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Summary. A multilevel homotopic adaptive finite element method is presented

in this paper for convection dominated problems. By the homotopic method with

respect to the diffusion parameter, the grids are iteratively adapted to better ap-

proximate the solution. Some new theoretic results and practical techniques for the

grid adaptation are presented. Numerical experiments show that a standard finite

element scheme based on this properly adapted grid works in a robust and efficient

manner.

1 Introduction

In this paper, we shall present a class of adaptive finite element methods
(FEMs) for the convection-dominated problems. One simple model is the fol-
lowing convection-diffusion problem:

−ǫ∆u + b(x) · ∇u = f(x), (1)

which is posed on a bounded domain Ω ⊂ R2 with a proper boundary condi-
tion.

We are interested in adaptive finite element methods for the convection-
dominated case, namely ǫ is sufficiently smaller than b(x). It is well-known
that one major difficult for this type of problem is that a standard finite
element discretization scheme usually fail and specialized methods, such as
upwinding scheme and streamline diffusion methods, need to be adapted.
One conclusion from the study in this paper is that a standard finite element
scheme still works reasonably well if the grid is properly adapted so that sharp
boundary or internal layers presented in the solution will be fully resolved.
To obtain such a properly adapted grid, we are going to use a homotopic
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method with respect to the diffusion parameter ǫ. Namely, we first start our
computation for large ǫ, say ǫ = 1 and use adaptive grid technique for elliptic
problems to obtain a good initial grid. We then start to decrease the value
of ǫ and use the current grid as an initial grid to obtain a new adaptive
grid. We continue in this way until the desired value of ǫ is reached. As a
general approach, the homotopic method of this type is commonly used in
many different application areas and there have been existing works for grid
adaptation (c.f. Habashi et al. [1997]). What is of importance here is how
such a continuation procedure is carried out in a robust and efficient manner.
In this paper, we will first present an interpolation error estimate and then
develop local mesh improvement techniques such as refinement, coarsening
and smoothing and global moving mesh strategy which aims to minimize the
interpolation error.

2 Theoretical foundation

In this section, we include an interpolation error estimate from Chen et al.
[2003]. (Similar error estimates in special cases can also be found in, e.g,
D’Azevedo and Simpson [1989], Habashi et al. [1997], Huang and Sun [2003]).
This estimate can be viewed as the theoretical foundation of this paper,
namely our algorithms are aimed at minimizing (or at least reducing) this
interpolation error by iteratively modifying our grids.

The estimate.

Let Ω be a bounded domain in Rn. Given a function u ∈ C2(Ω̄), we call a
symmetric positive definite matrix H ∈ Rn×n to be a majorizing Hessian of
u if

|ξt(∇2u)(x)ξ| ≤ c0ξ
tH(x)ξ, ξ ∈ Rn, x ∈ Ω

for some positive constant c0.
We then use the majorizing Hessian to define a new metric

Hp = (detH)−
1

2p+n H, p ≥ 1.

There are two conditions for a triangulation TN , where N is the number
of simplexes, to be a nearly optimal mesh in the sense of minimizing the
interpolation error in Lp norm. The first assumption asks the mesh to capture
the high oscillation of the Hessian metric, namely H does not change very
much on each element.
(A1) There exist two positive constants α0 and α1 such that

α0ξ
tHτ ξ ≤ ξtH(x)ξ ≤ α1ξ

tHτ ξ, ξ ∈ Rn,

where Hτ is the average of H over τ .
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The second condition asks that TN is quasi-uniform under the new metric
induced by Hp.
(A2) There exists two positive constants β0 and β1 such that

∑

i d̃2
τ,i

|τ̃ |2/n
≤ β0, ∀τ ∈ TN and

maxτ∈T |τ̃ |

minτ∈T |τ̃ |
≤ β1, (2)

where |τ̃ | is the volume of τ and d̃τ,i is the length of the i-th edge of τ under
the new metric Hp, respectively.

The first inequality in (2) means that each τ is isotropic i.e. shape-regular
under the metric Hp. The second inequality (2) means that all elements τ
are of comparable size (under the new metric), which is a global condition
and known as the equidistribution principal Huang [2001]. It means that the
mesh will concentrate at the region where det Hp(x) is large. We proved in
Chen et al. [2003] that a triangulation which satisfies both local and global
conditions yields a good approximation.

Theorem 1. Let u ∈ C2(Ω̄), TN satisfy assumptions (A1) and (A2) and uI

is the linear finite element interpolation of u based on the triangulation TN ,
the following error estimate holds:

‖u− uI‖Lp(Ω) ≤ CN−2/n‖ n
√

det(H)‖
L

pn
2p+n (Ω)

for some constant C = C(n, p, c0, α0, α1, β0, β1). This error estimate is opti-
mal in the sense that for a strictly convex (or concave) function, the above
inequality holds in a reversed direction.

It is well known that for diffusion dominated problems, there will be some
sharp boundary layers or internal layers with width in ǫ scale. We would like
to emphasis that the error bound in Theorem 1 is independent of ǫ. Some
numerical results about the ǫ independence of the interpolation error can be
found at Chen et al. [2003].

As mentioned before, Theorem 1 will be the basis of grid adaptation algo-
rithms. Roughly speaking, for a given function u, we will adapt our grids in
such a way the assumption (A1) and (A2) will be better and better satisfied.
One important remark we need to make is that the validity of Theorem 1
allows for a few exceptions of the assumption (A2) for p <∞, see Chen et al.
[2003] for details. This is particularly important since in practice it is very dif-
ficult to guarantee that (A2) is satisfied everywhere. We note that the theory
and algorithms in D’Azevedo and Simpson [1989] and Habashi et al. [1997]
are only for p = ∞ which requires that (A2) be satisfied on each element in
the triangulation.

Postprocessing: recovery of Hessian.

In this section, we will discuss how the Hessian matrix of the solution can be
obtained when linear finite element approximation is used for the discretiza-
tion of partial differential equations. Since taking piecewise second derivatives
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to piecewise linear functions will given no approximation to Hessian matrix,
special Postprocessing techniques need to be used to obtain reasonable Hes-
sian matrix approximation from linear finite elements.

One most popular technique is a patch recovery technique proposed by
Zienkiewicz and J.Z.Zhu [1992a,b] which is based on the least squares fitting
locally. Results from their application demonstrate that it is robust and effi-
ciency. The theoretical reason for ZZ method to work is largely understood
to be related to the superconvergence phenomenon for second order elliptic
boundary value problems discretized on a finite element grid that has cer-
tain local symmetry, see Wahlbin [1995], Chen and Huang [1995], Babuska
and Strouboulis [2001]. These classic superconvergence results can be used to
justify the effectiveness of Zienkiewicz-Zhu method, see, for example, Zhang
[1999], Li and Zhang [1999] for nearly structured grids. A significant improve-
ment of this type of analysis was given recently by Bank and Xu [2003a,b].
In Bank and Xu [2003a] they gave superconvergence estimates for piecewise
linear finite element approximation on quasi-uniform triangular meshes where
most pairs of triangles sharing a common edge form approximate parallelo-
grams. They also analyze a postprocessing gradient recovery scheme, showing
that Qh∇uh is a superconvergent approximation to ∇u. Here Qh is the global
L2 projection. This result leads to a theoretical justification of ZZ method for
such type of grids, see Xu and Zhang [2004]. Recently, Carstensen and Bartels
[2002] also gave theoretical and numerical support for the robust reliability of
all averaging techniques on unstructured grids.

The gradient recovery algorithm used in the numerical examples of this
paper is based on a new approach due to Bank and Xu [2003b] where they use
the smoothing iteration of the multigrid method to develop a postprocessing
gradient recovery scheme. This scheme proves to be very efficient for recov-
ering Hessian matrix. All the above methods can be extended to anisotropic
grids with some proper modifications, but a theoretical justification of such
extensions is still lacking. Nevertheless, numerical experiments have given sat-
isfactory results.

3 Mesh adaptation

In this section, we will discuss techniques which aim at improving the mesh
quality. Here we define the mesh quality for a triangulation T by the interpo-
lation error:

Q(T , u, p) = ‖u− uI,T ‖Lp(Ω), 1 ≤ p ≤ ∞.

Local mesh optimizations.

There are mainly three types mesh improvements: (1) refinement or coarsen-
ing Bank et al. [1983], Rivara [1984], Kornhuber and Roitzsch [1990], (2) edge
swapping Lawson [1977], and (3) mesh smoothing Bank and Smith [1997],
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Jones et al. [1995]. We will derive those techniques by minimizing the inter-
polation error in Lp norm, which can be achieved by equidistributing edge
lengths under the new metric.

We compute edge lengths under the new metric Hp and mark edges whose
lengths are greater than r1d, where r1 ≥ 1 is a parameter and d is a fixed
edge length. We connect marked edges element-wise according to different
situations; See Fig. 1.

Fig. 1. Edge-based refinement

The coarsening operates like an inverse procedure of refinement. It marks
the one whose length is less than r2d for another parameter r2 ≤ 1. We then
shrink this edge to a point and connect to the vertices of the patch of the
edge.

Now we consider the edge swapping for four points {vi}
4
i=1 which form

two adjacent triangles and a convex quadrilateral. Let T1 = △123 ∪△134 and
T2 = △124 ∪△234, where △ijk stands for the triangle made up by vi,vj , and
vk. We choose triangulation T1 if and only if Q(T1, u, p) ≤ Q(T2, u, p), for
some 1 ≤ p ≤ ∞. In Chen and Xu [2004a], we show this criteria is equivalent
to the empty circle criteria when u(x) = ‖x‖2. Thus it is an appropriate gen-
eralization of the edge swapping used in the isotropic case to the anisotropic
case.

Local mesh smoothing adjusts the location of a vertex in its patch Ωi,
which consists of all simplexes containing vertex xi, without changing the
connectivity. Moving vertex to the new location will provably or heuristically
improve the mesh quality. Several sweeps through the whole mesh can be per-
formed to improve the overall mesh quality. By minimizing the interpolation
error in Ωi, we move xi to x∗ such that

∇u(x∗) = −
1

|Ωi|

∑

τj∈Ωi

(

∇|τj |
∑

xk∈τj,xk 6=xi

u(xk)
)

. (3)

The derivation of this formula can be found at Chen and Xu [2004a]. In the
application to numerical solution, we use Qh∇uh and uh in (3) to perform
the calculation.
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Global moving mesh strategy.

Another global approach to improve the mesh to better approximate a solu-
tion has been carried out in the study of the so-called moving mesh method
Huang [2001], Huang and Sun [2003], Huang and Russell [1999]. Let Ωc be the
computational domain with a quasi-uniform (under the standard Euclidean
metric) triangulation T c

N . The mesh on Ω can be viewed as the image of a
transformation x = x(ξ) : Ωc → Ω. Then to ask the transformed mesh to
be quasi-uniform respect to the metric G(x) is more or less equivalent to ask
x = x(ξ) to be the global minimizer of the minimizing problem:

min
x

∫

Ωc

(

∑

i

(∇xi)
tG(x)∇xi

)q

dξ, q > n/2.

The minimizers of the above functionals is expected to satisfy both equidistri-
bution and isotropy conditions simultaneously Chen et al. [2003]. We note that
the q = 1 case corresponds to the harmonic mapping but we ask q > n/2 here.
When n ≥ 3, these minimization problems (which is more or less p-Laplacian
with p > n) is significantly different from the harmonic mapping which has
been most commonly used in the literature for moving mesh method Liseikin
[1999], Dvinsky [1991]. If we choose G = [det(H)]−1/(2p+n)H in the func-
tional, we can get a nearly optimal mesh which minimizes the interpolation
error ‖u− uI‖Lp(Ω) by solving above functional.

4 Numerical examples

Our multilevel homotopic adaptive grid method for convection dominated
problem −ǫ∆u + b(x) · ∇u = f(x) can be roughly described as follows.

Given ρ = ǫ0 ≫ ǫ and h = h0, generate an initial mesh Th.

1. Discretize the PDE on mesh Th and solve it to get the solution uh.
2. Global or local move Th using uh and its recovered derivatives.
3. If ρ = ǫ, locally improve the grid using the estimated new metric. Other-

wise go to (4).
4. Global refine Th, and set ρ← γρ (γ < 1), h← h/2. Go to (1).

Let’s considering the following convection dominated model problem:

{

−ǫ∆u + ux = 1 x ∈ Ω
u = 0 x ∈ ∂Ω̄

(4)

on the unit square domain Ω = (0, 1)2 with ǫ = 0.001. By applying above
algorithm we solve this convection-diffusion problem and try to catch out the
singular sections of solution by means of moving mesh and local optimized
mesh. The following pictures in Fig. 2 describe that how the adaptive mesh
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Fig. 2. Continuation adaptive meshes and corresponding solutions

and numerical solution change in this multilevel homotopic adaptive process
step by step.

In this process of multilevel homotopic adaptive mesh, we start from a
very coarse initial grid with respect to ǫ = 0.1. On the following each level,
we decrease ǫ once by dividing by 2 firstly, then resolve the original P.D.E
(4) on this level’s mesh with the standard finite element method, and get
more significant improvements of numerical solution uh around the upper,
lower and right boundary layer. After that, we calculate the modified Hessian
matrix Hp (in this example, we choose p = 1 i.e. we measure the error in
L1 norm) of the solution via the recovery technique we mentioned in section
3. Then according to the value of Hessian matrix on each mesh element, we
move grids to upper, lower and right boundary layer by virtue of moving
mesh method. On the other hand, when we decrease ǫ, we apply global mesh
refinement for the whole domain in order to get more grids to move.

Keep running this process until ǫ equals to its original value 0.001, we then
begin to do the local mesh optimizations. Still utilizing the Hessian matrix Hp

of each mesh element, we catch and mark those edges whose lengths under
the new matrix is relative large, then apply our local refinement technique
on these marked edges and thus locally generate a finer mesh to resolve the
singularity of the solution.

Eventually the singularity of the solution of (4) is resolved, no oscillation
any more. To show the numerical optimal convergence rate of our algorithm,
we list the error in L1 norm and its convergence rate in Table 1.

Since the analytical solution to (4) is not available, we compute a solution
on a very fine Shishkin mesh Shishkin [1990] for which the near optimal con-
vergence result is known Roos [2002] and use it as the real solution to compute
the error. We apply our algorithm with different initial meshes to obtain a
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N error Rate

4712 2.400665E-04 0.99

7043 9.871067E-05 1.04

10102 9.144469E-05 1.01

14329 7.822302E-05 0.99

17929 9.253636E-05 0.95

22256 6.092786E-05 0.97

Table 1. Errors of FEM on adapted grids

sequence of near optimal meshes for the linear interpolant. The first column
of Table 1 is the number of nodes (unknowns) and the second one is the L1

norm of the error. In the third column, we list the ratio ln error/ ln N . It is
clear that the standard finite element on the nearly optimal meshes obtain an
optimal convergence rate.

5 Concluding remarks

In this paper, we have shown an optimal interpolation error estimates in Lp

norm and, based on the estimate, we have developed new techniques, includ-
ing local mesh optimizations and global moving mesh strategy, to improve the
mesh to better approximate the solution. Those techniques with the homotopy
with respect to diffusion coefficient are successfully applied to convection dom-
inated problem. One main observation in our work is that a properly adapted
mesh will enhance the stability of the standard finite element methods which
often fails for convection dominated problems on quasi-uniform grids. This
phenomenon has been observed in other simpler situations (see books Miller
et al. [1996], Roos et al. [1996]). In the current work, the mesh is adapted to
optimize the interpolation error. We expect that the discretization error will
inherit the optimality of the interpolation error on a nearly optimal mesh for
linear interpolant. We have obtained some preliminary results for a 1-d con-
vection dominated model problem Chen and Xu [2004b] which shows that the
optimality of the convergence rate is sensitive to the perturbation of meshes
in the smooth part.

Another critical question that needs to be addressed is that how to solve
these sequences of systems efficiently since in the adaptive procedure described
in this paper, we need to solve many systems of algebraic system of equations.
Hence how to solve these sequence of systems efficiently is crucial to the entire
adaptive procedure. It is in fact the main research interest of the authors to
develop efficient methods for such systems. We need to develop techniques
how to make use of the intermediate grids and equations together with their
discrete solutions. This is a subject of our ongoing research.
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