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Summary. After stating an abstract convergence result for the parareal algorithm
used in the parallelization in time of general partial differential equations, we analyze
the stability and convergence properties of the algorithm for equations with constant
coefficients. We show that suitably damping coarse schemes ensure unconditional
stability of the parareal algorithm and analyze how the regularity of the initial
condition influences convergence in the absence of sufficient damping.

1 Introduction

The parareal algorithm pioneered in Lions et al. [2000] and slightly modified
in Bal and Maday [2002] allows us to speed up the numerical simulation of
solutions to time dependent equations provided that we have enough proces-
sors. We refer to Baffico et al. [2002], Bal [2003], Farhat and Chandesris [2003],
Maday and Turinici [2002] for additional detailed presentations of the method
and applications; see also section 2 below. Natural questions then arise related
to the stability and convergence of the method. Here are some elements of an-
swers to these questions. In section 2 an abstract result in a general setting
shows convergence of the algorithm provided that regularity conditions are
satisfied. In the simplified setting of linear partial differential equations with
constant coefficients, more refined estimates are provided for the convergence
and stability of the parareal algorithm in section 3. A typical result we can
show is as follows: whereas the parareal algorithm is unconditionally stable for
most discretizations of parabolic equations, it is not for hyperbolic equations.

2 An abstract convergence result

Let us consider a possibly non-linear partial differential equation of the form

du

dt
= A(t, u), t > 0

u(0) = u0,
(1)
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where u(t) takes values in a Banach space B and A(t, u) is a possibly time-
dependent partial differential operator. Let us assume that we want to simu-
late this equation on an interval of time (0, T ) and define the discretization
0 = T 0 < T 1 < · · · < T N = T . We assume that the equation (1) admits a
solution operator g(T n, v), which to v ∈ B associates u(T n+1) ∈ B solution
of

du

dt
= A(t, u), T n < t < T n+1

u(T n) = v.
(2)

Let us now assume that we have at our disposal an approximate solution
operator g∆(T n, v). We then define the approximate sequence

un+1
1 = g∆(T n, un

1 ), n ∈ I = {0 ≤ n ≤ N − 1}, (3)

and u0
1 = u0. Let ∆T be the maximal lag between successive time steps T n and

assume that T n+1 − T n ≥ η0∆T for some positive constant η0 for all n ∈ I.
The convergence of uN to u(T n) as ∆T converges to 0 is obtained under the
following hypotheses. Let us assume that g∆ is Lipschitz in a Banach space
B0 and is an approximation of order m of g in the sense that

sup
n∈I

‖g∆(T n, u) − g∆(T n, v)‖B0 ≤ (1 + C∆T )‖u − v‖B0 , (4)

sup
n∈I

‖δg(T n, u)‖B0 ≤ C(∆T )m+1‖u‖B1, (5)

where δg(T n, u) = g(T n, u) − g∆(T n, u), C is a constant independent of ∆T ,
‖ ·‖B denotes a norm on the Banach space B and B1 is another Banach space
(usually a strict subset of B0).

If in addition, (1) is stable in B1, in the sense that u(t) ∈ B1 uniformly in
t provided that u0 ∈ B1, then we have the classical result

‖u(T N) − uN
1 ‖B0 ≤ C(∆T )m‖u0‖B1 , (6)

based on the above regularity assumptions and the decomposition

u(T n+1) − un+1
1 = δg(T n, u(T n)) + g∆(T n, u(T n)) − g∆(T n, un

1 ).

We now consider the parareal algorithm, which allows us to speed up the
calculation of u(t) provided that we have access to a sufficiently large number
of processors. The parareal algorithm is given by

un+1
k+1 = g∆(T n, un

k+1) + δg(T n, un
k ), n ∈ I, k ≥ 1 (7)

with initial condition u0
k+1 = u0. The idea of the algorithm is to add to the

prediction term g∆(T n, un
k+1) a correction involving the previous iteration

un
k and a “fine” calculation that can be done in parallel on every time step

(T n, T n+1) of the coarse discretization since all the terms un
k are known when

the calculation of un
k+1 starts. This requires to have N processors available. In
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practice, we cannot simulate δg(T n, u) exactly, but rather an approximation
of the form gδ(T

n, u) − g∆(T n, u), where gδ(T
n, u) is a sufficiently accurate

approximation of g(T n, u) so that in all the results that follow we can safely
replace g(T n, u) by gδ(T

n, u). See the bibliographical references for additional
details.

We now show that the above algorithm ideally replaces the accuracy of
order m of the non-parallel algorithm by an accuracy of order km to solve
(1). Such an accuracy cannot be obtained in general solely under the above
assumptions for g and g∆. It rather requires much stronger regularity con-
straints. Let us define a scale of Banach spaces B0, B1, . . ., Bk, where in
practice Bk ⊂ Bk−1 ⊂ · · ·B1 ⊂ B0. We have then the following result:

(H1) The equation (1) is stable in all spaces Bj for 0 ≤ j ≤ k, in the sense that
‖u(t)‖Bj ≤ C‖u0‖Bj where C is independent of u0 and t ∈ (0, T ).

(H2) The operator g∆ is Lipschitz in the sense that

sup
n∈I

‖g∆(T n, u) − g∆(T n, v)‖Bj ≤ (1 + C∆T )‖u − v‖Bj , 0 ≤ j ≤ k − 1,

where C is independent of ∆T , u, and v.
(H3) The operator δg is an approximation of order m in the sense that

∑

n∈I

‖δg(T n, u)‖Bj ≤ C(∆T )m+1‖u‖Bj+1 , 0 ≤ j ≤ k − 1. (8)

Theorem 1. Under hypotheses (H1)-(H3), the order of accuracy of the par-
allel algorithm (7) is mk. More precisely, for u0 ∈ ∩0≤j≤kBj, we have

‖u(T N) − uN
k ‖B0 ≤ C(∆T )mk‖u0‖Bk

,

where C is a constant independent of ∆T and u0.

Proof. The result is obtained by induction. We know it to hold when k = 1
thanks to (H1)-(H3) and assume that it holds for k given. We then apply the
result with the sequence of Banach spaces B1, . . . , Bk+1, so that

‖u(T N) − uN
k ‖B1 ≤ C(∆T )mk‖u0‖Bk+1

.

By definition (7), we have

u(T n+1)−un+1
k+1 = g∆(T n, u(T n))−g∆(T n, un

k+1)+δg(T n, u(T n))−δg(T n, un
k).

Using (H1)-(H3), this implies that

‖u(T n+1) − un+1
k+1‖B0 ≤ (1 + C∆T )‖u(T n) − un

k+1‖B0 + C(∆T )m+1‖u(T n) − un
k‖B1

≤ (1 + C∆T )‖u(T n) − un
k+1‖B0 + C(∆T )m(k+1)+1‖u0‖Bk+1

.

Since u(T 0) = u0
k+1 = u0, it is then a routine calculation to obtain (8). �
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3 Stability and convergence for linear operators

The above abstract result shows that the parareal algorithm allows us to
replace a scheme of order m by a scheme of order km provided that regularity
constraints are met. In practice we need to choose Bk+1 as a strict subset of
Bk in (H3); see below. These constraints may not be optimal as they do not
account for possible dissipative effects of the coarse scheme.

To address this issue, we consider a pseudo-differential operator P (D)
with symbol P (ξ) such that ℜ(P (ξ)) ≥ 0 (otherwise consider P + α with
α sufficiently large and solve for v = e−αtu), and define A(t, u) = P (D)u.
To simplify notation, we assume that u(t) is a function on R. In the Fourier
domain, the evolution of û(t, ξ) =

∫

R
e−ixξu(t, x)dx is thus given by

∂û

∂t
(t, ξ) + P (ξ)û(t, ξ) = 0 ξ ∈ R, t > 0

û(0, ξ) = û0(ξ), ξ ∈ R.
(9)

The evolution operator is independent of time T n (= n∆T from now on to
simplify) and is in the frequency domain

g(T n, û) = e−P (ξ)∆T û. (10)

We define δ(ξ) = P (ξ)∆T and using the same notation g define the propagator

g(δ(ξ)) = e−δ(ξ). (11)

We now want to define approximate solutions to the above equation. Let
us assume that the symbol P (ξ) is approximated by PH(ξ) and that the time
propagator g(δ) is approximated by g∆(δH), where δH(ξ) = PH(ξ)∆T . For
instance g∆(δ) = (1 + δ)−1 for implicit first-order Euler. We then define the
parareal scheme as

ûn+1
k+1(ξ) = g∆(δH(ξ))ûn

k+1(ξ) + (g(δ(ξ)) − g∆(δH(ξ)))ûn
k (ξ) (12)

for n ∈ I and k ≥ 0. The boundary conditions are û0
k+1(ξ) = û0(ξ) and

ûn
0 (ξ) ≡ 0. In the above equations, ξ is a parameter so stability and error of

convergence can be analyzed for each frequency separately. We verify that the
exact solution ûn(ξ) also satisfies (12) with different initial conditions so that
the error term εn

k (ξ) = ûn(ξ) − ûn
k (ξ) satisfies the following equation

εn+1
k+1(ξ) = g∆(δH(ξ))εn

k+1(ξ) + (g(δ(ξ)) − g∆(δH(ξ)))εn
k (ξ) (13)

with boundary conditions ε0
k+1(ξ) = 0 and εn

0 (ξ) = ûn(ξ). We verify that
εn
1 (ξ) = (gn(δ(ξ)) − gn(δH(ξ))û0(ξ). Upon defining

θn
k =

1

gn−k+1
∆ (δH)

εn
k

(g(δ) − g∆(δH))k−1
, θn

1 =
(gn(δ) − gn

∆(δH))

gn
∆(δH)

û0(ξ),
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we find that θn+1
k+1 = θn

k+1 + θn
k and θ0

k+1 = 0. The constraint ℜ(P (ξ)) ≥ 0
implies that gn(δ) is uniformly bounded and we assume that gn

∆(δH) is uni-
formly bounded for n ∈ I (this is nothing but stability of the coarse scheme).
We also assume that |(g(δ)/g∆(δH))(ξ)| is uniformly bounded. This allows us
to obtain the following bound

|θn
1 (ξ)| ≤ C(n|g(δ) − g∆(δH)| ∧ 1)|û0(ξ)|. (14)

Here a ∧ b = min(a, b). This implies then the following bound on the error

|εn+1
k+1 |(ξ)| ≤ C

(

n|g(δ)− g∆(δH)| ∧1
)

|g∆(δH)|n−k|g(δ)− g∆(δH)|k
(

n

k

)

, (15)

for n ∈ I and k ≥ 1, where C is proportional to |û0(ξ)| only. This estimate
gives us optimal bounds to prove convergence and stability of the parareal
scheme. For k +1 = 1 in the above formula we recover that the coarse scheme
is stable. We can also obtain the maximal order of convergence of the scheme
after k parareal iterations. Assuming that δ = δH and that g∆ is of order
m so that |(g − g∆)(δ)| ≤ C(ξ)(∆T )m+1, we deduce that |εN

k | is of order
N(∆T )m+1[(∆T )m+1]k−1Nk−1 = (∆T )km. We recover that the parareal al-
gorithm replaces an algorithm of order m by an algorithm of order km.

A central difficulty with the iterative scheme is that for k ≥ 2, the error
term εn

k (ξ), hence the solution ûn
k , may blow up for large frequencies. We now

consider this stability analysis.
The above parallel algorithm requires to solve a fine scale problem k − 1

times to obtain an accuracy of order km on the coarse time grid (i.e. at the
times T n, n ∈ N). The best use of the available processors is thus obtained
for k = 2; see Bal [2003]. In any case the algorithm is useful when the value
of k is small. We therefore assume from now on that 1 ∼ k ≪ n. This implies
that

(

n
k

)

∼ nk.
Let us assume here that δH = δ, i.e., the spatial discretization is the same

for the coarse and fine schemes. Stability at all frequencies is thus ensured
provided that

Rk+1,n(δ) =
(

|g∆|n−k|g − g∆|k
)

(δ)nk, (16)

remains bounded for all values of δ(ξ) = P (ξ)∆T , ξ ∈ R. The first term
|g∆|n−k is clearly bounded since the coarse algorithm is stable. The second
term |g − g∆|k is also bounded. However it may not be small for values of δ
of order 1. The relation (16) indicates how the parareal algorithm blows up.
Unless high frequencies (δ of order O(1) or higher) are damped by the coarse
scheme |g∆|, an instability of size nk will appear at the iteration step k + 1.

Consider a real-valued P (ξ) > 0 for |ξ| > 0 and the centered scheme

g∆(δ) =
1 − δ/2

1 + δ/2
= e−δ + O(δ3). (17)

As δ → ∞, |g∆(δ)| → 1 and g(δ) → 0. We thus observe that high frequencies
will grow like nk−1 in (16) and the parareal scheme is unstable as soon as
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k ≥ 2 although the scheme is unconditionally stable for k = 1. However we
can still apply the general theory. For instance for P (ξ) ≤ |ξ|M and a coarse
scheme of order m we can verify that all the hypotheses of Theorem 1 are
verified provided that Bk = H(m+1)Mk(R). The instability of the parareal
scheme can thus be overcome by assuming sufficient regularity of the initial
conditions.

The growth nk−1 may be compensated when the coarse scheme is dissipa-
tive. A result that covers many classical examples is the following:

Theorem 2. Let us assume that the coarse scheme is an approximation of
order m of the exact propagator and that it is dissipative in the sense that
there exist three constants C, γ > 0 and 1 ≤ β ≤ m+1 such that for all ξ ∈ R,

|g(δ(ξ)) − g∆(δ(ξ))| ≤ C(δ(ξ)m+1 ∧ 1) (18)

|g∆(δ(ξ))| ≤ (1 + C∆T )e−γ(|δ(ξ)|β∧1). (19)

Then the parallel algorithm is stable in the sense that Rk,n(δ) is bounded
uniformly in k = O(1), n ∈ N , and δ = δ(ξ) for ξ ∈ R.

Proof. Consider the case |δ| ≥ 1 first. We observe that |Rk+1,n(δ)| is bounded
by e−γnnk which is clearly bounded independent of k = O(1), n, and |δ| ≥ 1.

For |δ| ≤ 1 we obtain that |Rk+1,n(δ)| is bounded by |δ|(m+1)knke−nγ|δ|β .
Upon differentiating the above majorizing function with respect to |δ| we
obtain that the maximum is reached for |δ0|β = (k(m + 1))/(γβn), so that a
bound for |Rk+1,n(δ)| is given by

|Rk+1,n(δ)| ≤ Ce−k(m+1)/β
(

n1−(m+1)/β
)k

.

The latter power of n does not grow as n → ∞ provided that β ≤ m + 1. �

The above result shows that sufficient exponential damping of the large fre-
quencies is sufficient to ensure stability. Notice that the centered scheme de-
fined in (17) does not verify the hypotheses of the theorem since large values
of δ are not damped at all by the coarse scheme. For real valued non-negative
symbols P (ξ), we can use Theorem 2 to deduce that the θ scheme

g∆(δ) =
1 − (1 − θ)δ

1 + θδ
, (20)

makes the parareal algorithm stable as soon as θ > 1/2. Indeed we have
then |δ(ξ)| = δ(ξ). Since g′∆(0) = −1, we verify that β = 1 and γ sufficiently
small (all the more that θ → 1/2+) does the job. This covers then all parabolic
equations (such as the Laplancian P (ξ) = ξ2) and many spatial discretizations
(such as the centered finite difference scheme P (ξ) = 2h−2[1 − cos(hξ)]).

The result also applies to more general equations with complex-valued
symbol. Consider the same θ scheme given in (20). We define δ = δr + iδi.
The assumption on P (ξ) implies that δr ≥ 0. We now find that



Convergence and Stability of the Parareal Algorithm 431

|g∆(δ)| =

√

(1 + (1 − θ)2|δ|2 − 2(1 − θ)δr)

(1 + θ2|δ|2 + 2θδr)
≤

√

(1 + (1 − θ)2|δ|2)
1 + θ2|δ|2 . (21)

Asymptotically as δ → 0 we find for the θ scheme that |g∆(δ)| ≤ 1 −
θ2−(1−θ)2

2 |δ|2 + O(|δ|3). We see that we have to choose here β = 2 to ver-
ify the assumptions of Theorem 2 (instead of β = 1 when δ is real-valued).
Since m = 1, β = 2 is the only value allowed. It is then easy to find a value
of γ such that the hypotheses of Theorem 2 are satisfied. The theorem thus
addresses the case of the transport equation P (ξ) = iaξ and of the advection
diffusion equation P (ξ) = 1 + iaξ + bξ2, b > 0.

In the latter case we can actually do better. Indeed consider P (ξ) =

α0 +
∑M−1

k=1 αkξk + |ξ|M with αk ∈ C arbitrary and α0 > 0 such that
ℜ(P (ξ)) > 0. Then there exists a constant ρ > 0 such that |δi| ≤ ρδr,

whence |δ| ≤
√

1 + ρ2δr. We then deduce from (21) that, on (0, δ0) for

δ0 = 2((1 − θ)
√

1 + ρ2)−1, we have |g∆(δ)| ≤ (1 + θ√
1+ρ2

|δ|)−1, and still

from (21), that |g∆(δ)| < 1 − ε for ε > 0 on (δ0,∞) as θ > 1/2. So we can
choose β = 1 (this is important in Theorem 3 below) and γ small enough in
Theorem 2.

Let us now turn to convergence. We have seen that the error term at

final time T is bounded by |Rk,N (ξ)| ≤ C|δ|(m+1)kNke−Nγ|δ|β for |δ| < 1.
Let us assume that β = 1. We then deduce from the above analysis that
|Rk,N (ξ)| ≤ CN−km. So all frequencies are uniformly bounded by CN−km and
the algorithm has an accuracy of order (∆T )km in L(Hα(R)) for all α ∈ R. The
case β > 1 is much less favorable. Let us assume that |P (ξ)| ≤ |ξ|M for M > 0.

The bound for R is then |Rk,N (ξ)| ≤ C(∆T )km[|ξ|M(m+1)ke−γ|ξ|Mβ(∆T )β−1

].
This implies that there is no damping for all frequencies of order up to |ξ| ∼
(∆T )(1−β)/(Mβ) ≫ 1. So the L2 norm (for instance) of the error term is
bounded by

∫

|ξ|≤(∆T )(1−β)/(Mβ)

|û0(ξ)|2|ξ|2M(m+1)kdξ ≤ C‖u0‖2
M(m+1)k,

where ‖ · ‖α is the norm in the Hilbert space Hα(R). We have thus proved the
following result:

Theorem 3. Under the assumptions of Theorem 2 we have the following con-
vergence result for all α ∈ R. When β = 1, we have

‖uN − uN
k ‖α ≤ C(∆T )km‖u0‖α.

When β > 1, we have for 0 ≤ τ ≤ 1,

‖uN − uN
k ‖α ≤ C(∆T )kmτ‖u0‖α+τM(m+1)k.

The latter estimate follows from stability by interpolation. At τ = 1, this is
nothing but Theorem 1. However the result for τ < 1 requires stability.
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For parabolic equations (P (ξ) > 0 real-valued), we thus obtain that the
θ scheme for θ > 1/2 has a very strong convergence property as the error
is of order (∆T )km in the space where u0 is defined. This generalizes the
results obtained in Bal and Maday [2002] for θ = 1. The same result holds for
symbols of the form P (ξ) = |ξ|M + lower order terms with ℜ(P (ξ)) > 0 since
we can then choose β = 1. However for the transport equation P (ξ) = iaξ
(or symbols with purely imaginary leading term) we see that convergence of
implicit Euler (m = M = 1, β = 2) is of order (∆T )kτ‖u0‖2kτ in L2(R).

Let us conclude by a remark. In the above analysis we have assumed that
δ = δH , i.e. the spatial discretization is the same for the coarse and the fine
steps. This need not be so. For lack of space, we postpone the general analysis
to future work and only mention the result where P (ξ) = ξ2, PH(ξ) = 2(1 −
cos(Hξ))/H2, and the implicit Euler scheme g∆(δH) = (1 + δH)−1. We can
then show that ‖uN − uN

2 ‖α ≤ C(∆T )2‖u0‖α+4 so that the optimal accuracy
(∆T )2 is attained for k = 2 for a coarse spatial discretization H = (∆T )1/2.
The loss of “4” derivatives comes from the fact that the coarse scheme damps
frequencies up to H−1 only. This is an intermediate result between Theorems
1 and 3. It should be compared with the case δ = δH where the spatial
discretization need be chosen as h = ∆T . So H ≫ h for the same final
accuracy (but it requires more regularity of the initial condition).
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