
DD15 Tutorial, Berlin, 17-18 July 2003

Postscript:
“The Unreasonable Effectiveness

of Domain Decomposition”

(with apologies to Eugene P. Wigner)

DD15 Tutorial, Berlin, 17-18 July 2003

Why optimal algorithms?

l The more powerful the computer, the greater the
premium on optimality

l Example:

n Suppose Alg1 solves a problem in time CN2, where N
is the input size

n Suppose Alg2 solves the same problem in time CN

n Suppose that the machine on which Alg1 and Alg2
have been parallelized to run has 10,000 processors

l In constant time (compared to serial), Alg1 can run a
problem 100X larger, whereas Alg2 can run a problem
fully 10,000X larger

l Or, filling up the machine, Alg1 takes 100X longer

DD15 Tutorial, Berlin, 17-18 July 2003

The power of optimal algorithms

l Advances in algorithmic efficiency rival advances in
hardware architecture

l Consider Poisson’s equation on a cube of size N=n3

l If n=64, this implies an overall reduction in flops of
~16 million

n3n3BrandtFull MG1984

n3.5 log nn3ReidCG1971

n4 log nn3YoungOptimal SOR1950

n7n5Von Neumann &
Goldstine

GE (banded)1947

FlopsStorage ReferenceMethodYear

∇2u=f 64

64 64

*On a 16 Mflop/s machine, six-months is reduced to 1 s

*

DD15 Tutorial, Berlin, 17-18 July 2003

year

relative
speedup

Algorithms and Moore’s Law
l This advance took place over a span of about 36 years, or 24

doubling times for Moore’s Law
l 224≈16 million ⇒ the same as the factor from algorithms alone!

DD15 Tutorial, Berlin, 17-18 July 2003

Agenda for future DD research

l High concurrency (100,000 processors)
l Asynchrony
l Fault tolerance
l Automated tuning of algorithm (to application

and to architecture)
l Integration of “forward” simulation with

studies of sensitivity, stability, and
optimization

DD15 Tutorial, Berlin, 17-18 July 2003

High Concurrency
Today Future

l 100,000 processors, in a room or
as part of a grid

l Most phases of DD computations
scale well
n favorable surface-to-volume

comm-to-comp ratio

l However, latencies will nix
frequent exact reductions

l Paradigm: extrapolate data in
retarded messages; correct (if
necessary) when message arrives,
such as in C(p,q,j) schemes by
Garbey and Tromeur-Dervout

l 10,000 processors in a single
room with tightly coupled
network

l DD computations scale well,
when provided with
n network rich enough for

parallel near neighbor
communication

n fast global reductions
(complexity sublinear in
processor count)

DD15 Tutorial, Berlin, 17-18 July 2003

Asynchrony
Today Future

l Adaptivity requirements and far-
flung, nondedicated networks will
lead to idleness and imbalance at
synchronization points

l Need algorithms with looser
outer loops than global Newton-
Krylov

l Can we design algorithms that
are robust with respect to
incomplete convergence of inner
tasks, like inexact Newton?

l Paradigm: nonlinear Schwarz
with regional (not global)
nonlinear solvers where most
execution time is spent

l A priori partitionings for quasi-
static meshes provide load-
balanced computational tasks
between frequent
synchronization points

l Good load balance is critical to
parallel scalability on 1,000
processors and more

DD15 Tutorial, Berlin, 17-18 July 2003

Fault Tolerance
Today Future

c/o A. Geist

l With 100,000 processors or
worldwide networks, MTBF will
be in minutes

l Checkpoint-restart could take
longer than the time to next
failure

l Paradigm: naturally fault tolerant
algorithms, robust with respect to
failure, such as a new FD
algorithm at ORNL

l Fault tolerance is not a driver in
most scientific application code
projects

l FT handled as follows:
n Detection of wrong

u System – in hardware
u Framework – by runtime env
u Library – in math or comm lib

n Notification of application
u Interrupt – signal sent to job
u Error code returned by app

process

n Recovery
u Restart from checkpoint
u Migration of task to new

hardware
u Reassignment of work to

remaining tasks

DD15 Tutorial, Berlin, 17-18 July 2003

Automated Tuning
Today Future

l Less knowledgeable users
required to employ parallel
iterative solvers in taxing
applications

l Need safe defaults and automated
tuning strategies

l Paradigm: parallel direct search
(PDS) derivative-free optimization
methods, or other machine
learning (ML), using overall
parallel computational
complexity as objective function
and algorithm tuning parameters
as design variables, to tune solver
in preproduction trial executions

l Knowledgeable user-developers
parameterize their solvers with
experience and theoretically
informed intuition for:
n problem size/processor ratio

n outer solver type

n Krylov solver type

n DD preconditioner type

n maximum subspace dimensions

n overlaps

n fill levels

n inner tolerances

n potentially many others

DD15 Tutorial, Berlin, 17-18 July 2003

Integrated Software
Today Future

l Analysis increasingly an “inner
loop” around which more
sophisticated science-driven
tasks are wrapped

l Need PDE task functionality
(e.g., residual evaluation,
Jacobian evaluation, Jacobian
inverse) exposed to
optimization/sensitivity/stability
algorithms

l Paradigm: integrated software
based on common distributed
data structures

l Each analysis is a “special
effort”

l Optimization, sensitivity
analysis (e.g., for uncertainty
quantification), and stability
analysis to fully exploit and
contextualize scientific results
are rare

DD15 Tutorial, Berlin, 17-18 July 2003

Architecturally driven ideas in DD

l Chaotic Relaxation (1969)

l Schwarz Waveform Relaxation (1997)

l Restricted Additive Schwarz (1997)

l C(p,q,j) schemes (2000)

l Hybrid MPI/OpenMP-based domain
decomposition (2000)

DD15 Tutorial, Berlin, 17-18 July 2003

Chaotic Relaxation

l By Chazan & Miranker (1969)

l Basic idea: assign subsets of interdependent equations to
different processors and relax concurrently, importing refreshed
data on which a given processor depends “as available”

l Convergence (for certain problem classes) as long as no subset
goes infinitely long without being updated

l Weak results from theory, but occasional encouraging numerical
experiments, including Giraud (2001), who showed that chaotic
relaxation can be marginally faster, both in execution time (from
relaxation of synchrony) and in terms of actual floating point
work done!

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be
solved, solve in each domain over all time, and exchange
interface data over (0,T) at all overlapping Schwarz interfaces
less frequently

l Nice convergence theory for parabolic problems using maximum
principle

l Interesting for high-latency systems; also for multiphysics
systems, since some subdomains can “step over” most restrictive
time step arising in other domain

l Disadvantage: memory!

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be
solved, solve in each domain over all time, and exchange
interface data over (0,T) at all overlapping Schwarz interfaces
less frequently

l Nice convergence theory for parabolic problems using maximum
principle

l Interesting for high-latency systems; also for multiphysics
systems, since some subdomains can “step over” most restrictive
time step arising in other domain

l Disadvantage: memory!

DD15 Tutorial, Berlin, 17-18 July 2003

Restrictive Additive Schwarz

l By Cai & Sarkis (1997)

l Consider restriction and extension
operators for subdomains,

l Restrict either the restriction or the extension
operator to ignore the overlap:

l Solve as usual Krylov-Schwarz
l Saves 50% of communication, and actually

converges faster in many cases; default in PETSc
l Active area in DD-13:

n Cai, Dryja & Sarkis’ RASHO shows that symmetry can be
preserved if one projects to stay in a certain subspace

n Frommer, Nabben & Szyld give an algebraic theory,
including multiplicative RAS

iΩ
iR

T
ii RR ,

ii
T

ii RARB 11 −− ∑=

DD15 Tutorial, Berlin, 17-18 July 2003

C(p,q,j) schemes

l By Garbey & Tromeur-Dervout (2000)

l To conquer high-latency environments, extrapolate
missing boundary data (treating higher and lower
Fourier modes differently), and to accommodate low
bandwidth environments, reuse extrapolations over
several steps

l Employ a posteriori checks against real boundary data
when it appears, and adjust as necessary

l Nice results for parabolic problems in the
“computational grid” environment

DD15 Tutorial, Berlin, 17-18 July 2003

OpenMP/MPI tradeoffs

l By I. Charpentier & AHPIK software team (2000);
explored for just two procs by Keyes et al. (1999)

l For p processors, rather than using p subdomains,
use fewer, larger subdomains, and split a subdomain
over several processors, using multithreaded
subdomain solver, in a hybrid SPMD programming
model

l Advantage: fewer subdomains, larger H , gives
logarithmic or fractional power improvement in
convergence for most DD methods (less information
lost on subdomain cuts)

DD15 Tutorial, Berlin, 17-18 July 2003

Comments on the DD-15 program

l Lots of FETI and FETI-DP (3+ minisymposia and a
couple of invited speakers), including FETI for
boundary elements (not just finite elements)

l Mortar methods, nonconforming elements,
discontinuous Galerkin methods

l Extensions of Schwarz optimal to “bad parameters”
and indefinite problems

l Optimal derivations of Schur interface
preconditioners

l Some CS support for domain decomposition
l DD for optimization
l Nonlinear Schwarz
l Lots of applications

DD15 Tutorial, Berlin, 17-18 July 2003

Conclusions/summary
l Domain decomposition is the dominant paradigm in contemporary

terascale PDE simulation
l Several freely available software toolkits exist, and successfully scale

to thousands of tightly coupled processors for problems on quasi-
static meshes

l Concerted efforts underway to make elements of these toolkits
interoperate, and to allow expression of the best methods, which tend
to be modular, hierarchical, recursive, and above all — adaptive!

l Many challenges loom at the “next scale” of computation
l Implementation of domain decomposition methods on parallel

computers has inspired many useful variants of domain
decomposition methods

l The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

l Undoubtedly, new theory/algorithms will be part of the solution!

EOF

