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Postscript:
“The Unreasonable Effectiveness

of Domain Decomposition”

(with apologies to Eugene P. Wigner)
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Why optimal algorithms?

l The more powerful the computer, the greater the 
premium on optimality

l Example: 

n Suppose Alg1 solves a problem in time CN2, where N
is the input size

n Suppose Alg2 solves the same problem in time CN

n Suppose that the machine on which Alg1 and Alg2
have been parallelized to run has 10,000 processors

l In constant time (compared to serial), Alg1 can run a 
problem 100X larger, whereas Alg2 can run a problem 
fully 10,000X larger

l Or, filling up the machine, Alg1 takes 100X longer
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The power of optimal algorithms

l Advances in algorithmic efficiency rival advances in 
hardware architecture

l Consider Poisson’s equation on a cube of size N=n3

l If  n=64, this implies an overall reduction in flops of 
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann & 
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*On a 16 Mflop/s machine, six-months is reduced to 1 s

*
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year

relative 
speedup

Algorithms and Moore’s Law
l This advance took place over a span of about 36 years, or 24 

doubling times for Moore’s Law
l 224≈16 million ⇒ the same as the factor from algorithms alone!
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Agenda for future DD research

l High concurrency (100,000 processors)
l Asynchrony
l Fault tolerance
l Automated tuning of algorithm (to application 

and to architecture)
l Integration of “forward” simulation with 

studies of sensitivity, stability, and 
optimization
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High Concurrency
Today                                                         Future

l 100,000 processors, in a room or 
as part of a grid

l Most phases of DD computations 
scale well
n favorable surface-to-volume 

comm-to-comp ratio

l However, latencies will nix 
frequent exact reductions

l Paradigm: extrapolate data in 
retarded messages; correct (if 
necessary) when message arrives, 
such as in C(p,q,j) schemes by 
Garbey and Tromeur-Dervout

l 10,000 processors in a single 
room with tightly coupled 
network

l DD computations scale well, 
when provided with
n network rich enough for 

parallel near neighbor 
communication

n fast global reductions 
(complexity sublinear in 
processor count)
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Asynchrony
Today                                                         Future

l Adaptivity requirements and far-
flung, nondedicated networks will 
lead to idleness and imbalance at 
synchronization points

l Need algorithms with looser 
outer loops than global Newton-
Krylov

l Can we design algorithms that 
are robust with respect to 
incomplete convergence of inner 
tasks, like inexact Newton?

l Paradigm: nonlinear Schwarz
with regional (not global) 
nonlinear solvers where most 
execution time is spent

l A priori partitionings for quasi-
static meshes provide load-
balanced computational tasks 
between frequent 
synchronization points

l Good load balance is critical to 
parallel scalability on 1,000 
processors and more



DD15 Tutorial, Berlin, 17-18 July 2003

Fault Tolerance
Today                                                         Future

c/o A. Geist

l With 100,000 processors or 
worldwide networks, MTBF will 
be in minutes

l Checkpoint-restart could take 
longer than the time to next 
failure

l Paradigm: naturally fault tolerant 
algorithms, robust with respect to 
failure, such as a new FD 
algorithm at ORNL

l Fault tolerance is not a driver in 
most scientific application code 
projects

l FT handled as follows:
n Detection of wrong

u System – in hardware
u Framework – by runtime env
u Library – in math or comm lib

n Notification of application
u Interrupt – signal sent to job
u Error code returned by app 

process

n Recovery
u Restart from checkpoint
u Migration of task to new 

hardware
u Reassignment of work to 

remaining tasks
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Automated Tuning
Today                                                         Future

l Less knowledgeable users 
required to employ parallel 
iterative solvers in taxing 
applications

l Need safe defaults and automated 
tuning strategies

l Paradigm: parallel direct search 
(PDS) derivative-free optimization 
methods, or other machine 
learning (ML), using overall 
parallel computational 
complexity as objective function 
and algorithm tuning parameters 
as design variables, to tune solver 
in preproduction trial executions

l Knowledgeable user-developers 
parameterize their solvers with 
experience and theoretically 
informed intuition for:
n problem size/processor ratio

n outer solver type

n Krylov solver type

n DD preconditioner type

n maximum subspace dimensions

n overlaps

n fill levels

n inner tolerances

n potentially many others
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Integrated Software
Today                                                         Future

l Analysis increasingly an “inner 
loop” around which more 
sophisticated science-driven 
tasks are wrapped

l Need PDE task functionality 
(e.g., residual evaluation, 
Jacobian evaluation, Jacobian 
inverse) exposed to 
optimization/sensitivity/stability 
algorithms

l Paradigm: integrated software 
based on common distributed 
data structures

l Each analysis is a “special 
effort”

l Optimization, sensitivity 
analysis (e.g., for uncertainty 
quantification), and stability 
analysis to fully exploit and 
contextualize scientific results 
are rare



DD15 Tutorial, Berlin, 17-18 July 2003

Architecturally driven ideas in DD

l Chaotic Relaxation (1969)

l Schwarz Waveform Relaxation (1997)

l Restricted Additive Schwarz (1997)

l C(p,q,j) schemes (2000)

l Hybrid MPI/OpenMP-based domain 
decomposition (2000) 
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Chaotic Relaxation

l By Chazan & Miranker (1969)

l Basic idea: assign subsets of interdependent equations to 
different processors and relax concurrently, importing refreshed
data on which a given processor depends “as available”

l Convergence (for certain problem classes) as long as no subset 
goes infinitely long without being updated

l Weak results from theory, but occasional encouraging numerical 
experiments, including Giraud (2001), who showed that chaotic 
relaxation can be marginally faster, both in execution time (from 
relaxation of synchrony) and in terms of actual floating point 
work done!
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Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be 
solved, solve in each domain over all time, and exchange 
interface data over (0,T) at all overlapping Schwarz interfaces 
less frequently

l Nice convergence theory for parabolic problems using maximum 
principle

l Interesting for high-latency systems; also for multiphysics 
systems, since some subdomains can “step over” most restrictive 
time step arising in other domain

l Disadvantage: memory!
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Restrictive Additive Schwarz

l By Cai & Sarkis (1997)

l Consider restriction and extension 
operators for subdomains,           

l Restrict either the restriction or the extension 
operator to ignore the overlap:

l Solve as usual Krylov-Schwarz
l Saves 50% of communication, and actually 

converges faster in many cases; default in PETSc
l Active area in DD-13:

n Cai, Dryja & Sarkis’ RASHO shows that symmetry can be 
preserved if one projects to stay in a certain subspace

n Frommer, Nabben & Szyld give an algebraic theory, 
including multiplicative RAS
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C(p,q,j) schemes

l By Garbey & Tromeur-Dervout (2000)

l To conquer high-latency environments, extrapolate 
missing boundary data (treating higher and lower 
Fourier modes differently), and to accommodate low 
bandwidth environments, reuse extrapolations over 
several steps

l Employ a posteriori checks against real boundary data 
when it appears, and adjust as necessary

l Nice results for parabolic problems in the 
“computational grid” environment
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OpenMP/MPI tradeoffs

l By I. Charpentier & AHPIK software team (2000); 
explored for just two procs by Keyes et al. (1999)

l For  p processors, rather than using  p subdomains, 
use fewer, larger subdomains, and split a subdomain 
over several processors, using multithreaded 
subdomain solver, in a hybrid SPMD programming 
model

l Advantage: fewer subdomains, larger  H , gives 
logarithmic or fractional power improvement in 
convergence for most DD methods (less information 
lost on subdomain cuts)
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Comments on the DD-15 program

l Lots of FETI and FETI-DP (3+ minisymposia and a 
couple of invited speakers), including FETI for 
boundary elements (not just finite elements)

l Mortar methods, nonconforming elements, 
discontinuous Galerkin methods

l Extensions of Schwarz optimal to “bad parameters” 
and indefinite problems

l Optimal derivations of Schur interface 
preconditioners

l Some CS support for domain decomposition
l DD for optimization
l Nonlinear Schwarz
l Lots of applications



DD15 Tutorial, Berlin, 17-18 July 2003

Conclusions/summary
l Domain decomposition is the dominant paradigm in contemporary 

terascale PDE simulation 
l Several freely available software toolkits exist, and successfully scale 

to thousands of tightly coupled processors for problems on quasi-
static meshes

l Concerted efforts underway to make elements of these toolkits 
interoperate, and to allow expression of the best methods, which tend 
to be modular, hierarchical, recursive, and above all — adaptive!

l Many challenges loom at the “next scale” of computation
l Implementation of domain decomposition methods on parallel 

computers has inspired many useful variants of domain 
decomposition methods 

l The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight

l Undoubtedly, new theory/algorithms will be part of the solution!
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