a density function
f > 0 with values in Ω ⊆ IRd, from which it is practically impossible to
draw independent samples (e.g., the canonical distribution of medium-sized
biomolecules, where d is in the range of 50 to 500). Usually, f is defined in

terms of an unnormalized density f̂ via
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f(x) =
f̂(x)

Z
f̂

with Z
f̂

=

∫

Ω

f̂(x) dx, (1)

where Z
f̂

denotes the normalizing constant of f̂ . In most applications f̂ is the

canonical or Boltzmann density f̂ = exp(−βV ) with inverse temperature β
for some potential energy function V : Ω → IR.

The goal is to obtain expectations of some function g with respect to f ,
i.e., computing the expectation

If (g) =

∫
g(x)f(x) dx.

The Metropolis algorithm realizes a Markov chain X = X(1), X(2), X(3), . . .
having f as its invariant density. A sample x = (x(1), . . . , x(n)) of X is obtained

by accepting a proposal step x
(k+1)
prop with a probability that only depends on

the ratio of f(x
(k+1)
prop )/f(x(k)), thereby avoiding a computation of the unknown

normalizing constant (which in its integral representation is typically hard to
evaluate). The generated (dependent) random sample x then enables us to
estimate the integral If by

Îf (g) =
1

n

n∑

k=1

g(x(k)). (2)

The evolution of a Markov chain X = (Xk) with state space Ω is defined
by a stochastic transition function K : Ω × Ω → IR, where K(x, A) is the
probability density to move from x to the set A in one step (Meyn and Tweedie
[1993]). We call f an invariant density of the Markov chain given by K, if

f(y) =

∫

Ω

K(x, y)f(x) dx (3)

holds for all y ∈ Ω.
In the Metropolis-Hastings algorithm a transition function K which sat-

isfies (3) is realized by first defining an arbitrary but irreducible transition
kernel q(x, y) together with the acceptance function

α(x, y) =

{
min

(
1, q(y,x) f(y)

q(x,y) f(x)

)
for q(x, y) > 0

1 otherwise
. (4)

The computation of α requires ratios of the form f(y)/f(x) only, which is
feasible even if the normalizing constant Z

f̂
is unknown.

Based on q and α we define K as the sum of two contributions,

K(x, y) = k(x, y) + r(x)δ(x − y),

where the absolutely continuous part k is given by
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k(x, y) =

{
q(x, y)α(x, y) if x 6= y

0 otherwise

and the singular component by r(x) = 1 −
∫

k(x, y) dy.
With this K one step in the realization of the Markov chain from the state

Xk = x consists of: a) propose some y distributed according to q(x, y), b)
accept this step by setting Xk+1 = y with probability α(x, y) or c) reject the
proposal leaving Xk+1 = x.

The construction of K guarantees that the associated Markov chain X
is irreducible—provided that q is irreducible—and that for all x, y ∈ Ω the
detailed balance condition

f(x) k(x, y) = f(y) k(y, x) (5)

holds (for details, see e.g.( Tierney [1994])). Due to (5) K is called reversible
w.r.t. f . If we further assume that X is aperiodic—which is guaranteed when-
ever r > 0—we can state that f is the unique invariant density of X .

Markov Operator

In the following we want to understand the global behavior of a Markov chain
via the eigenmodes of its associated Markov operator P . This operator is
defined in terms of the transition function K by

Pu(y) =

∫

Ω

k(x, y)u(x) dx + r(y)u(y). (6)

P describes the propagation of a phase space density with one step of the
Markov chain. One can show that the reversibility of K w.r.t. f implies that
its spectrum σ(P ) is real-valued. More exactly, we have σ(P ) ⊆ [−1, 1], and
the largest eigenvalue is λ1 = 1. We have Pf = f , and under some ergodicity
conditions f is the unique eigenfunction associated with λ1 = 1 (up to normal-
ization). Some additional ergodicity typically is sufficient to guarantee that
the essential spectrum σess(P ) of P is bounded such that σess(P ) ⊂ [−r, r]
(see Schütte and Huisinga [2003]) and one typically can assume that there are
several discrete eigenvalues λ with |λ| > r. If this is the case then these eigen-
values subsequently are assumed to be ordered due to their absolute value,
i.e., such that λ1 > λ2 ≥ λ3 ≥ . . ..

Discretization

Identification and restricted sampling is carried out by discretizing the oper-
ator in essential degrees of freedom. To that end, let for two sets A, B ⊆ Ω
the transition probability between A and B within an ensemble distributed
w.r.t. the density f and during one step of the Markov chain be given by
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κ(A, B) =
1∫

A
f(x) dx

∫

A

∫

B

K(x, y)f(x) dx dy. (7)

Then, discretization is done by coarse graining with an arbitrary box de-
composition of the phase space Ω into m disjoint sets B1, . . . , Bm ⊂ Ω with⋃

Bj = Ω. Based on this box decomposition, we introduce the new finite state

space S = {B1, . . . , Bm} and define the transition function K̃ on S via

K̃(Bk, Bl) = κ(Bk, Bl). (8)

The finite dimensional Markov chain defined by K̃ again is reversible w.r.t.
its invariant density f̃ given by f̃(Bk) =

∫
Bk

f(x)dx. Whenever f is unique

for K, f̃ is also unique for K̃. Then the phase space is finite and the Markov
operator P becomes an (m × m)-transition matrix P which simply is the
stochastic matrix with entries pkl = K̃(Bk, Bl) = κ(Bk, Bl).

Metastability

If λ2 is close to λ1 = 1, we often find that the reason for the undesirably slow
convergence is that the Markov chain remains for a long time in a metastable
set (or conformation) of the state space, before it moves on to another one.
We will call a set A metastable under our Markov chain, if the transition
probability from A to itself is close to one, i.e., if κ(A, A) ≈ 1.

For an algorithmic exploitation of metastability the following observation
is of importance: If there are n eigenvalues close to λ1 = 1 (including λ1 itself)
and a significant spectral gap to all remaining eigenvalues, then there also
are n disjoint metastable subsets and vice versa (Meyer [1989], Schütte et al.
[2001]). If this is the case, the chain is rapidly mixing within the corresponding
metastable subsets and the undesirably slow overall convergence results from
the rareness of transitions between these metastable sets.

The close connection between a separated cluster of dominant eigenvalues
and the existence of metastable subsets has another very important algorith-
mic consequence: it has been shown that one can identify the n metastable
subsets only on basis of the eigenvectors associated with the n dominant
eigenvalues (Schütte et al. [1999, 2001]). This insight leads to a significantly
general identification algorithm (Deuflhard et al. [2000]) used for the detection
of biomolecular conformations.

Restriction

Assume that we know the n disjoint metastable sets A1, . . . , An of our Markov
chain, and that we now want to sample separately in each Al, for l = 1, . . . , n.
Then, for each l we define a restricted Markov kernel Kl from K on Al by
setting

Kl(x, y) = kl(x, y) + rl(x)δ(x − y) (9)
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with

kl(x, y) =

{
q(x, y)α(x, y) if x 6= y and y ∈ Al

0 otherwise

and

rl(x) = 1 −

∫
kl(x, y) dy.

Clearly, detailed balance still holds, so that Kl is again a reversible Markov
kernel. Now, let f̂l = 1Al

f̂ be the restricted unnormalized density on Al,
with 1A denoting the indicator function on A, i.e., 1A(x) = 1 if x ∈ A and
1A(x) = 0 otherwise. Then, under the assumption, that Kl is irreducible,

fl = f̂l/Zf̂l
is the unique invariant density of Kl.

We denote by Pl the corresponding propagator of Kl. If we assume that
Al is metastable and that it cannot be subdivided further into two or more
almost invariant sets, then we can state the following: The second largest
eigenvalue λ2 of Pl is substantially less than 1, otherwise there would exist a
decomposition into two or more metastable subsets. As a consequence, due to
λ2 ≪ 1, the corresponding Markov chain Xl is rapidly mixing.

For the restricted Markov kernel Kl the detailed balance condition (5)
still holds for all x, y ∈ Al; therefore the density fl is a scalar multiple of the
correct global density f of the unrestricted Markov chain. Thus, we can regain
the global density via

f =

n∑

l=1

ξlfl (10)

in terms of the local densities fl. Only the scalar coupling factors ξl, l =
1, . . . , n, are unknowns which represent the neglected coupling between the
sets Al. Apparently, the coupling factors need to be ratios of normalizing
constants of the form ξl = Z

f̂l
/Z

f̂
, since then we can reconstruct f from the

fl’s:
n∑

l=0

ξl fl =

n∑

l=0

Z
f̂l

Z
f̂

f̂k

Z
f̂k

=
f̂

Z
f̂

= f. (11)

Hierarchical Uncoupling-Coupling

Restricted sampling alone does not directly provide the necessary coupling
vector ξ = (ξ1, . . . , ξk) and also raises the question of how to decompose
the state space. Yet, it is possible to overcome these problems by embedding
some Metropolis sampler into a hierarchical annealing structure. For a detailed
presentation of this approach we refer to the Uncoupling-coupling Monte Carlo
method presented in Fischer [2003], Fischer et al. [2002].

The hierarchical annealing structure is a crucial part for the algorithmic
concept in the context of biomolecular simulations with far reaching conse-
quences for the coupling step. However, since it is of lesser importance in
the PDE context, we focus on the basic uncoupling-coupling scheme in the
following.
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3 Basic Uncoupling-Coupling Scheme

We provide some theoretical aspects of uncoupling-coupling, especially the im-
pact of uncoupling on the spectra of restricted Markov operators. Throughout
this section we consider a finite state space. Therefore, let P be an irreducible,
aperiodic and reversible stochastic (m×m)-matrix, which might be obtained
by a box discretization of a Markov operator P as defined in (8). In this case
the state space Ω reduces to S = {B1, . . . , Bm}, the entries pij of P are tran-
sition probabilities κ(Bk, Bl) of the Markov operator between the boxes Bi

and Bj , and the global density f becomes a stochastic vector π.
P is called a nearly uncoupled Markov chain, if there is a permutation of

the state space such that P becomes diagonal block-dominant, i.e.

P = P̃ + E =




P11 E12 · · · E1n

E21 P22
. . .

...
...

. . .
. . . En−1,n

En1 · · · En,n−1 Pnn


 , (12)

where each sub-matrix is quadratic and entries in E are small. In the context of
metastability this corresponds to the existence of n metastable sets S1, . . . , Sn.
Computation of an appropriate permutation is by no means trivial, but can
be done by the identification algorithm already mentioned in the previous
section (Deuflhard et al. [2000]). There are different ways to measure the
smallness of E, e.g. by the maximum row sum norm ‖ · ‖∞ or by some π-
weighted norm.

Reversibility of P is equivalent to the detailed balance condition

πipij = πjpji (13)

for all 1 ≤ i, j ≤ m. From (13) it easily follows, that P is self-adjoint w.r.t.
the weighted inner product

〈x,y〉π = x1y1π1 + . . . + xmymπm. (14)

Therefore all eigenvalues of P are real and contained in the interval (0, 1]. Since
the diagonal blocks in (12) are nearly stochastic, continuity of the eigenvalues
guarantees the existence of n eigenvalues close to 1. We assume that the other
eigenvalues are reasonable bounded away from 1, which corresponds to the
assumption that the Markov chain is fast-mixing within each metastable set.

The matrix

Prest =




R11 0 · · · 0

0 R22
. . .

...
...

. . .
. . . 0

0 · · · 0 Rnn


 , (15)
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where Rii = Pii + diag(ei −Piiei) and ei = (1, . . . , 1) is a vector of size |Si|,
is called the restriction matrix of P along a given partition. Prest is obtained
from P by setting all off-diagonal blocks in P to zero and adding the sum of
the deleted entries of the i-th row to pii, which is the discrete counterpart of
(9).

Since the diagonal blocks of Prest are stochastic we can conclude that the
dominant eigenvalue 1 is n-fold, while due to continuity all other eigenvalues
should be well separated from 1. If the smallness of E is measured by the
∞-norm, we can state a quantitative bound on this phenomena (Meerbach
et al. [2003]):

Theorem 1. Let P be a reversible stochastic matrix partitioned according
to (12) and Prest the restricted matrix, as in (15). Then

λj(P
rest) ≤ λj(P) + 2‖E‖∞ (16)

holds for each j = 1, . . . , m.

Therefore, by transition from P to Prest, we obtain n uncoupled Markov chains
restricted to the sets S1, . . . , Sn, whereby for a metastable decomposition each
chain is fast mixing.

The following theorem summarizes some facts about R and reveals that
the behavior of the uncoupled chains is closely related to that of the original
chain (Meerbach et al. [2003], Meyer [1989]).

Theorem 2. Let P be an irreducible and reversible stochastic matrix parti-
tioned as in (12). Furthermore, let all Pii be irreducible (substochastic) ma-
trices. Then,

(a) all Rii are irreducible,
(b) R is stochastic with an n-fold dominant eigenvalue 1,
(c) if the (unique) stationary distribution π of P is partitioned according to

P,
π = (π(1), π(2), . . . , π(n)),

then for each i = 1, . . . , n the unique stationary distribution r(i) of the

restriction Rii is identical to ξ−1
i π(i), where ξi =

∑
h π

(i)
h is a constant

factor,
(d) the coupling vector ξ = (ξ1, . . . , ξn) is the unique stationary distribution

of the irreducible and stochastic coupling matrix C = (cij), with

cij := r(i)Pije. (17)

Theorem 2 states that coupling factors, which are needed to reweight the
restricted stationary distributions of the Rii’s in order to obtain the stationary
distribution of P, can be derived via the coupling matrix C containing the
transition probabilities between the metastable sets.
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Fig. 1. Left: The trialanine molecule shown in ball-and-stick representation. The
overall structure of trialanine is primarily determined by the two torsion angles Φ

and Ψ . Right: Plotting Φ versus Ψ results in a so-called Ramachandran plot. The
discretization boxes are plotted with different edge lines indicating the different
metastable sets they were allocated to.

Theorem 1 is closely related to the theory of stochastic complementa-
tion (Meyer [1989]), where an analogous result is stated for the general case
of non-reversible matrices. Associated with stochastic complementation are so-
called aggregation/disaggregation techniques (Cho and Meyer [1999], Stewart
and Wu [1992]), which aim for a given stochastic matrix at a fast computation
of the stationary distribution by decomposing the state space into stochastic
complements. Yet, due to non-reversibility the setup of stochastic comple-
ments is much more intricate than restriction. This is also the reason why for
biomolecular simulations, the technique of stochastic complementation does
not enable to set up restricted Markov operators for MCMC sampling on a
continuous state space. However, for reversible problems, we can utilize ag-
gregation/disaggregation techniques combined with restriction in Section 4 to
solve eigenvector problems for discretized differential operators.

Note that, since we do not treat the embedding into a hierarchical anneal-
ing structure here, the coupling matrix C in Theorem 2, although it shares
the same characteristics, is different from the one actually employed in the
UC algorithm.

3.1 Trialanine Simulation

As an example how UC is employed in biomolecular simulations we consider
trialanine, a small peptide composed of three alanine amino acid residues.
Although the continuous state space Ω is high-dimensional, the structural
and dynamical properties of trialanine are primarily determined by the two
torsion angles Φ and Ψ , as shown in Fig. 1. We herein only illustrate the
initial uncoupling step of UC, which starts with a high-temperature MCMC
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Fig. 2. Left: The permuted transition matrix P clearly has a block dominant
structure. Right: In the resulting restricted matrix R all off-diagonal entries are set
to zero. The intensity of the boxes is chosen due to the logarithmic scale on the far
right.

simulation. More precisely, we used the Hybrid Monte Carlo method (Brass
et al. [1993]) to sample at a temperature of 650 K and stored the torsion
angles for each simulation step. Discretization of each torsion angle domain
D = (−180 ◦, 180 ◦] into 7 equidistant intervals resulted in 26 non-empty boxes
(B1, . . . , B26) in D2, see Fig. 1. On these boxes we set up a transition matrix
P = (pij) (i.e., the discretized Markov operator), where transition probabili-
ties pij are obtained by counting the number of transitions between boxes Bi

and Bj during simulation.
The first eigenvalues of the resulting (26 × 26)-transition matrix are

j 1 2 3 4 5
λj(P) 1 0.9952 0.9941 0.5692 0.1425

· · · ,

indicating a slow mixing Markov chain with three metastable sets. For the
identification of these metastable sets we used the previously mentioned spec-
tral approach (Deuflhard et al. [2000], Weber [2003], Deuflhard and Weber
[2003]). In Fig. 1 the identified metastable sets are indicated by different
line styles. A corresponding permutation of the transition matrix confirms
the computation in that it reveals an obvious block dominant structure, see
Fig. 2. Calculating the subdominant eigenvalues of the restrictions Rii for
i = 1, 2, 3 results in

λ2(R11) λ2(R22) λ2(R33)
0.1376 0.1482 0.5855

,

which shows that this metastable decomposition in fact leads to three fast
mixing restricted Markov chains.
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4 UC and Domain Decomposition

In this section, we will pursue the goal of connecting the UC scheme for
computing canonical distributions with the world of PDEs. In order to do
so, we will first introduce a reversible Markov process in continuous time and
discuss its biomolecular background and then will focus on its connection to
domain decomposition for PDEs.

Molecular Dynamics

In order to specify what we herein consider as molecular dynamics let q denote
the position and p the momenta of a single molecular system consisting of N
atoms in state x = (q, p) ∈ R

3N × R
3N . V = V (q) : R

3N → R describes
the potential energy, which we assume to be differentiable. The statistics of
molecular systems in state space is given by the well-known canonical density
f = 1

Z
exp(−βV (x)). Let µ be the measure induced by f (for a more detailed

description of the biophysical background, cf. Schütte and Huisinga [2003]).
There exist several models of molecular dynamics; we will focus on the

Smoluchowski equation

q̇ = −
1

γ
∇qV (q) +

σ

γ
Ẇ , (18)

which is an approximation of the well-known Langevin equation in case of high
friction γ, where Ẇ is given by a standard 3N -dimensional Brownian motion
W . The continuous time Markov process (Xt)t≥0 defined by (18) leaves the
canonical measure µ invariant and is reversible. Furthermore, (Xt)t≥0 defines
an absolutely continuous stochastic transition function p(t, x, y) that describes
the probability that the process if started in x at time t = 0 is being found in
y at time t (for details see Schütte and Huisinga [2003]).

Markov Operator and Generator

The family of Markov operators (Pt)t≥0 associated with (Xt)t≥0 is defined
analogously to (6) for every t > 0 with k(x, y) = p(t, x, y) and r ≡ 0. The
family (Pt)t≥0 forms a strongly continuous semigroup such that the infinites-
imal generator

Ay = lim
t→0

Pty − y

t

is defined and acts on the domain dom(A) = {y ∈ Y : limt→0(Pty − y)/t exists}.
In the following we will simply express the relation between Pt and A by
Pt = exp(tA) (for details see Huisinga et al. [to appear 2004]).

The reversibility of the underlying Markov process (Xt)t≥0 has the ad-
ditional implication that all Pt and the generator A are self-adjoint opera-
tors on the Hilbert space L2(µ) equipped with the scalar product 〈u, v〉µ =∫

u(x)v̄(x)µ(dx), cf. Schütte and Huisinga [2003].
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More insight into the process and into the form of the generator is available
if we consider the evolution of a function under the dynamics given by (Xt)t≥0.
This evolution is governed by the Fokker-Planck equation

∂t u =




σ2

2γ2
∆q +

1

γ
∇qV (q) · ∇q +

1

γ
∆qV (q)

︸ ︷︷ ︸
A


 u (19)

on some suitable subspace of L1(dq). In this formula A is the infinitesimal
generator of the semigroup Pt :L1(dq) → L1(dq). That is, for twice differen-
tiable functions u the generator A is the elliptic partial differential operator
given by the RHS of (19).

Finally, the invariance of canonical density µ under the process (Xt)t≥0

gives us
Ptf = f and Af = 0. (20)

Therefore, the computation of the canonical density f can be reduced to the
computation of the dominant eigenvector of the generator A. If the potential
V satisfies some growth and regularity conditions then, both, the spectra
of Pt and A are discrete in L2(µ) and satisfy σ(Pt) = exp(tσ(A)). Then,
metastability can be discussed via the dominant eigenvalues of A (i.e., those
close to the largest one λ1 = 0).

Discretization and Uncoupling-Coupling

Discretizing the operator Pt in position and time, one obtains a Markov chain
with transition matrix P(t). Due to the reversibility, one can apply the UC
scheme which was presented in section 3. Yet another way is to work with the
generator A instead. In the remaining part of this section, it will be shown
to what extent the operator A is related to Pt and how one can extract the
required information from A in almost the same manner as from Pt. For
simplicity in what follows we consider a bounded system: The potential V is
smooth and takes infinite values at the boundary and outside of a compact
domain Ω with sufficiently smooth boundary ∂Ω.

The discretization of A, acting on L1(dq), by means of Finite Elements
or Finite Differences is well known and produces a large sparse matrix A

with row sum 0 at the interior nodes. Due to the condition on V , we have
Dirichlet boundary conditions equal 0 on ∂Ω and thus at the boundary nodes.
If we assume that there is a Perron cluster of eigenvalues of A close to its
largest eigenvalue λ = 0 then we have the same spectral property for A

(if the discretization grid is fine enough). If the number of nodes is large
efficient numerical solution of the eigenvalue problem for A will therefore
have to apply advanced numerical techniques like subspace oriented multigrid
solvers (Friese et al. [1999]), appropriate domain decomposition techniques,
or suitably preconditioned linear algebra solvers. Alternatively, we can exploit
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that the connection between the discretized operators A and (P(t)) is rather
close (Forster [2003]). This allows us to transfer the idea of UC to the generator
A. More precisely: decompose the state space into the metastable subsets,
restrict A to these subsets, solve the eigenvector problem locally, and couple
the local solutions with weighting factors obtained by some coupling matrix.

The restriction step is based on the restricted discretized generator (cp. (15))

Arest =




Arest
(11) 0 · · · 0

0 Arest
(22)

. . .
...

...
. . .

. . . 0
0 · · · 0 Arest

(nn)




(21)

with Arest
(ii) = A(ii) + diag(

∑
j,j 6=i A

(ij)ej) and blocks A(ii) of A according
to a decomposition in metastable subsets Si. This Neumann-like boundary
condition is imposed directly on the discretization level. Neumann boundary
conditions make sense since the invariant measure should have local minima at
the boundaries between the metastable sets. However, these boundary condi-
tions have no simple continuous analogue. Nonetheless, Arest is the requested
object, since the local solutions of Arest

(ii) µ
(i) = 0 form—apart from the weight-

ing factors (ξi)—the canonical density f . That follows from the fact that the
detailed balance condition µkAkl = µlAlk (which holds since A is self-adjoint)
implies µTArest = µTA = 0 as follows:

(µTArest)j = µjA
rest
jj +

∑

k 6∈Si

µkA
rest
kj +

∑

k∈Si,k 6=j

µkA
rest
kj

= µj


Ajj +

∑

k 6∈Si

Ajk


 +

∑

k∈Si,k 6=j

µkAkj

= µjAjj +
∑

k 6∈Si

µkAkj +
∑

k∈Si,k 6=j

µkAkj = (µT A)j ,

where j is a node in Si and furthermore µk and Akj denote the entries of the
large vector µ = (µ(1), . . . , µ(n)) and the matrix A, respectively. The restricted
operator Arest is not the generator of P(t)rest, since (P(t)rest)t≥0 does no
longer form a semigroup; for the same reason, in general it is (etA)rest 6=

etArest

.
In the coupling step the weighting factors can be obtained (Forster [2003])

by the coupling matrix C = (cij) with entries

cij = 〈µi,A
T µj〉2.

The matrix C arises from a Galerkin discretization of A on the ansatz space
V = span{µ1, µ2, . . . , µn} and inherits the structure of A. The factors ξ =
(ξi) are the solution of the low-dimensional equation Cξ = 0. Even more
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can be achieved: under certain conditions, it is also possible to generate the
eigenvectors v2, . . . , vn of the other dominant eigenvalues λ2, . . . , λn close to 1
by means of (µi) and C. More precisely: the solutions ν(i) of (CD)ν(i) = λ̂iν

(i)

with D = diag(ξ1, . . . , ξn) allow to define approximations
∑

k ν
(i)
k µk for the

eigenvectors vi. For a detailed description see Forster [2003].
The efficiency of the entire approach critically depends on the underlying

decomposition of state space into metastable subsets. If the dynamics given
by (18) is rapidly mixing within each of these metastable subsets then the
second eigenvalues of all the diagonal blocks Arest

(ii) of the discretized restricted

generator matrix Arest will be separated from the largest eigenvalues λ = 0
by some significant gap such that iterative eigenvalue solvers can be used to
compute the eigenvectors µi to λ = 0 for all blocks Arest

(ii) efficiently. Thus,
in order to construct a fully efficient algorithm one has to integrate anneal-
ing strategies and grid refinement into some carefully controlled hierarchical
approach. This is still under investigation.
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