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Summary. The main goal of this paper is to discuss the numerical simulation
of propagation phenomena for time harmonic electromagnetic waves by methods
combining controllability and fictitious domain techniques. These methods rely on
distributed Lagrangian multipliers, which allow the propagation to be simulated on
an obstacle free computational region using regular finite element meshes essentially
independent of the geometry of the obstacle and on a controllability formulation
which leads to algorithms with good convergence properties to time-periodic solu-
tions. This novel methodology has been validated by the solutions of test cases as-
sociated to non trivial geometries, possibly non-convex. The numerical experiments
show that the new method performs as well as the method discussed in Bristeau
et al. [1998] where obstacle fitted meshes were used.

1 Introduction

Lagrange multiplier based fictitious domain methods have proved to be effi-
cient techniques for the solution of viscous flow problems with moving bound-
aries (see Glowinski [2003], Chapter 8, Glowinski et al. [2001]). The main
goal of this article is to discuss the generalization of this methodology to
the simulation of wave propagation phenomena. A motivation for using the
fictitious domain approach is that it allows–to some extent–the use of uni-
form meshes, which is clearly an advantage far from the scatters. In order to
capture efficiently time-periodic solutions, the fictitious domain methodology
is coupled to exact controllability methods close to those utilized in Bristeau
et al. [1998], Glowinski and Lions [1995]. Various formulations of a wave prop-
agation model problem, including a fictitious domain one, will be discussed
in Sections 3 and 4. The computation of the gradient of a cost function asso-
ciated to the control formulation will be briefly addressed in Section 5. The
conjugate gradient solution of the control problem will be discussed in Section
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6, while the space/time discretization will be discussed in Section 7. Finally,
the results of numerical experiments will be presented in Section 8.

2 Formulation of the wave-propagation problem.

Let ω be a bounded domain of IRd (d = 2, 3); we denote by γ the boundary
∂ω of ω. Consider now T (> 0). We are looking for the T−periodic solutions
of the following wave equation:

ϕtt − ∆ϕ = 0 in (IRd \ ω) × (0, T ), ϕ = g on γ × (0, T ), (1)

completed by additional conditions such as lim
|x|→+∞

ϕ(x, t) = 0. The time-

periodicity conditions take then the following form:

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ), (2)

where ϕ(t) denotes the function x → ϕ(x, t). From a computational point of
view, we imbed ω in a bounded simple-shape domain Ω of boundary Γext (see
Figure 1) and consider

Γext

γ

Ω

ω

Fig. 1. Imbedding of ω.

the following wave problem:

ϕtt − ∆ϕ = 0 in (Ω \ ω) × (0, T ),

ϕ = g on γ × (0, T ),
∂ϕ

∂n
+

∂ϕ

∂t
= 0 on Γext × (0, T ),

(3)

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ). (4)

3 A fictitious domain formulation of problem (3), (4).

Problem (3), (4) is equivalent to
Find {ϕ, λ} verifying:
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∫

Ω

ϕttvdx +

∫

Ω

∇ϕ · ∇vdx +

∫

Γext

∂ϕ

∂t
vdΓ +

∫

ω

λvdx = 0, ∀v ∈ H1(Ω),
∫

ω

µ(ϕ − g̃)dx = 0, ∀µ ∈ L2(ω),
(5)

ϕ(0) = ϕ(T ), ϕt(0) = ϕt(T ), (6)

g̃(t) being an ω-extension of g(t) such that g̃(t) ∈ H1(Ω).

4 A virtual control/least squares formulation of problem
(5), (6).

A virtual control/least squares formulation of problem (5), (6) reads as follows:

Find e ∈ E such that
J(e) ≤ J(w), ∀w (= {w0, w1}) ∈ E,

(7)

with E = H1(Ω) × L2(Ω), and

J(w) =
1

2

∫

Ω

[|∇(w0 − y(T ))|2 + |w1 − yt(T )|2]dx, (8)

y being the solution for a.e. t of
∫

Ω

yttzdx +

∫

Ω

∇y · ∇zdx +

∫

Γext

∂y

∂t
zdΓ +

∫

ω

λzdx = 0, ∀z ∈ H1(Ω),
∫

ω

µ(y − g̃)dx = 0, ∀µ ∈ L2(ω),
(9)

y(0) = w0, yt(0) = w1. (10)

Problem (7), being linear-quadratic, can be solved by a conjugate gradient
algorithm operating in E. To implement such an algorithm we need to know
J ′(w), ∀w ∈ E. The derivation of J ′(w) will be addressed in the follow-
ing section, while the conjugate gradient solution of problem (7)-(10) will be
discussed in Section 6.

5 Derivation of J
′(w).

It can be shown that if we define p by
∫

Ω

pttzdx +

∫

Ω

∇p · ∇zdx −

∫

Γext

∂p

∂t
zdΓ +

∫

ω

λ∗zdx = 0,

∀z ∈ H1(Ω),
∫

ω

pµdx = 0, ∀µ ∈ L2(ω),

p(T ) = yt(T ) − w1,
∫

Ω

pt(T )zdx =

∫

Γext

p(T )zdΓ −

∫

Ω

∇(y(T ) − w0) · ∇zdx, ∀z ∈ H1(Ω),

(11)
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then we have the following representation for J ′(w):

< J ′(w),v > =

∫

Ω

∇(w0 − y(T )) · ∇v0dx −

∫

Ω

pt(0)v0dx +

∫

Γext

p(0)v0dΓ

+

∫

Ω

(w1 − yt(T ))v1dx +

∫

Ω

p(0)v1dx, ∀v = {v0, v1} ∈ E.

(12)
Relations (11) and (12) are largely “formal”; however it is worth mentioning
that the discrete variants of them make sense and lead to algorithms with fast
convergence properties.

6 Conjugate gradient solution of problem (7).

As in Section 4, we suppose that E = H1(Ω) × L2(Ω). A conjugate gradient
algorithm for the solution of (7) is given by:
Step 0: Initialization

e0 = {e0
0, e

0
1} ∈ E is given. (13)

Solve the following forward wave problem:

∫

Ω

y0
ttzdx +

∫

Ω

∇y0 · ∇zdx +

∫

Γext

∂y0

∂t
zdΓ +

∫

ω

λ0zdx = 0, ∀z ∈ H1(Ω),
∫

ω

µ(y0 − g̃)dx = 0, ∀µ ∈ L2(ω),

(14)
y0(0) = e0

0, y0
t (0) = e0

1.

Solve next the following backward wave-problem

∫

Ω

p0
ttzdx +

∫

Ω

∇p0 · ∇zdx −

∫

Γext

∂p0

∂t
zdΓ +

∫

ω

λ∗0zdx = 0, ∀z ∈ H1(Ω),
∫

ω

p0µdx = 0, ∀µ ∈ L2(ω),

(15)
p0(T ) = y0

t (T ) − e0
1,

∫

Ω

p0
t (T )zdx =

∫

Γext

p0(T )zdΓ −

∫

Ω

∇(y0(T ) − e0
0) · ∇zdx, ∀z ∈ H1(Ω).

Next, define g0 = {g0
0, g

0
1} ∈ E (= H1(Ω) × L2(Ω)) by

∫

Ω

∇g0
0 ·∇zdx =

∫

Ω

∇(e0
0−y0(T ))·∇zdx−

∫

Ω

p0
t (0)zdx+

∫

Γext

p0(0)zdΓ, ∀z ∈ H1(Ω),

(16)
g0
1 = p0(0) + e0

1 − y0
t (T ),

and then
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w0 = g0. � (17)

For n ≥ 0, suppose that en, gn, wn are known; we compute their updates
en+1, gn+1, wn+1 as follows:
Step 1: Descent

Solve
∫

Ω

yn
ttzdx +

∫

Ω

∇yn · ∇zdx +

∫

Γext

∂yn

∂t
zdx

∫

ω

λ
n
zdx = 0, ∀z ∈ H1(Ω),

∫

ω

µyndx = 0, ∀µ ∈ L2(ω),

(18)
yn(0) = wn

0 , yn
t (0) = wn

1 .

Solve the backward wave problem

∫

Ω

pn
ttzdx +

∫

Ω

∇pn · ∇zdx −

∫

Γext

∂pn

∂t
zdΓ +

∫

ω

λ
n∗

zdx = 0, ∀z ∈ H1(Ω),
∫

Ω

pnµdx = 0, ∀µ ∈ L2(ω),

(19)
with pn(T ) and pn

t (T ) given by

pn(T ) = yn
t − wn

1 ,
∫

ω

pn
t (T )zdx =

∫

Γ

pn(T )zdx −

∫

Ω

∇(yn(T ) − wn
0 ) · ∇zdx, ∀z ∈ H1(Ω),

respectively.
Next define gn = {gn

0 , gn
1 } ∈ H1(Ω) × L2(Ω) by

∫

Ω

∇gn
0 · ∇zdx =

∫

Ω

∇(wn
0 − yn(T )) · ∇zdx −

∫

Ω

pn
t (0)zdx

+

∫

Γext

pn(0)zdΓ, ∀z ∈ H1(Ω),
(20)

gn
1 = pn(0) + wn

1 − yn
t (T ),

and then ρn by

ρn =

∫

Ω

[|∇gn
0 |

2 + |gn
1 |

2]dx

/
∫

Ω

(∇gn
0 · ∇wn

0 + gn
1wn

1 )dx. (21)

We update then en and gn by

en+1 = en − ρnwn, (22)

gn+1 = gn − ρngn. (23)
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Step 2: Test of the convergence and construction of the new descent

direction

If

∫

Ω

(|∇gn+1

0 |2 + |gn+1

1 |2)dx

/
∫

Ω

(|∇gn
0 |

2 + |gn
1 |

2)dx ≤ ε, take e = en+1; else,

compute

γn =

∫

Ω

(|∇gn+1

0 |2 + |gn+1

1 |2)dx

/
∫

Ω

(|∇gn
0 |

2 + |gn
1 |

2)dx (24)

and update wn by
wn+1 = gn+1 + γnwn. � (25)

Do n = n + 1 and g0 to (18).
Algorithm (13)-(25) requires the solution of two waves problems at each it-
eration and also of an elliptic problem such as (20). For more comments see
Bristeau et al. [1998], Glowinski and Lions [1995].

7 Finite difference/finite element implementation.

Compared to what has been done in Bristeau et al. [1998], Glowinski and
Lions [1995] the main difficulty is clearly the numerical implementation of
the distributed Lagrange multiplier based techniques used to force Dirichlet
boundary conditions. We shall consider the forward wave equations only since
the backward ones can be treated by similar methods. Dropping the super-
script, the forward wave problems to be solved are all of the following type:

∫

Ω

yttzdx +

∫

Ω

∇y · ∇zdx +

∫

Γext

∂y

∂t
zdΓ +

∫

ω

λzdx = 0, ∀z ∈ H1(Ω), (26)

∫

Ω

µ(y − g̃)dx = 0, ∀µ ∈ L2(ω), (27)

y(0) = e0, yt(0) = e1. (28)

Approximating spaces L2(Ω) and H1(Ω) are pretty classical tasks. Let us
suppose that Ω is a bounded polygonal domain of IR2; we introduce a trian-
gulation Th of Ω and define a space Vh approximating both H1(Ω) and L2(Ω)
by

Vh = {zh|zh ∈ C0(Ω), zh|T ∈ P1, ∀T ∈ Th}. (29)

Next, in order to implement the fictitious domain methodology, we proceed
as follows: we introduce first a set Σh of control points belonging to ω and
defined as follows:

Σh = Σω
h ∪ Σγ

h , (30)

where, in (30), Σω
h is the set of the vertices of Th belonging to ω and whose

distance at γ is more than Ch, C being a positive constant, and where Σγ
h is

a set of points of γ. We suppose that Σh = {pj}
Nh

j=1
, where Nh = Card(Σh).
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Following Glowinski [2003], Glowinski et al. [2001], we shall use as “multiplier”
space, Λh defined by

Λh = {µh|µh = ΣNh

j=1µjδ(x − pj), µj ∈ IR}. (31)

Collecting the above results leads to the following collocation based approxi-
mation of problem (26)-(28):

∫

Ω

yn+1

h + yn−1

h − 2yn
h

τ2
zhdx +

∫

Ω

∇yn
h · ∇zhdx +

∫

Γext

yn+1

h − yn−1

h

2τ
zhdΓ

+
∑Nh

j=1
λn+1

j zh(pj) = 0, ∀zh ∈ Vh,

(32)
yn+1

h (pj) − g̃h(pj , (n + 1)τ) = 0, ∀j = 1, ..., Nh, (33)

y0
h = e0h, y1

h − y−1

h = 2τe1h; (34)

in (32)-(34), g̃h, e0h, e1h are approximations–all belonging to Vh–of g̃, e0 e1,
respectively.
The finite dimensional linear variational problem (32), (33) is of the form

Ax + Btλ = b,
Bx = c,

(35)

where matrix A is symmetric and positive definite. To solve the saddle point
problem (35), we can use for example the Uzawa/conjugate gradient algorithms
discussed in, e.g., Glowinski and Lions [1995], Fortin and Glowinski [1982].
Suppose, for simplicity, that functions g and g̃ are time independent. Taking
zh = (yn+1

h − yn−1

h )/2τ in (32) we can easily show that scheme (7.7)-(7.9) is
stable if τ verifies a stability condition such as

τ ≤ c−1h, (36)

where c (which has the dimension of a velocity) is a positive constant inde-
pendent of ω. Related distributed Lagrange multiplier based fictitious domain
methods for the solution of wave propagation problems with obstacles are
discussed in Bokil [2004].

8 Numerical experiments.

In order to validate the methods discussed in the above sections, we will ad-
dress the solution of three test problems already solved in Bristeau et al.
[1998] and Glowinski and Lions [1995] using controllability and obstacle fitted
finite element meshes. These problems concern the scattering of planar inci-
dent waves by a disk, a convex ogive, and a non-convex reflector (air-intake
like).
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First Test Problem: For this problem, ω is a disk of radius .25m. This
disk is illuminated by an incident planar wave of wavelength .125m (which
corresponds to a 2.4 × GHz frequency) coming from the right, the incidence
angle with horizontal being zero. The artificial boundary Γext is located at a
3 wave length distance from ω. On Figure 2, we have visualized the uniform
finite element triangulation used over Ω to define the discrete spaces Vh and
Λh. It consists of 19,881 vertices and 39,200 triangles; the number of control
points used to define Λh is 19,881. The value of ∆t corresponds to 80 time
steps per period, the space discretization hx = hy = 8.928571 · 10−3 and
∆s = 1.6071 · 10−2 the length between two adjacent point on the disk. The
decay of the discrete cost functional is a function of the number of iterations of
the discrete analogue of algorithm (13)-(25) is shown on Figure 3. Comparing
to the results reported in Glowinski and Lions [1995] shows that the conver-
gence performances are not modified by the addition of the fictitious domain
procedure. The computed scattered field has been visualized on Figure 4.

Fig. 2. Uniform finite el-
ement triangulation used
for the fictitious domain
method

Fig. 3. Disk: convergence of
the fictitious domain algo-
rithm

Second Test Problem: For this problem, ω is an ogive-like obstacle of
length .6m and thickness .16m, respectively. The wavelength of the incident
wave is 0.1m. The artificial boundary is located at a 3 wave-length distance
from ω. The finite element triangulation is uniform and has 11,571 vertices
and 22,704 triangles. The convergence for a zero degree of incidence monochro-
matic wave is shown on Figure 5. The imaginary component of the scattered
field is shown on Figure 6.

Third Test Problem: Denote by λ the wavelength of the propagation
phenomena. For this problem ω is an idealized air intake; it has a semiopen
cavity geometry defined by two horizontal plates (length 4λ and thickness
equal 0.2λ) and a vertical one (length 1.4λ and thickness λ/5). We have
f = 1.2GHz implying a .25m wavelength. The artificial boundary is located
again at a distance of 3λ from ω. The uniform finite element triangulation
has 20,202 points and 39,820 triangles. The convergence to the solution for



Domain Embedding/Controllability Methods 545

Fig. 4. Disk: visualization
of the scattered field

Fig. 5. Ogive: convergence
of the fictitious domain al-
gorithm

Fig. 6. Ogive: imaginary
component of the scattered
field

Fig. 7. Idealized air intake:
convergence of the fictitious
domain algorithm

an illuminating monochromatic wave of incidence α = 30◦ is shown on Figure
7. We observe from Figure 7 that the convergence of the method combin-
ing controllability and fictitious domain is faster than the one of the “pure”
controllability method discussed in Glowinski and Lions [1995]. In order to
compare the first method with those discussed in Glowinski and Lions [1995],
we have visualized on Figures 8 and 9 the scattered field obtained with the
methods of Glowinski and Lions [1995] and of this article on Figures 4, 6, and
8. We can observe the extension of the scattered field inside the scatters.

9 Conclusion and Future.

The fictitious domain based methods discussed in this article appear to be
competitive with the boundary fitted one discussed in Glowinski and Lions
[1995]. One of the main advantages of the fictitious domain approach is that
it is well-suited to those shape optimization problems with several scatters
where we have the shape and position of the obstacles in order to minimize
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Fig. 8. Idealized air intake:
scattered field obtained by
the method of reference

Fig. 9. Idealized air in-
take: scattered field ob-
tained by the fictitious do-
main method

for example a Radar Cross section. Only the acoustic wave equation has been
considered in this investigation, but we consider generalizing the methods
discussed here to Maxwell equations in two and three dimensions.
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