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Recall Newton methods

Given F (U) = O F:A"® A "anditerateu’
WeW|shtop|cku ' such that

FU“")» FW")+ F (u)du® =0
wheredu® = u**- u*. k=0,12....
Neglecting higher -order terms, we get

-1 (U)] TF (u™)
where J F (u¥) istheJacobian matrix,
generally large, sparse, and ill-conditioned for PDEs
In practice, require || F (U k) + J (u k)dU : |I< e
Inpractice, set U™ =uX +1 du® where | is

selected tominimize || F (u* + | du®) ||

P
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Jacobian-free Newton-Krylov

e IntheJacobian-Free Newton-Krylov (JFNK) method, a
Krylov method solvesthe linear Newton correction
equation, requiring Jacobian-vector products

e Theseareapproximated by the Fréchet derivatives

J(u)v»%[F(u rev)- F(U)]

(where € ischosen with afine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

e OnebuildstheKrylov spaceon atrueF’ (U) (towithin
numerical approximation)
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Recall idea of preconditioning

e Krylov iteration isexpensivein memory and in
function evaluations, so k must be kept small in
practice, through preconditioning the Jacobian with an
approximate inver se, so that the product matrix has
low condition number in

(B"'A)x = B b

e Given the ability to apply theaction of B “toa
vector, preconditioning can be done on either theleft,
as above, or theright, asin, e.g., for matrix-free:

JB v » %[ F(u+eB'v)- F(u)]
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Philosophy of Jacobian-free NK

e Toevaluatethelinear residual, weusethetrue F' (U) , giving

a true Newton step and asymptotic quadratic Newton
conver gence

e To precondition thelinear residual, we do anything convenient
that uses under standing of the dominant physics/mathematics
In the system and respectsthe limitations of the parallél
computer architecture and the cost of various oper ations:

Jacobian of lower-order discretization

Jacobian with “lagged” valuesfor expensiveterms
Jacobian stored in lower precision

Jacobian blocks decomposed for parallelism
Jacobian of related discretization

oper ator-split Jacobians

physics-based preconditioning

: : S5
DD15 Tutorial, Berlin, 17-18 July 2003 w



Using Jacobian of related discretization

e To precondition avariable coefficient operator, such
asN-(aN -) , use aN? based on a constant
coefficient average

e Brown & Saad (1980) showed that, because of the
availability of fast solvers, it may even be acceptable
touse - N? to precondition something like

_ Nz(_)_l_uﬂ(') ﬂ()

Ny 7

X Ty
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Operator-split preconditioning
Subcomponents of a PDE operator often have special
structurethat can be exploited if they aretreated

separ ately
Algebraically, thisisjust a generalization of Schwar z, by

term instead of hy subdomain

Suppose J St I + S+ Rland a preconditioner isto be
constructed, where | +tS and | +tR areeach
“easy” toinvert

Form a preconditioned vector from U asfollows:
t 1 +R)*(I +tS)tu

Equivalent toreplacing J with |t 'l +S+ IﬂﬂSR
First-order splitting error, yet often used as a sol ver!
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Operator -split preconditioning, cont.

e Suppose Sisconvection-diffusion and R isreaction,
among a collection of fields stored as gridfunctions

e On asmall regular 2D grid with a five-point
stencil:

s p a w o e wmom

e Ristrivially invertiblein block diagonal form
e Sisinvertible with one multilevel solve per field
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Operator -split preconditioning, cont.

Preconditioner s assembled from just the “strong” elements
of the Jacobian, alternating the source term and the
diffusion term operators, are competitive in conver gence
rates with block-IL U on the Jacobian

m particularly, since the decoupled scalar diffusion systemsare
amenable to smple multigrid treatment — not astrivial for the coupled

system
The decoupled preconditioners store many fewer elements
and significantly reduce memory bandwidth requirements
and ar e expected to be much faster per iteration when
car efully implemented

See “alternative block factorization” by Bank et al.;
Incorporated into SCIDAC TSI solver by D’ Azevedo
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Physics-based preconditioning
|n Newton iteration, one seeksto obtain a correction

(“delta’) to solution, by inverting the Jacobian
matrix on (the negative of) the nonlinear residual:

du =-[JW")] *F (u*)

A typical operator-split code also derivesa “ delta’ to
the solution, by some implicitly defined means,
through a series of implicit and explicit substeps

F(u*) — du®

Thisimplicitly defined mapping from residual to
“delta’ iIsa natural preconditioner

Softwar e must accommodate this!
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Physics-based Preconditioning

We consider a standard “ dynamical
core,” theshallow-water wave
splitting algorithm, as a solver

L eaves a first-order in time splitting o'
error rf\'#'v':‘ ~ \‘
In the Jacobian-free Newton-Krylov NG (2 5 e
framework, this solver, which mapsa N iy L

residual into a correction, can be = A
regarded asa preconditioner

Thetrue Jacobian isnever formed yet
thetime-implicit nonlinear residual at
each time step can be made assmall as
needed for nonlinear consistency in
long time integrations

iy
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Example: shallow water equations

e Continuity (*) ¢ T, f(uf) _

Mt Mt 1 X

e Momentum (**)
2
RIS (CL I [T NN | S
11X Mt 1 x 1%

e Theseequationsadmit a fast gravity wave, as can be
seen by crossdifferentiating, e.g., (*) by tand (**) by
X, and subtracting:
2 2
! fz - of ! fz
1t 11X

= other terms
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1D shallow water equations, cont.

Wave equation for geopotential:

= other terms

Typically \H >>U  but stability restrictions
would requiretimesteps based on the Courant-
Friedrichs-Levy (CFL) criterion for the fastest wave,
for an explicit method

One can solve fully implicitly, or one can filter out the
gravity wave by solving semi-implicitly
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1D shallow water equations, cont.

e Continuity (*)

e Momentum (**)

f n+1

- f N

t

t
e Solving (**) for

where

S" = (uf )" -t

(Uf )n+1 _ (Uf )n . ﬂ(uzf )n

9 X

(Uf )n+1

.I:n+1_ gt ZL(.I: n

1l

+

+

ﬂ(Uf )n+1
1%

Tf n+1
9 X

=0

gf "

and substituting into (*),

.I: n+1

9 x

1 X

) =1

., Is”
91 X

ﬂ(uzf )n

9 X
iy
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1D shallow water equations, cont.

After the parabolic equation is spatially discretized and
solved for f "** then (uf )" *can befound from
n+1
(uf)n+1:_tgfnﬂf +Sn

1 X
One scalar parabolic solve and one scalar explicit update

replace an implicit hyperbolic system

This semi-implicit operator splitting isfoundational to
multiple scales problems in geophysical modeling
Similar tricks are employed in aer odynamics (sound
waves), MHD (multiple Alfvén waves), reacting flows
(fast kinetics), etc.

Temporal truncation error remainsdueto thelagging
of the advection in (**) - To be dealt with shortly .
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1D Shallow water preconditioning

e Define continuity residual for_each tim
n+1 n n+1
5 f ool f ", f(uf)
- t 11X

e Define momentum residual for each timestep:

epP.

n+1 n 2 n n+1
2wt ol U E)" T

t Tx ix
e Continuity delta-form (*):
df |, ld (uf ) _ g
t 11X -
e Momentum deltaform (**):
d(uf)+gf Ll - - R uf
t 1 x

e
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1D Shallow water preconditioning, cont.

df

Solving (**) for d (uf ) and substitutinginto (*),

cgt2 e Aty o pr s 2 (R oyt

ix Tx Mx
After this parabolic equation is solved for df , we have
d(uf)=-tgf "L 1 gy
11X

Thiscompletesthe application of the preconditioner to one
Newton-Krylov iteration at onetimestep

Of course, the parabolic solve need not be done exactly;
one sweep of multigrid can be used

See paper by Mousseau et al. (2002) for impressive results
for longtime weather integration
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Physics-based preconditioning update

e S0 far, physics-based preconditioning has been
applied to several codes at L os Alamos, in an effort
led by D. Knoll

e Summarized in new J. Comp. Phys. paper by Knoll
& Keyes (2002, under review)

e PETSC s“shell preconditioner” isideal for inserting
physics-based preconditioners, and PETSC's solvers
underneath areideal building blocks, but thereare
not yet examplesin the public release
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ScIDAC philosophy on PDES

e Solution of a system of PDEsisrarely agoal in itsalf
s PDEsaresolved to derive various outputs from specified inputs

m actual goal ischaracterization of aresponse surface or a design
or control strategy

= together with analysis, sensitivities and stability are often
desired

P Toolsfor PDE solution should also support these
related desires
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PDE-constrained optimization

e PDE-constrained optimization: arelatively new horizon

m ... for large-scale PDE solution

@ next step after reducing to practice parallel implicit solversfor coupled
systems of (steady-state) PDESs

€ now “routine’ to solve systems of PDEswith millions of DOFson thousands
of processors

m ... for constrained optimization

@ complexity of a single projection to the constraint manifold for million-DOF
PDE istoo expensive for an inner loop of traditional RSQP method

€ must devise new “all-at-once” algorithmsthat seek “exact” feasbility only
at optimality

e Our approach startsfrom theiterative PDE solver side

P
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Optimizers
minf (x,U) st. F(x,u) =0,u3 (

Many simulations are properly posed as u

optimization problems, but this may not Optimizer el Sens. Analyzer
always be recognized

Unconstrained or bound-constrained Time
applicationsuse TAO e
PDE-constrained problems use Veltisto l

Both are built on PETSc solvers (and e @/ | Eienslver
Hypre preconditioners) l

TAO makes heavy use of AD, freeing |

user from much coding ol
Veltisto, based on RSQP, switchesas

soon as possibleto an “all-at-once” —y Indicates

dependence

method and minimizesthe number of
PDE solution “work units’

e
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Recent optimization progress

Unconstrained or bound-
constrained optimization
=  TAO-PETSc used in quantum
chemistry energy minimization
PDE-constrained optimization

s Veltisto-PETSc used in flow control
application, to straighten out wingtip
vortex by wing surface blowing and
sunction; performsfull optimization
in thetime of just five N-S solves

“Best technical paper” at SC2002
went to our SciDAC colleagues at

CMU (Ghattas, PI, speaking here
Thursday morning):

= |nversewave propagation employed
to infer hidden geometry

3
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Motivating examples for
simulation-based optimization

e Stellarator design

e Materialsdesign and molecular structure
determination

e Sourceinversion
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Stellarator design

e Dec2002report to DOE

Integrated Simulation & Optimization of Fusion Systems e Multiphysics simulation for
e | shape optimization of
magnetic confinement fusion
devices featured as a key
technology for fusion energy

e Currently genetic algorithms
used to optimize single-
physics subsystems, e.g.,
magnetic flux surfaces of the
plasma, magnetic coil shape
of the controls— many
analysisruns
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Molecular-level materials design
Theory and e Jul 2002 report to DOE

Modeling in
Nanoscience

e Optimization methods
2 S AL frequently invoked by
ﬁﬁﬁmm nanoscientistsas a pressing

| need —though thereis much
wor k ahead to makethis
concr ete mathematically,
except for ...

e ... Multilevel optimization
for energy minimization in
molecular structure
determination —well along in
protein folding, etc.
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Sourceinversion

e Oct 2002 Sandia LDRD
final report

e Modd sourceinversion
problem solved by
multilevel optimization,
using Sundance/r SQP++

e Simultaneous Analysis and
Design (SAND) framework
exploited to save an order
of magnitude in execution
time, relative to blackbox
methods
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Constrained optimization w/L agrangian

Consider Newton’s method for solving the nonlinear
rootfinding problem derived from the necessary
conditions for constrained optimization

Constraint c(x,u)=0;xI AY:ul AM:cl AM
Objective min  f(xu); fTA
Lagrangian  f(x,u)+! "c(x,u);I T A"
Form the gradient of the Lagrangian with respect to
each of x, u, and | :
f (x,u)+1"c (x,u)=0
f,(x,u)+1"c,(x,u) =0

c(x,u) =0

: : S5
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Newton on first-order conditions
e Equality constrained optimization leadsto the KKT

system for statesx, designsu and multipliers|
8N, W, Jequ €0, U

T Ue e U
JUlJéd u quu

@ J, OH@H gcg

e Newton Reduced SQP solvesthe Schur complement
system _H. du = g whereH isthereduced Hessian

H W JurJ "W, - (J%,JXFTW WUX)J;;Ju
g=-0,+3,J, 0~ (Jy 3, W, - W,)J,c

e Then ()jX—-C JdU
Jod =-g -Wdx- W du
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RSQP when constraints are PDES

e Problems
‘ O JX Isthe Jacobian of a PDE P huge!

‘ : Wab involve Hessians of objective and constraints b second
derivatives and huge

‘ m H isunreasonableto form, store, or invert

e Proposed solution: Schwarz inside Schur!

‘ s form approximate inverse action of state Jacobian and its
transpose in parallel by Schwar z/multilevel methods

‘ s form forward action of Hessians by automatic differentiation;
exact action needed only on vectors (JFNK)

‘ = donot eliminate exactly; use Schur preconditioning on full
system

&
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Schur preconditioning from DD theory
e Given apartition 6A. A téu l éf ()
& © 0T é ¢
A Al 8fel
e Condense:
V=0  S° Ag- AsA'A: 9° fo- AWAS
e Let M beagood preconditioner for S
o Then éA, Ouél A AU Isapreconditioner for A
A 10 M g

e Moreover, solveswith A. may be approximateif all
degrees of freedom areretained (e.g., asingle V-cycle)

e Algebraic analogy from constrained optimization: “1”
IS state-like, “ G’ Isdecision-like

I G
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PDE-constrained Optimization

L agrange-Newton-Krylov-Schur implemented in Veltisto/PETSc

e Optimal control of laminar viscous flow

= Optimization variables are surface
suction/injection

= Objectiveis minimum drag

= 700,000 states; 4,000 controls

m 128 Cray T3E processors

= ~5hrsfor optimal solution (~1 hr for analysis)

wing tip vortices, no control (l); optimal control (r)

optimal boundary controls shown as velocity vectors
c/o G. Biros and O. Ghattas

WWW.CS. ny .edu/~biros/veltisto/ Cal'negie Mellon ﬂ

A
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Nonlinear PDE solution w/PET Sc

Linear Solvers (SLES)

e
Nonlinear Solvers (SNES)

& User code <> PETSc code <€ AD-generated code

» Automatic Differentiation (AD): a technology for automatically augmenting
computer programs, including arbitrarily complex simulations, with statements for

the computation of derivatives, also known as sensitivities.
e AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)
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/. 00m ONn user routine structure

Nonlinear Solvers (SNES)

Global-to-local
scatter of ghost values

Global-to-local
scatter of ghost values

Parallel function
assembly _
Parallel Jacobian
assembly

‘ User code <> PETSc code ’ AD-generated code
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Using AD with PET Sc;
Creation of AD Jacobian from function

Global-to-local
scatter of ghost values

Parallel function
assembly

Global-to-local
scatter of ghost values

Parallel Jacobian
assembly

>

Script file }\
\4

ADIFOR or ADIC

Current status:

e Fully automated for structured meshes
e Currently manual setup for unstructured
meshes; can be automated

(c/o Lois Curfman Mclnnes, ANL)
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Parameter identification model

Nonlinear diffusion PDE BVP: N- (a(X)T°NT)=0
Parametersto beidentified: a(x), b

Dirichlet conditionsin x, homogeneous Neumann
In all other dimensions (so solution has 1D
character but arbitrarily large parallel test cases
can be set up)

Objective: F 9|T(x)- T(X)|F where T(x) is
synthetic data specified from a priori solution
with given a(x) piecewise constant, b=2.5 (Brisk-
Spitzer approximation for radiation diffusion)

]
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Progressto date (Samyono thess)

Parallel implementation using PETSc's “ shell
preconditioner” functionality to build the block
factored KKT preconditioner recursively

Solution method: LNK Swith Schwar z preconditioning
of the PDE Jacobian blocks, ILU on Schwar z
subdomains

ADIC generates Jacobian blocks from user functions
Newton-like conver gence for PDE analysis

Rougher, but monotone, conver gence for parameter
Identification problems
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| mplementation

PETSC's “shell preconditioner” functionality used to
build the block factored KKT preconditioner recursively

Solution method: LNK S with Schwar z preconditioning
of the PDE Jacobian blocks, ILU on Schwar z
subdomains

M Pl -based parallelization
ADIC generates Jacobian blocks from user functions

|llustrative results (next dide) fix a(x) and identify
exponent b only, while uniform mesh density isrefined in
2D; have also identified a(x) throughout full domain

Newton-like, mesh-independent conver gence for overall
residual

: : S5
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Related URLSs

Personal homepage: papers, talks, etc.
http://www.math.odu.edu/~keyes

SciDAC initiative
http://www.science.doe.gov/scidac

TOPS project
http://www.math.odu.edu/~keyes/scidac
PET Sc project
http://mwww.mcs.anl.gov/petsc

Hypre project
http://www.lInl.gov/CASC/hypre

ASCI platforms

http: //www.lInl.gov/asci/platforms
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