
A Convergent Algorithm for Time

Parallelization Applied to Reservoir Simulation

Izaskun Garrido, Magne S. Espedal, and Gunnar E. Fladmark1

University of Bergen, LIM/CIPR, (http://www.mi.uib.no/~izaskun/)

Summary. Parallel methods are not usually applied to the time domain because
the sequential nature of time is considered to be a handicap for the development
of competitive algorithms. However, this sequential nature can also play to our
advantage by ensuring convergence within a given number of iterations. The novel
parallel algorithm presented in this paper acts as a predictor corrector improving
both speed and accuracy with respect to the sequential solvers. Experiments using
our in house fluid flow simulator in porous media, Athena, show that our parallel
implementation exhibit an optimal speed up relative to the method.

1 Time parallel reservoir simulator: Athena

Sub-stepping is common practice in reservoir simulation, in this technique
some unknowns of a given system are computed in time-steps smaller than the
normal step size, such that the overall system resolution will be comparable to
that obtained with the small time-step. We propose a novel modified algorithm
where this sub-stepping is computed in parallel following a technique of type
Parareal, as studied in Baffico et al. [2002], Lions et al. [2001], Bal and Maday
[2002]. This technique is a predictor corrector, PC, where the corrector runs
in parallel. Thus, the time domain is subject to the standard treatment of
domain decomposition Briggs et al. [1990], Keyes [2002], Brenner and Sung
[2000]; being separated into sub-domains where different numerical solvers and
discretizations may be applied. At each predictor corrector iteration the coarse
solver acts as a predictor handling the sub-domain interfaces by providing
initial boundary conditions for the parallel-fine system of equations. Each
parallel solution will be used as a corrector determining the modification of
the coarse system for the next iteration. Due to the sequential nature of time,
one of these solutions is independent from the rest. This particularity will be
exploited to modify the algorithm so as to obtain convergence rendering it
suitable to dynamic load balancing schemes Lan et al. [2002]. The motivation
for this type of parallelization is not only to improve both computational speed



470 Izaskun Garrido, Magne S. Espedal, and Gunnar E. Fladmark

and convergence properties but aims to implement multi-grid with nested
parallelism.

The paper is organized as follows: The numerical model implemented in
our reservoir simulator Athena is presented in Section 2. This model contains a
sub-stepping technique, which will be modified to run in parallel according to
the method described in Section 3. Numerical examples illustrate in Section 4
the performance of these algorithms. Finally, conclusions of this work are given
in Section 5.

2 The numerical model and standard method in Athena

Athena is a multicomponent multi-phase flow simulator in porous media.
This simulator is based on a mathematical model consisting of three coupled
non-linear differential equations which solve for the primary variables: molar
masses, temperature and water pressure. The equations are derived from the
mass conservation, energy conservation and volume balance method. These
systems will be decoupled and discretized using Finite Volume in space and a
Backward Euler scheme in time. However, the energy equation has coefficients
dominated by the rock temperature, which is almost constant, so that their
values at time t[n+1], may be approximated by those at previous time, t[n],
leading to an explicit equation of the form

J [n]∆T[n] = −f [n] , (1)

where the temperature increment ∆T[n] = T[n+1]−T[n]. Solving the pressure
equation with the Newton-Raphson method, we get the expression

J [n(k)]∆p[n(k)] = −f [n(k)] , (2)

where n(k) denotes the kth Newton-Raphson iteration at the nth time level

∆p[n(k)] = p[n(k+1)] − p[n(k)] ,

J [n(k)] =

(

∂f

∂p

)[n(k)]

≃
D[n(k)]

∆t[n]
+ A[n] ,

and the right hand side looks like

f [n(k)] = D[n(k)] p
[n(k)] − p[n]

∆t[n]
+ A[n]p[n(k)] − b[n] .

Note that at each Newton iteration we consider an approximation by updating
only the diagonal, D, of the Jacobian matrix J . Finally, the molar mass
equations are decoupled considering the cross-derivatives between different
components to be negligible. This assumption enables to solve sequentially
the following residual equations for the molar masses



A Convergent Algorithm for Time Parallelization 471

(

I

∆t[n]
+ A[n(k)]

ν

)

∆N[n(k)]
ν = b[n(k)]

ν , ν = 1, . . . , nc (3)

where for a chemical system consisting of nc components located on a domain
decomposed into ncv cells, I is the identity matrix and each matrix Aν has

n2
cv entries (Aν)

[n(k)]
ij =

∑

l α
l [n(k)]
νi,νj , i , j ∈ {1, . . . , ncv}, which are derived from

an analytical expression.
The set of equations (1), (2) and (3), results in a compact numerical model,

since they allow to find all the primary and secondary variables for the new
time step. As the molar masses change very fast in relation to either the tem-
perature or pressure, computational stability requires small time-steps and a
greater number of Newton iterations for the mass conservation equation. In or-
der to mitigate the time step restriction that the molar mass equation, see (3),
imposes on the overall system, it is common practice to use sub-stepping. This
technique involves computing with a coarse time-step the implicit solution for
the temperature and pressure, whilst the molar masses are calculated for the
same overall time step with several smaller sub-steps. For further details about
Athena, its numerical model and implementation we refer the interested reader
to a number of previous publications Fladmark [1997], Øye and Reme [1999],
Garrido et al. [2003]. The rest of this paper will be devoted to the develop-
ment and implementation of a Parareal-type algorithm which will parallelize
the sequential sub-stepping technique.

3 General algorithm

Denoting by Ω̄ = Γ ∪ Ω an arbitrary time-step where Γ = tn and Ω = Ωn =
(tn, tn+1], equation (3) is commonly solved by sub-stepping over a number, N ,
of sub-domains Ωi = (tn+(i−1)∆t, tn+i∆t], where ∆t = (tn+1−tn)/N , have
either artificial boundaries Γi, i > 1 or real one Γ1 = Γ and are discretized
independently of one another. The convergence of the sub-stepping over Ωn

determines adaptively the size of the next time step Ωn+1.
The algorithm to be presented is of the Parareal form as proposed by

Maday and Lyons Baffico et al. [2002], Lions et al. [2001], Bal and Maday
[2002] and uses a PC where the corrector runs in parallel. In what follows, the
PC will be described on equation (3) for a general time-step domain, Ω̄, and
a given component, ν. For simplicity of notation we rewrite (3) as a residual
equation of the form

J∆u = f , Ω̄ ,
u = g , Γ .

(4)

Denoting the kth PC iteration with the superscript k, the method begins by
predicting a solution of

J k∆uk = fk , Ω̄ , k = 1 ,
uk
|Γ = g , Γ , k = 1 ,

(5)



472 Izaskun Garrido, Magne S. Espedal, and Gunnar E. Fladmark

sub-stepping a number G of times, with G << N and Ω = ∪G
i=1Ωi, a coarsen-

ing of the original domain decomposition. Note that system (5) is solved over
each Ωi using the Newton-Raphson method so that J k has to be updated at
every Newton iteration. This sub-stepping gives an approximation to the in-
termediate values uk

|Γi
, i = 2, . . . , G which together with the initial boundary

condition, uk
|Γ = uk

|Γ1
= g serve as initial guesses for the boundary conditions

of each independent system

J k
|Ω̄i

∆uk
i = fk

|Ω̄i

uk
i|Γi

= g +
∑i−1

j=1 ∆uk
|Ωj

}

i = 1, . . . , G . (6)

This set of systems will be solved in parallel so that the ith processor solves the

ith system by sub-stepping on Ωi a number F (i) of times Ωi = ∪
F (i)
j=1 Ωj , giving

an approximation to the values uk
|Γi

, i = 2, . . . , G. If these approximations
do not differ more than a given tolerance to those obtained previously from
system (5) convergence for time step Ω has been achieved. Else, a new PC
iteration, for systems (5) and (6) is computed, where the predictor equation (5)
is corrected with data from the previous iteration as

J k
|Ω̄i

∆uk = fk
|Ω̄i

+ J k−1
|Ω̄i

(uk−1
|Γi+1

− uk−1
i|Γi+1

) . (7)

Due to the non-linear nature of the PDE system under study, the correction
term J k−1

|Ω̄i
(uk−1

|Γi+1
− uk−1

i|Γi+1
) is also non-linear and needs to be updated at

every Newton iteration. This correction is equivalent to a Jacobi iteration for a
linearized system with matching discretization along the artificial boundaries.

Another modification of this scheme can be obtained by adding in equa-
tion (5) all the corrections obtained from previous iterations to obtain schemes
of the Parareal form

J k
|Ω̄i

∆uk = fk
|Ω̄i

+

k−1
∑

j=1

J j

|Ω̄i
(uj

|Γi+1
− uj

i|Γi+1
) . (8)

Even more, after the first iteration the active domain is redefined to be
the reduced

Ω = Ω̄|Ω̄1 , (9)

uk
|Γ1

= g and the initial boundary condition satisfies

uk
|Γ2

= u1
1|Γ2

. (10)

Assuming that after iteration k = G − 1 it is satisfied

uk
|Γ1

= g, . . . , uk
|ΓG

= uG−1
G−1|ΓG

(11)

where Ω = Ω̄| ∪G−1
i=1 Ω̄i; at the Gth iteration both predictor and corrector

are defined over the same active domain and share the same initial boundary



A Convergent Algorithm for Time Parallelization 473

a. Gas saturation b. Oil saturation

Fig. 1. Hydrocarbon migration simulated by Athena for 100 y with 0.0047 y as time
step

condition, so that the best approximation is given by the solution to the fine-
parallel system, uG

G|ΓG+1
. Therefore, this algorithm converges in at most G

iterations, where G denotes the amount of systems to be solved in parallel
and its accuracy is determined by the corrector approximation.

4 Numerical examples

In this section we will illustrate with two different experiments the scalability
and performance of the algorithm implemented for the molar mass equations
within the Athena fluid flow migration simulator. We have carried out the
experiments on a Linux cluster, with PIII processors to explore the behavior
of the methods.

Before proceeding with the numerical experiments, the geological domain
and boundary conditions shall be described. The three dimensional domain
has 50 m depth on the ends, and a size of 1000 m×100 m×70 m. There are four
different layers in the z direction: shale, sandstone, shale and sandstone again.
The lithology for the sandstone has a porosity of φ = 0.5 and a permeability
of Kx = 500 mD, Ky = 500 mD and Kz = 500 mD while the corresponding
values for the shale are φ = 0.5 and Kx = 5 · 10−6 mD, Ky = 5 · 10−6 mD
and Kz = 5 · 10−6 mD. The domain is initially filled with water and the
boundary conditions consist of an explicitly given flux of oil and gas with
value 5 · 10−5 mol/m2s going inwards on the left hand side and an outwards
water flux with value 6.5 · 10−4 mol/m2s in the right hand side. There are
also temperature boundary conditions of 450◦K at the top and 460◦K at the
bottom. The domain is uniformly subdivided in each direction as is shown in
Fig. 1, which serve as an illustration of the Athena output for a simulated
time of 100 years.

We consider the algorithm as described in Section 3 where, due to im-

plementation issues in our particular simulator, the modification term, S
[n],k

|Ω̄i
,



474 Izaskun Garrido, Magne S. Espedal, and Gunnar E. Fladmark

will be an approximation of that given in (7) by using the current matrix

J k
|Ω̄i

∆uk = fk
|Ω̄i

+ J k
|Ω̄i

(uk−1
|Γi+1

− uk−1
i|Γi+1

) . (12)

Computational results: Load balance

In this experiment we are mainly interested in the scalability of the imple-
mentation. By varying the number of processors used, we want to explore the
speedup compared to the sequential program. When increasing the number
of processors the wall clock time is expected to decrease, but there is a limit
where adding more processors will not decrease the wall clock time. Besides
this MPI implementation has a master-slave structure where the number of
sub-domains equals the number of parallel (slave) processors used and the
master deals with the non-parallelizable part of the algorithm.

The domain is partitioned considering a fixed underlying grid with a to-
tal of s =

∑

sG = 24 cells. Therefore, letting the number of sub-domains to
double, G = 2i, with i = 0, . . . , 4 implies that the number of cells in each
sub-domain halves, sG = 24−i. Besides, since each sub-domain uses only one
processor, increasing the number of sub-domains is equivalent to increase the
overhead. In in the left of Fig. 2 the run time for the slaves is plotted against

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3 3.5 4
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 2. Space domain with 200 cells. Run time vs. the number of sub-domains.
In the left hand side, communication (.- increasing), calculation (.- decreasing) and
addition of both times (- -) for the slaves. In the right, the parallel speedup for the
addition of slave and master run times.

the number of sub-domains, considering the run time values to be the average
of all parallel processors. It can be seen that as the number of sub-domains
(or processors) doubles, the calculation time at each processor halves (see the
monotonic decreasing curve), whilst the time for collective broadcasting in-
creases (see the monotonic increasing curve). The relevant values correspond
to the addition of both communication and calculation times; these are plot-
ted by the curve marked with squares which indicates that the method is
competitive up to a certain parallelization degree when the communication
time overrides the computational time.



A Convergent Algorithm for Time Parallelization 475

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

Fig. 3. Space domain with 800 cells. Run time vs. the number of sub-domains.
In the left hand side, communication (.- increasing), calculation (.- decreasing) and
addition of both times (- -) for the slaves. In the right, the parallel speedup for the
addition of slave and master run times.

The speedup for the overall method, addition of master (coarse solver) and
slave (parallel-fine solver) run times, is displayed in the right of Fig. 2 where
the best time is clearly obtained when G = sG, which can easily be proven to
coincide with the case when optimal load balance occurs.

Computational Results: Overhead

Given a fixed spatial discretization, the previous section studies the scalability
in time as the underlying time-mesh remains constant whilst the ratio coarse
to fine cells varies. We aim to demonstrate that the scalability properties hold
as the spatial domain increases, therefore decreasing the space overhead. Even
when the communication is seen in the left of Fig. 3 to became negligible with
respect to the time for calculations, the master-slave structure of the algorithm
gives a fixed overhead due to the communication master-slave and it can be
seen in the right of Fig. 3 that the total run time is best when the load balance
reaches optimality.

5 Conclusions

In this paper a convergent parallel algorithm has been derived in a construc-
tive manner. It acts as a predictor corrector and the numerical experiments
indicate that even for highly non-linear problems this parallel formulation
improves both speed and accuracy with respect to the standard sequential
solvers. Besides, the sequential nature of time allows to ensure convergence
within a given number of iterations. The implementation of this algorithm in
our fluid flow simulator, Athena, has optimal speed-up.

A Galerkin-type of algorithm based on Additive Schwarz Bjørstad et al.
[2002], Xu and Zikatanov [2002, 2003], Cai et al. [2002] is under current con-
sideration for space-time parallelization.



476 Izaskun Garrido, Magne S. Espedal, and Gunnar E. Fladmark

Acknowledgement. This work was supported by the Norwegian Research Council.

References

L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel in time
molecular dynamics simulations. Phys. Rev. E., 66, 2002.

G. Bal and Y. Maday. A parareal time discretization for non-linear pde’s with
application to the pricing of an american put. In Proceedings of a Workshop

on Domain Decomposition, LNCSE. Springer Verlag Zurich, 2002.
P. E. Bjørstad, M. Dryja, and T. Rahman. Additive schwarz methods for ellip-

tic mortar finite element problems. Submitted to Numerische Mathematik,
2002. http://www.ii.uib.no/p̃etter/reports/pbmdtr2002AddSchMort.ps.gz.

S. C. Brenner and L.-Y. Sung. Lower bounds for non-overlapping domain
decomposition preconditioners in two dimensions. Math. Comput., 69(232):
1319–1339, 2000.

W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
SIAM, 1990.

X.-C. Cai, D. E. Keyes, and L. Marcinkowski. Non-linear additive schwarz
preconditioners and application in computational fluid dynamics. Int. J.

Numer. Meth. Fluids, pages 1463–1470, 2002.
G. E. Fladmark. Secondary oil migration. mathematical and numerical mod-

eling in som simulator. Technical Report R-077857, Norsk Hydro, Bergen,
1997.

I. Garrido, E. Øian, M. Chaib, G. E. Fladmark, and M. S. Espedal. Implicit
treatment of compositional flow. Computational Geosciences, 2003. To
appear.

D. E. Keyes. Domain decomposition in the mainstream of computational
science. In Proceedings of the 14 international conference on Domain De-

composition Methods, 2002.
Z. Lan, V. E. Taylor, and G. Bryan. A novel dynamic load balancing scheme

for parallel systems. J. Parallel Distrib. Comput., 62(12):1763–1781, 2002.
J.-L. Lions, Y. Maday, and G. Turinici. Rèsolution d’edp par un schéma en

temps pararéel. C. R. Acad. Sci. Paris, 332(1):1–6, 2001.
G. Å. Øye and H. Reme. Parallelization of a compositional simulator with

a galerkin coarse/fine method. In P.Amestoy et al., editors, Euro-Par’99,
volume 1685. Springer-Verlag, Berlin, 1999.

J. Xu and L. Zikatanov. The method of alternating projections and the
method of subspace corrections in Hilbert space. J. of AMS, 15, 2002.
Technical report, PennState, November 2000a.

J. Xu and L. Zikatanov. Some observations on Babuska and Brezzi theories.
Num. Math., 94, 2003. Technical report, PennState, September 2000b.


