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Summary. We discuss the stability of the Parareal algorithm for an autonomous
set of differential equations. The stability function for the algorithm is derived,
and stability conditions for the case of real eigenvalues are given. The general case
of complex eigenvalues has been investigated by computing the stability regions
numerically.

1 Introduction

This paper represents one of the contributions at a minisymposium on the
Parareal algorithm at this domain decomposition conference. The minisym-
posium was organized by Professor Yvon Maday, who is also one of the origi-
nators of the Parareal algorithm. The main objective is to be able to integrate
a set of differential equations using domain decomposition techniques in time.
We refer to the review article by Yvon Maday in these proceedings for a more
detailed introduction to the ideas and motivation behind this algorithm.

In Section 2, we briefly review the Parareal algorithm and introduce the
necessary notation. Our main focus is the stability analysis of this algorithm.
In Section 3.1, we briefly review the standard stability analysis of ordinary
differential equations, and in Section 3.2, we derive the stability function for
the Parareal algorithm. In the remaining part of Section 3, we derive the
stability conditions in the case of real and complex eigenvalues.

2 Algorithm

The Parareal algorithm was first presented in Lions et al. [2001]. An improved
version of the algorithm was presented in Bal and Maday [2002]. Further
improvements and understanding, as well as new applications of the algorithm,
were presented in Baffico et al. [2002] and Maday and Turinici [2002]; our point
of departure is the version of the Parareal algorithm presented in these papers.
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We consider a set of ordinary differential equations that we would like to
integrate from an initial time t0 = 0 to a final time T . The time interval is
first decomposed as

t0 = T0 < T1 < · · · < Tn = n∆T < Tn+1 < TN = T.

The Parareal algorithm is then given as the predictor-corrector scheme

λk
n = F∆T (λk−1

n−1) + G∆T (λk
n−1) − G∆T (λk−1

n−1), (1)

where subscript n refers to the time subdomain number, superscript k refers
to the (global) iteration number, and λk

n represents an approximation to the
solution at time level n at iteration number k. The fine propagator F∆T

represents a fine time discretization of the differential equations, with the
property that

λn = F∆T (λn−1) , n = 1, ..., N,

while the coarse propagator G∆T represents an approximation to F∆T .
Notice that F∆T operates on initial conditions λk−1

n−1, which are known.

This implies that F∆T (λk−1
n−1) can be implemented in parallel. The coarse

propagator G∆T , on the other hand, operates on initial conditions λk
n−1 from

the current iteration, and is therefore strictly serial.

3 Stability analysis

In Farhat and Chandesris [2003], an investigation of the stability for an au-
tonomous problem is presented. We will here use more of the tools provided
by the ODE theory, and extend the stability analysis a bit further.

The departure of our stability analysis is the predictor-corrector scheme
(1). A stability analysis is performed on the autonomous differential equation

y′ = µy, y(0) = y0, µ < 0 . (2)

The exact solution to this problem is y(t) = eµty0. Since µ < 0, this is a
decaying function for increasing t. The numerical solution of (2) is an approx-
imation to the exact solution. It is well known that a convergent numerical
scheme can be arbitrarily accurate by choosing sufficiently small time-steps.
A numerical scheme which results in an non-increasing approximation for the
chosen time-step is called stable. For a more precise definition of stability, the
reader is referred to Hairer et al. [2000].

3.1 Stability analysis for ordinary ODE schemes

To better understand the derivation of the stability properties of the Parareal
algorithm, we start by deriving the stability properties for two well known
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numerical schemes, namely the explicit and implicit Euler methods. Applied
to our differential equation, the two schemes can be written as

yn = yn−1 + ∆Tµ yn−1 = (1 + ∆Tµ)ny0 = R(z)n y0 explicit Euler
yn = yn−1 + ∆Tµ yn = (1 − ∆Tµ)−n y0 = R(z)ny0 implicit Euler

where ∆T is the time-step, z = ∆Tµ and R(z) is called the stability function of
the chosen scheme. Obviously, |R(z)| ≤ 1 will prevent the numerical schemes
from blowing up for increasing n.
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Fig. 1. Stability domain for explicit (left) and implicit(right) Euler. The dark region
is the stability domain, i.e., those values of z in the complex plane where |R(z)| ≤ 1.

From Figure 1 we see that explicit Euler suffers from time-step restrictions,
while implicit Euler is stable for all possible choices of the time-step ∆T

(µ < 0). In the context of the Parareal algorithm, the coarse propagator G∆T

is forced to take large time-steps, which clearly indicates that implicit Euler
is a better choice then explicit Euler for the coarse propagator.

Consider now a linear system of M autonomous differential equations

y′ = Ay, y(0) = y0. (3)

Assuming that a spectral factorization is possible, we may write the system
matrix A ∈ IRM×M as

A = V DV −1

where D is a diagonal matrix containing the eigenvalues {µ1, . . . , µM} of A,
and V is a matrix containing the corresponding eigenvectors of A.

The exact solution of (3) may then be written as

y(t) = etAy0 = V etDV −1y0 ,
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while the approximation of the (3) using implicit Euler can be expressed as

yn = V (I − ∆TD)−n V −1 y0 .

Obviously, a method is stable for systems of ODE’s if |R(zi)| ≤ 1, i =
1, . . . , M , where zi = ∆Tµi and µi is the ith eigenvalue of A.

3.2 Stability analysis for the Parareal algorithm

In the following analysis, we assume that we may use different integration
schemes for the fine and the coarse propagator. Within each coarse time step
∆T , we will use several fine time steps δt with the fine propagator.

Our first aim is to write the predictor-corrector scheme (1) on the form

λk
n = V H(n, k, r(Dδt), R(D∆T )V −1 λ0,

where n is the subdomain number (in time), k is the iteration number, H is
the “stability function” for the Parareal scheme, r is the stability function for
the fine propagator F∆T , R is the stability function for the coarse propagator
G∆T and D is the diagonal matrix containing all the eigenvalues for the system
matrix. To do this we first apply the predictor-corrector scheme (1) to the
model problem (2); this gives

λk
n = r̄(µδt)λk−1

n−1 + R(µ∆T )λk
n−1 − R(µ∆T )λk−1

n−1, (4)

where r̄(µδt) = r(µδt)s is the stability function for the fine operator after
s = ∆T

δt
fine time-steps δt, and R(µ∆T ) is the stability function for the coarse

operator G∆T . For simplicity we will write r̄ = r̄(µδt) and R = R(µ∆T ).
We rearrange (4) and write

λk
n = Rλk

n−1 + (r̄ − R)λk−1
n−1 = Rλk

n−1 + Sλk−1
n−1. (5)

Obviously, the recursion is solved like this:

λk
n λk

n

↓ ց ↓ R ց S

λk
n−1 λk−1

n−1 λk
n−1 λk−1

n−1

↓ ց ↓ ց

λk
n−2 λk−1

n−2 λk−2
n−2

↓ ց ↓ ց ↓ ց

λk
n−3 λk−1

n−3 λk−2
n−3 λk−3

n−3

↓ ց ↓ ց ↓ ց ↓ ց

λk
n−4 λk−1

n−4 λk−2
n−4 λk−3

n−4 λk−4
n−4

We recognize the Pascal tree, and we may write (5) as

λk
n =

(

k
∑

i=0

(

n

i

)

(r̄ − R)iRn−1

)

λ0,
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where we identify the “stability function” H as

H(n, k, r, R) =

k
∑

i=0

(

n

i

)

(r̄ − R)iRn−1.

The extension to solve the system (3) is straightforward,

λk
n = V H(n, k, r, R)V −1 λ0.

Stability is achieved if

sup
1≤n≤N

sup
1≤k≤N

|H(n, k, r, R)| ≤ 1 ∀µi , i = 1, ..., M. (6)

3.3 Special case: µi real

In the case of real eigenvalues, the stability condition (6) can be expressed as

|H | =

∣

∣

∣

∣

∣

k
∑

i=0

(

n

i

)

(r̄ − R)iRn−i

∣

∣

∣

∣

∣

≤

k
∑

i=0

(

n

i

)

|(r̄ − R)|i|R|n−i

≤
n
∑

i=0

(

n

i

)

|(r̄ − R)|i|R|n−i

= (|r̄ − R| + |R|)n ≤ 1 ∀µi , i = 1, ..., M,

where |r̄ − R| + |R| is either |(r̄ − R) + R| or |(r̄ − R) − R|. 1 The condition
|(r̄−R)+R| = |r̄| ≤ 1 is the stability condition for the fine operator, and this
should be true independent of the use of the Parareal algorithm.

The condition |(r̄ − R) − R| = |2R − r̄| ≤ 1 can be rewritten as

r̄ − 1

2
≤ R ≤

r̄ + 1

2
. (7)

Theorem 1. Assume we want to solve the autonomous differential equation

y′ = µy , y(0) = y0 , 0 > µ ∈ R ,

and that −1 ≤ r, R ≤ 1 where r = r(µδt) is the stability function for the

fine propagator F∆T using time-step δt and R = R(µ∆T ) is the stability

function for the coarse propagator G∆T using time-step ∆T . Then the Parareal

algorithm is stable for all possible values of number of subdomains N and all

number of iterations k ≤ N as long as

r̄ − 1

2
≤ R ≤

r̄ + 1

2

where r̄ = r(µδt)s and s = ∆T
δt

.

1 This is due to Harald Hanche Olsen, Dept. of Mathematical Sciences, NTNU
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It is not obvious from (7) which solvers will fulfil this stability condition.
However, Theorem 2 gives some insight by considering a special case.

Theorem 2. Assume we want to solve the autonomous differential equation

y′ = µy , y(0) = y0 , 0 > µ ∈ R ,

using the Parareal algorithm. Assume also that the system is stiff, meaning

that z = µ∆T ≪ −1, and that the fine propagator is close to exact. Then the

“stability function” can be written as

H(n, k, R) = (−1)k

(

n − 1

k

)

Rn ,

and stability is guaranteed if the following property is fulfilled:

R∞ = lim
z→−∞

|R(z)| ≤
1

2
. (8)

The proofs of Theorem 1 and 2 are not included due to space limitation,
but will be included in a future article.

We have tested the condition (8) by solving the one-dimensional unsteady
diffusion equation using a spectral Galerkin method in space and a Crank-
Nicolson scheme for the fine propagator F∆T . We then tested the following
schemes for the coarse propagator G∆T : the implicit Euler method (R∞ = 0),
the Crank-Nicolson scheme (R∞ = 1), and the θ-scheme where we can vary the
degree of “implicitness,” and hence R∞; see Hairer et al. [2000] and Hairer and
Wanner [2002]. The numerical results demonstrated that rapid convergence
of the Parareal scheme is obtained for implicit Euler, while Crank-Nicolson
first gives convergence, and then starts to diverge when k increases. However,
as k approaches N , the results again start to converge; this is expected since
the Parareal algorithm gives precisely the fine solution after N iterations.
By varying the degree of “implicitness” in the θ-scheme, we observe that our
results are consistent with the “stability condition” (8).

3.4 General case: µi complex

Notice that Theorem 1 is true for ODE’s and systems of ODE’s where the
eigenvalues of the system matrix have pure real eigenvalues. For complex
eigenvalues, (6) needs to be fulfilled. This is done numerically in Figure 2 and
3 for the two-stage third order Implicit Runge-Kutta-Radau scheme (Radau3);
see Hairer and Wanner [2002]. This scheme is chosen because it represents the
typical asymptotic behaviour of a scheme which fulfils Theorem 2. The differ-
ence in behavior between the various possible schemes lies in the size of the
instability regions in the real direction, and in the number of instability re-
gions in the imaginary direction. For example, implicit Euler will have smaller
instability regions compared to Radau3.
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Fig. 2. Stability plots using Radau3 for both G∆T and F∆T . The x-axis is Re(µ∆T )
and the y-axis is Im(µ∆T ). The dark regions represent the regions in the complex
plane where (6) is satisfied. Here, N = 10, and s = 10 (left) and s = 1000 (right).
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Fig. 3. Stability plots using Radau3 for both G∆T and F∆T . The x-axis is Re(µ∆T )
and the y-axis is Im(µ∆T ). The dark regions represent the regions in the complex
plane where (6) is satisfied. Here, N = 1000, and s = 10 (left) and s = 1000 (right).

From Figure 2 and 3 we notice that the Parareal algorithm is unstable for
pure imaginary eigenvalues, as well as for some complex eigenvalues where
the imaginary part is much larger then the real part (notice the difference in
scalings along the real and the imaginary axes). No multistage scheme has yet
been found that makes the presented formulation of the Parareal algorithm
stable for all possible eigenvalues. This means that the numerical solution
of some hyperbolic problems, and convection-diffusion problems with highly
dominant convection (e.g Navier-Stokes with high Reynolds numbers), are
probably unstable using the Parareal algorithm. This is also consistent with
the results reported in Farhat and Chandesris [2003].
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4 Conclusion and final comments

For an autonomous set of differential equations, we have derived the stability
conditions for the Parareal algorithm. The stability conditions corresponding
to the case of real eigenvalues are explicitly given, while the general case has
been investigated by computing the stability regions numerically. These latter
results indicate that the Parareal algorithm is unstable for pure imaginary
eigenvalues, which is also consistent with previously reported results.

Numerical results have also been obtained using the Parareal algorithm
in the context of solving partial differential equations such as the nonlinear,
viscous Burger’s equation, and where the coarse propagator incorporates a
coarse discretization in space as well as in time. However, a discussion of
these results will be reported elsewhere due to space limitation.

Acknowledgement. We thank Professor Yvon Maday for bringing the Parareal algo-
rithm to the attention of the authors, and for many valuable discussions.
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