
David E. Keyes

Department of Applied Physics & Applied Mathematics

Columbia University

Institute for Scientific Computing Research
Lawrence Livermore National Laboratory

Introduction to Domain Decomposition:
Context, Basic Linear Algorithms,

Convergence, and Scaling

DD15 Tutorial, Berlin, 17-18 July 2003

Who is this guy up front?

l Consultant, ICASE, NASA Langley,
1986-1993

l Associate Research Fellow, ICASE,
NASA Langley, 1993-2002

l Acting Director, ISCR, Lawrence
Livermore, 1999-

l B.S.E., Aerospace and Mechanical
Sciences, Princeton 1974-1978

l M.S. & Ph.D., Applied Mathematics,
Harvard, 1978-1984

l Post-doc (under W. D. Gropp),
Computer Science, Yale, 1984-1985

l Asst. and Assoc. Prof., Mechanical
Engineering, Yale, 1986-1993

l Assoc. Prof., Computer Science, Old
Dominion, 1993-1999

l Professor, Mathematics & Statistics,
Old Dominion, 1999-2003
n Chair, 1999-2001

n Director, Center for Computational
Science, 2001-2003

l Professor, Applied Physics & Applied
Mathematics, Columbia, 2003-

l Faculty Associate, CDIC,
Brookhaven, 2003-

DD15 Tutorial, Berlin, 17-18 July 2003

Major U. S. DOE labs

Columbia University
Lawrence Berkeley

Pacific Northwest

Argonne

Oak Ridge

DOE Science Lab

Brookhaven

Lawrence Livermore

Los Alamos

Sandia

Sandia Livermore

DOE Defense Lab

DD15 Tutorial, Berlin, 17-18 July 2003

How does this lecture series fit in?

l Compared to Gropp’s lectures on what is in
PETSc and how to use PETSc …
… these lectures describe why certain algorithms are in

PETSc.

l Compared to the careful, systematic, theoretical
approach of a mathematician …
… these lectures are practical, rely on intuition, and

defer missing details to other sources

DD15 Tutorial, Berlin, 17-18 July 2003

Overall series and on-line resources

l Four lectures on:
n Introduction and DD for basic linear problems
n Nonlinear and transient problems
n Examples of advanced applications
n Physics-based preconditioning and optimization

l Roughly coordinated with W. D. Gropp’s
l See DD-15 website for recently posted links to

publicly available pdfs of three papers each
per lecture

DD15 Tutorial, Berlin, 17-18 July 2003

Resources for deeper study

1992
1997

2003?

O. B . Widlund
and A. Toselli

Domain
Decomposition
Methods

See also famous SIAM Review paper by Xu, 1992

DD15 Tutorial, Berlin, 17-18 July 2003

Plan of presentation

l Imperative of domain decomposition (DD) for
terascale computing
n from viewpoint of architecture
n from applications (more on this Friday AM)

l Basic DD algorithmic concepts
n Schwarz
n Schur
n Schwarz-Schur combinations

l Basic DD convergence and scaling properties

DD15 Tutorial, Berlin, 17-18 July 2003

Terascale simulation has been “sold”

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Applied
Physics

radiation transport
supernovae

Scientific

Simulation

In these, and many other areas, simulation is an
important complement to experiment.

DD15 Tutorial, Berlin, 17-18 July 2003

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Experiments
controversial

Applied
Physics

radiation transport
supernovae

Scientific

Simulation

In these, and many other areas, simulation is an
important complement to experiment.

Terascale simulation has been “sold”

DD15 Tutorial, Berlin, 17-18 July 2003

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Experiments
controversial

Applied
Physics

radiation transport
supernovae

Scientific

Simulation

Experiments
dangerous

In these, and many other areas, simulation is an
important complement to experiment.

Terascale simulation has been “sold”

DD15 Tutorial, Berlin, 17-18 July 2003

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Experiments
controversial

Applied
Physics

radiation transport
supernovae

Experiments prohibited
or impossible

Scientific

Simulation

Experiments
dangerous

In these, and many other areas, simulation is an
important complement to experiment.

Terascale simulation has been “sold”

DD15 Tutorial, Berlin, 17-18 July 2003

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Experiments
controversial

Applied
Physics

radiation transport
supernovae

Experiments prohibited
or impossible

Scientific

Simulation

Experiments
dangerous

In these, and many other areas, simulation is an
important complement to experiment.

Experiments difficult
to instrument

Terascale simulation has been “sold”

DD15 Tutorial, Berlin, 17-18 July 2003

Environment
global climate
contaminant

transport

Lasers & Energy
combustion

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Experiments
controversial

Applied
Physics

radiation transport
supernovae

Experiments prohibited
or impossible

Scientific

Simulation

Experiments
dangerous

In these, and many other areas, simulation is an
important complement to experiment.

Experiments difficult
to instrument

Experiments
expensive

Terascale simulation has been “sold”

DD15 Tutorial, Berlin, 17-18 July 2003

Large platforms provided for ASCI
l ASCI roadmap is to go

to 100 Teraflop/s by
2006

l Use variety of vendors
n Compaq
n Cray
n Intel
n IBM
n SGI

l Rely on commodity
processor/memory
units, with tightly
coupled network

l Massive software
project to rewrite
physics codes for
distributed shared
memory

DD15 Tutorial, Berlin, 17-18 July 2003

…and now for SciDAC

§IBM Power4 Regatta

§32 procs per node

§24 nodes

§166 Gflop/s per node

§4Tflop/s (10 in 2003)

§IBM Power3+ SMP

§16 procs per node

§208 nodes

§24 Gflop/s per node

§5 Tflop/s (upgraded to 10, Feb 2003)

Berkeley

Oak Ridge

DD15 Tutorial, Berlin, 17-18 July 2003

New architecture on horizon: Blue Gene/L
l 180 Tflop/s configuration (65536 dual processor chips)
l Closely related to QCDOC prototype (IBM system-on a chip)
l Ordered for LLNL institutional computing (not ASCI)

To be delivered 2004

DD15 Tutorial, Berlin, 17-18 July 2003

New architecture just arrived: Cray X1
l Massively parallel-vector machine highly desired by global climate simulation community

l 32-processor prototype ordered for evaluation

l Scale-up to 100 Tflop/s peak planned, if prototype proves successful

Delivered to ORNL 18 March 2003

DD15 Tutorial, Berlin, 17-18 July 2003

NSF’s 13.6 TF TeraGrid coming on line

26

24

8

4 HPSS

5

HPSS

HPSS UniTree

External
Networks

External
NetworksExternal

Networks

External
Networks

Site Resources Site Resources

Site ResourcesSite Resources SDSC
4.1 TF
225 TB

Caltech

NCSA/PACI
8 TF
240 TB

Argonne

TeraGrid: NCSA, SDSC, Caltech, Argonne www.teragrid.org

DD15 Tutorial, Berlin, 17-18 July 2003

Does anyone recognize this sequence?

5120

8192

2304

8192

6656

1920

2304

1540

3016

2560

Listed is the number of
processors on the top 10
machines in the “Top500”,
compiled by the University of
Mannheim, the University of
Tennessee, and NERSC/LBNL:
from the Japanese Earth
Simulator (#1, 41 Tflop/s) to the
French HP machine at CEA (#10,
5.1 Tflop/s). Machines #2, #3,
and #6 are at Lawrence
Livermore National Lab

DD15 Tutorial, Berlin, 17-18 July 2003

Algorithmic requirements from architecture

l Must run on physically distributed memory units
connected by message-passing network, each serving
one or more processors with multiple levels of cache

T3E

“horizontal” aspects “vertical” aspects

DD15 Tutorial, Berlin, 17-18 July 2003

Building platforms is the “easy” part

l Algorithms must be
n highly concurrent and straightforward to load balance

n latency tolerant

n cache friendly (good temporal and spatial locality)

n highly scalable (in the sense of convergence)

l Domain decomposition “natural” for all of these

l Domain decomposition also “natural” for
software engineering

l Fortunate that mathematicians built up its
theory in advance of requirements!

DD15 Tutorial, Berlin, 17-18 July 2003

Algorithmic requirement

l Goal for algorithmic scalability: fill up memory
of arbitrarily large machines to increase
resolution, while preserving nearly constant*
running times with respect to proportionally
smaller problem on one processor

*at worst logarithmically growing

DD15 Tutorial, Berlin, 17-18 July 2003

Application properties
l After modeling and spatial discretization, we end up

with large nonlinear algebraic system
(which could come from , after
implicit temporal discretization, at each time step)

l For PDEs, the Jacobian matrix is sparse
n Each equation comes from a local flux balance
n In unsteady case, timestep improves diagonal

dominance

l For conservation law PDEs, there is a hierarchy of
successively coarser approximate discretizations
available (e.g., fusing control volumes)

l Discrete Green’s function is generally global, with
decaying tail

0)(=uF
0),,(=tuuf &

)(' uF

DD15 Tutorial, Berlin, 17-18 July 2003

Dominant data structures are grid-based

finite differences finite
elements

finite volumes

All lead to problems
with sparse Jacobian
matrices

J=

node i

row i

DD15 Tutorial, Berlin, 17-18 July 2003

Decomposition strategies for Lu=f in Ω

l Operator decomposition

l Function space decomposition

l Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

fuuyx
kk II +=++ +)()1(][ττ LL

Consider the implicitly discretized parabolic case

DD15 Tutorial, Berlin, 17-18 July 2003

Operator decomposition

l Consider ADI

fuyux
kk II +−=+ +)()2/1(][][2/2/

LL ττ

fuxuy
kk II +−=+ ++)2/1()1(][][2/2/

LL ττ
l Iteration matrix consists of four multiplicative

substeps per timestep
n two sparse matrix-vector multiplies
n two sets of unidirectional bandsolves

l Parallelism within each substep
l But global data exchanges between bandsolve substeps

DD15 Tutorial, Berlin, 17-18 July 2003

Function space decomposition

l Consider a spectral Galerkin method
),()(),,(

1

yxtatyxu j

N

j
j Φ= ∑

=

Nifuu iiidt
d ,...,1),,(),(),(=Φ+Φ=Φ L

Nifau ijjijdt
da

ij
j ,...,1),,(),(),(=Φ+ΦΦ∑=Φ∑ L

fMKaMdt
da 11 −− +=

l System of ordinary differential equations
l Perhaps are diagonal

matrices
l Parallelism across spectral index
l But global data exchanges to transform back to

physical variables at each step

)],[()],,[(ijij KM ΦΦ≡ΦΦ≡ L

DD15 Tutorial, Berlin, 17-18 July 2003

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure
on the Jacobian

Ω1

Ω2

Ω3

A2
3

A2
1

A2
2

rows assigned
to proc “2”

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz domain decomposition method

l Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,

l Replace discretized with

l Solve by a Krylov method

l Matrix-vector multiplies with
n parallelism on each subdomain
n nearest-neighbor exchanges, global reductions
n possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

DD15 Tutorial, Berlin, 17-18 July 2003

Recall Krylov methods

l Given and iterate , we
wish to generate a basis for x
() and a set of coefficients
such that is a best fit in the sense that
minimizes

l Krylov methods define a complementary basis

so that
may be solved for y

l In practice k << n and the bases are grown from seed
vector via recursive multiplication
by and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

ky ℜ∈
|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)(=− bAVyW T

bAxr −= 00

Vyx ≈

A

DD15 Tutorial, Berlin, 17-18 July 2003

Algebraic “picture” of Krylov iteration

l Krylov iteration is an algebraic Galerkin method (or
more generally Petrov-Galerkin method) for
converting a high-dimensional linear system into a
lower-dimensional linear system

l E.g., conjugate gradients (CG) for symmetric, positive
definite systems, and generalized minimal residual
(GMRES) for nonsymmetry or indefiniteness

AVWH T≡
=

=

bAx = =
bWg T=

=

Vyx = =
gHy =

DD15 Tutorial, Berlin, 17-18 July 2003

Now, let’s compare!

l Operator decomposition (ADI)
n natural row-based assignment requires global all-to-

all, bulk data exchanges in each step (for transpose)

l Function space decomposition (Fourier)
n Natural mode-based assignment requires global all-to-

all, bulk data exchanges in each step (for transform)

l Domain decomposition (Schwarz)
n Natural domain-based assignment requires local

surface data exchanges, global reductions, and
optional small global problem

(Of course, domain decomposition can be interpreted
as a special operator or function space decomposition)

DD15 Tutorial, Berlin, 17-18 July 2003

Estimating scalability of stencil computations
l Given complexity estimates of the leading terms of:

n the concurrent computation (per iteration phase)

n the concurrent communication

n the synchronization frequency

l And a bulk synchronous model of the architecture including:
n internode communication (network topology and protocol reflecting horizontal

memory structure)

n on-node computation (effective performance parameters including vertical
memory structure)

l One can estimate optimal concurrency and optimal execution
time
n on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)

n simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

DD15 Tutorial, Berlin, 17-18 July 2003

Estimating 3D stencil costs (per iteration)
l grid points in each direction n, total work N=O(n3)
l processors in each direction p, total procs P=O(p3)
l memory per node requirements O(N/P)

l execution time per iteration A n3/p3

l grid points on side of each processor subdomain
n/p

l neighbor communication per iteration B n2/p2

l cost of global reductions in each iteration C log p
or C p(1/d)

n C includes synchronization frequency

l same dimensionless units for measuring A, B, C
n e.g., cost of scalar floating point multiply-add

DD15 Tutorial, Berlin, 17-18 July 2003

3D stencil computation illustration
Rich local network, tree-based global reductions

l total wall-clock time per iteration

l for optimal p, , or

or (with),

l without “speeddown,” p can grow with n

l in the limit as

pC
p
n

B
p
n

ApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
n

B
p
n

A

CA
B

2

3

243
32

≡θ

[] [] n
C
A

popt ⋅





 −−+−+






= 3

1
3

13
1

)1(1)1(1
2
3

θθ

0→C
B

n
C
A

popt ⋅





=

3
1

3

DD15 Tutorial, Berlin, 17-18 July 2003

3D stencil computation illustration
Rich local network, tree-based global reductions

l optimal running time

where

l limit of infinite neighbor bandwidth, zero neighbor latency ()

(This analysis is on a per iteration basis; fuller analysis would
multiply this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nC
BA

npnT opt ρ
ρρ

++=

[] [] 





 −−+−+






= 3

1
3

13
1

)1(1)1(1
2
3

θθρ
C
A

0→B





 ++= .log

3
1

log))(,(const
C
A

nCnpnT opt

DD15 Tutorial, Berlin, 17-18 July 2003

Scalability results for DD stencil computations

l With tree-based (logarithmic) global reductions and
scalable nearest neighbor hardware:
n optimal number of processors scales linearly with problem

size

l With 3D torus-based global reductions and scalable
nearest neighbor hardware:
n optimal number of processors scales as three-fourths power

of problem size (almost “scalable”)

l With common network bus (heavy contention):
n optimal number of processors scales as one-fourth power

of problem size (not “scalable”)

n bad news for conventional Beowulf clusters, but see 2000
Bell Prize “price-performance awards”, for multiple NICs

DD15 Tutorial, Berlin, 17-18 July 2003

Factoring convergence into estimates

l In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

? (P1/3)? (P1/2)1-level Additive Schwarz

? (1)? (1)2-level Additive Schwarz

? ((NP)1/6)? ((NP)1/4)Domain Jacobi (δ=0)
? (N1/3)? (N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

l Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

DD15 Tutorial, Berlin, 17-18 July 2003

Where do these results come from?

l Point Jacobi is well known (see any book on the numerical analysis
of elliptic problems)

l Subdomain Jacobi has interesting history (see ahead a few slides)

l Schwarz theory is neatly and abstractly summarized in Section 5.2
of book by Smith, Bjorstad & Gropp (“Widlund School”)

n condition number, κ = ω [1+ρ(ε)] C0
2

n C0
2 is a splitting constant for the subspaces of the decomposition

n ρ(ε) is a measure of the orthogonality of the subspaces

n ω is a measure of the approximation properties of the subspace solvers
(can be unity for exact subdomain solves)

n These properties are estimated for different subspaces, different
operators, and different subspace solvers and the “crank” is turned

DD15 Tutorial, Berlin, 17-18 July 2003

Comments on the Schwarz results

l Basic Schwarz estimates are for:
n self-adjoint elliptic operators
n positive definite operators
n exact subdomain solves,
n two-way overlapping with
n generous overlap, δ=O(H) (otherwise 2-level result is O(1+H/δ))

l Extensible to:
n nonself-adjointness (e.g, convection)
n indefiniteness (e.g., wave Helmholtz)
n inexact subdomain solves
n one-way overlap communication (“restricted additive Schwarz”)
n small overlap

T
ii RR ,

1−
iA

DD15 Tutorial, Berlin, 17-18 July 2003

Comments on the Schwarz results, cont.

l Theory still requires “sufficiently fine” coarse mesh
n However, coarse space need not be nested in the fine space or in the

decomposition into subdomains

l Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

— Yogi Berra

l Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:
n standard Schwarz Dirichlet boundary conditions can lead to

undamped resonances within subdomains,

n remedy involves Robin-type transmission boundary conditions
on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

DD15 Tutorial, Berlin, 17-18 July 2003

Block Jacobi preconditioning: 1D example

Consider the scaled F.D. Laplacian on an interval:



















−
−−

−−
−

=

21
121

121
12

A



















−
−

−
−

=

21
12

21
12

B



















−=−

3
1

3
2

3
2

3
1

1 IAB

DD15 Tutorial, Berlin, 17-18 July 2003

Bound on block Jacobi preconditioning

l Consider decomposition of 1D, 2D, or 3D
domain into subdomains by cutting planes

l Well known (e.g., late 1980’s TR by Dryja &
Widlund) that zero overlap Schwarz on elliptic
problem improves conditioning from
for native problem to

)(2−hO
)(11 −− hHO

Ω
H

h
or

DD15 Tutorial, Berlin, 17-18 July 2003

Mirror result from linear algebra
l Chang & Schultz (1994) proved same result from

algebraic approach, from eigenanalysis of ,
where A is F.D. Laplacian in 1D, 2D, or 3D, and B
is A with entries removed by arbitrary cutting planes

l Their Theorem 2.4.7: Given grid, cut by

n q planes in x (slabs)

n q planes in x or y (beams)

n q planes in x, y, or z (subcubes)

(with cuts anywhere) then

l Note: and if cut evenly

l Proof: eigenanalysis of low-rank matrices

)(1AB−

nnn ××

1)(1 ++≤− qqnABκ
)(1−= HOq)(1−= hOn

)(1ABI −−

DD15 Tutorial, Berlin, 17-18 July 2003

Mirror results from graph theory

l Boman & Hendrickson (2003) proved same result
from graph-theoretic approach, using their new
“support theory” (SIMAX, to appear)

l Section 9 of SIMAX paper “Support Theory for
Preconditioning,” using congestion-dilation lemma
from graph theory (Vaidya et al.) derives ,
for point Jacobi

l Extended January 2003 to block Jacobi, to get

l Fascinating to see how many different tools can be
used for this divide and conquer preconditioning idea

)(2−hO

)(11 −− hHO

DD15 Tutorial, Berlin, 17-18 July 2003

“Unreasonable effectiveness” of Schwarz
l When does the sum of partial inverses equal the

inverse of the sums? When the decomposition is right!

l Good decompositions are a compromise between
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T

ii rarA Σ=
Then

rArrrrarA T
ii

T
iiii

T
ii

111)(−−− Σ=Σ=
and

— the Schwarz formula!

DD15 Tutorial, Berlin, 17-18 July 2003

Basic Domain Decomposition Concepts

l Iterative correction

l Schwarz preconditioning

l Schur preconditioning

“Advanced” Domain Decomposition Concepts

l Polynomial combinations of Schwarz projections

l Schwarz-Schur combinations
n Neumann-Neumann/FETI (Schwarz on Schur)

n LNKS (Schwarz inside Schur) (Friday afternoon)

l Nonlinear Schwarz (Thursday afternoon)

DD15 Tutorial, Berlin, 17-18 July 2003

Iterative correction

l The most basic idea in iterative methods

l Evaluate residual accurately, but solve approximately,
where is an approximate inverse to A

l A sequence of complementary solves can be used, e.g.,
with and one has

)(1 AufBuu −+← −

)]([1
1

1
2

1
2

1
1 AufABBBBuu −−++← −−−−

2B1B

1−B

RRARRB TT 11
2)(−− =

)(1AB−

l Scale recurrence, e.g., with ,
leads to multilevel methods

l Optimal polynomials of leads to various
preconditioned Krylov methods

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz Preconditioning
l Given A x = b , partition x into

subvectors, corresp. to subdomains of
the domain of the PDE, nonempty,
possibly overlapping, whose union is all
of the elements of nx ℜ∈

iR

thi

thi

xRx ii =
T
iii ARRA =

ii
T
ii RARB 11 −− ∑=

Ω
iΩ

x

l Let Boolean rectangular
matrix extract the
subset of :

l Let The Boolean matrices are gather/scatter
operators, mapping between a global
vector and its subdomain support

DD15 Tutorial, Berlin, 17-18 July 2003

Schur complement substructuring

l Given a partition

l Condense:








=

















ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

gSu =Γ Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

l Properties of the Schur complement:
n smaller than original A, but generally dense
n expensive to form, to store, to factor, and to solve

n better conditioned than original A
l Therefore, solve iteratively, with action of S on each

Krylov vector

Γ

DD15 Tutorial, Berlin, 17-18 July 2003

Schur preconditioning

l Let M-1 be a good preconditioner for S
l Let

l Then B-1 is a preconditioner for A
l So, instead of , use full system

l Here, solves with may be done approximately since
all degrees of freedom are retained









=

















Γ

−

ΓΓΓΓ

Γ−

f
f

B
u
u

AA
AA

B ii

i

iii 11

1
1

1

0

0
−

Γ
−

Γ

−



























=

M
AAI

IA
A

B iii

i

ii

iiA

gMSuM 11 −
Γ

− =

Γ

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz polynomials

l Polynomials of Schwarz projections that are
combinations of additive and multiplicative may be
appropriate for certain implementations

l We may solve the fine subdomains concurrently and
follow with a coarse grid (redundantly/cooperatively)

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))((11
0

1
0

1 −−−− Σ−+= iiBABIBB
l This leads to algorithm “Hybrid II” in S-B-G’96:

l Convenient for “SPMD” (single prog/multiple data)

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz-on-Schur

l Preconditioning the Schur complement is complex in
and of itself; Schwarz is used on the reduced
problem

l Neumann-Neumann

l Balancing Neumann-Neumann
))()((1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

l Other variants:
n Bramble-Pasciak-Schatz
n multigrid on the Schur complement

DD15 Tutorial, Berlin, 17-18 July 2003

l Finite Element Tearing and Interconnection
l Domain decomposition iterative linear solver that uses

Lagrange multipliers to solve A x = b
l Numerically scalable (convergence rate bounded)
l Parallel scalability up to 1000s of processors
l Used to solve large scale finite element models (10-100

million equations)
l Sandia’s Salinas and SIERRA implementations of the

Dual/Primal FETI method (FETI-DP) won Gordon
Bell Prize in “special” category in 2002 (w/ C. Farhat,
invited to speak Monday afternoon at DD-15)

FETI overview (next 8 slides, c/o K. Pierson)

DD15 Tutorial, Berlin, 17-18 July 2003

Interface Continuity

0
1

=∑
=

s
r

N

s

s
r uB

s

At Convergence:









22

22

cccr

rcrr

KK
KK









11

11

cccr

rcrr

KK
KK λ

• Subscript r for interior DOFs; subscript c for interface DOFs

• Interface continuity enforced through Lagrange multipliers

DD15 Tutorial, Berlin, 17-18 July 2003

Equilibrium & Compatibility















=











































∑∑
==

000

0

0

0...

1

11

1
1

11

1111

s T

ss

s

s T
s

T
s

T

T
ssss

T

N

s
c

s
c

N
r

r

c

N
r

r

N
rr

N

s

s
c

s
cc

s
c

N
cr

N
ccrc

N
r

N
c

N
rc

N
rr

rcrcrr

fB

f

f

u

u

u

BB

BKBKBKB

BBKK

BBKK

MM

L

L

L

MMMOM

λ

• The u’s are primal variables; the ? are dual variables

• FETI-DP master system (symmetric) is:

DD15 Tutorial, Berlin, 17-18 July 2003

FETI-DP interface problem

After some algebraic manipulation …

*** 11

)(cccrcr
T

rcccrcrr fKFdFKFF
−−

−=+ λ

∑
=

−

=
s T

N

s

s
r

s
rr

s
rrr BKBF

1

1 s
c

s
rc

N

s

s
rr

s
rrc BKKBF

s

∑
=

−

=
1

1

s
r

N

s

s
rr

s
rr fKBd

s

∑
=

−

=
1

1)(
1

1

* s
r

s
rr

s
rc

N

s

s
c

s
cc fKKfBf

Ts T −

−= ∑
=

DD15 Tutorial, Berlin, 17-18 July 2003

FETI-DP coarse problem

s
c

s
rc

s
rr

s
cr

N

s

s
cc

s
ccc BKKKKBK

s T

)(
1

1

* −

−=∑
=

• Couples all subdomains
• Global propagation of residual error
• Solved with parallel distributed sparse solver

DD15 Tutorial, Berlin, 17-18 July 2003

Solving A x = b using FETI-DP

l Construct & factorize subdomain operators

l Construct & factorize preconditioner

l Construct & factorize coarse grid

l Solve for Lagrange multipliers (with
preconditioned Conjugate Gradients)

l Solve for displacements using back substitution

DD15 Tutorial, Berlin, 17-18 July 2003

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
o
n

d
s)

Total Salinas FETI-DP

FETI-DP for structural mechanics

1mdof

4mdof
9mdof 18mdof 30mdof

60mdof

c/o C. Farhat and K. Pierson

l Numerically scalable, hardware scalable solutions for
realistic solid/shell models

l Used in Sandia applications Salinas, Adagio, Andante

DD15 Tutorial, Berlin, 17-18 July 2003

Agenda for future DD research

l High concurrency (100,000 processors)
l Asynchrony
l Fault tolerance
l Automated tuning of algorithm (to application

and to architecture)
l Integration of “forward” simulation with

studies of sensitivity, stability, and
optimization

DD15 Tutorial, Berlin, 17-18 July 2003

High Concurrency
Today Future

l 100,000 processors, in a room or
as part of a grid

l Most phases of DD computations
scale well
n favorable surface-to-volume

comm-to-comp ratio

l However, latencies will nix
frequent exact reductions

l Paradigm: extrapolate data in
retarded messages; correct (if
necessary) when message arrives,
such as in C(p,q,j) schemes by
Garbey and Tromeur-Dervout

l 10,000 processors in a single
room with tightly coupled
network

l DD computations scale well,
when provided with
n network rich enough for

parallel near neighbor
communication

n fast global reductions
(complexity sublinear in
processor count)

DD15 Tutorial, Berlin, 17-18 July 2003

Asynchrony
Today Future

l Adaptivity requirements and far-
flung, nondedicated networks will
lead to idleness and imbalance at
synchronization points

l Need algorithms with looser
outer loops than global Newton-
Krylov

l Can we design algorithms that
are robust with respect to
incomplete convergence of inner
tasks, like inexact Newton?

l Paradigm: nonlinear Schwarz
with regional (not global)
nonlinear solvers where most
execution time is spent

l A priori partitionings for quasi-
static meshes provide load-
balanced computational tasks
between frequent
synchronization points

l Good load balance is critical to
parallel scalability on 1,000
processors and more

DD15 Tutorial, Berlin, 17-18 July 2003

Fault Tolerance
Today Future

c/o A. Geist

l With 100,000 processors or
worldwide networks, MTBF will
be in minutes

l Checkpoint-restart could take
longer than the time to next
failure

l Paradigm: naturally fault tolerant
algorithms, robust with respect to
failure, such as a new FD
algorithm at ORNL

l Fault tolerance is not a driver in
most scientific application code
projects

l FT handled as follows:
n Detection of wrong

u System – in hardware
u Framework – by runtime env
u Library – in math or comm lib

n Notification of application
u Interrupt – signal sent to job
u Error code returned by app

process

n Recovery
u Restart from checkpoint
u Migration of task to new

hardware
u Reassignment of work to

remaining tasks

DD15 Tutorial, Berlin, 17-18 July 2003

Automated Tuning
Today Future

l Less knowledgeable users
required to employ parallel
iterative solvers in taxing
applications

l Need safe defaults and automated
tuning strategies

l Paradigm: parallel direct search
(PDS) derivative-free optimization
methods, or other machine
learning (ML), using overall
parallel computational
complexity as objective function
and algorithm tuning parameters
as design variables, to tune solver
in preproduction trial executions

l Knowledgeable user-developers
parameterize their solvers with
experience and theoretically
informed intuition for:
n problem size/processor ratio

n outer solver type

n Krylov solver type

n DD preconditioner type

n maximum subspace dimensions

n overlaps

n fill levels

n inner tolerances

n potentially many others

DD15 Tutorial, Berlin, 17-18 July 2003

Integrated Software
Today Future

l Analysis increasingly an “inner
loop” around which more
sophisticated science-driven
tasks are wrapped

l Need PDE task functionality
(e.g., residual evaluation,
Jacobian evaluation, Jacobian
inverse) exposed to
optimization/sensitivity/stability
algorithms

l Paradigm: integrated software
based on common distributed
data structures

l Each analysis is a “special
effort”

l Optimization, sensitivity
analysis (e.g., for uncertainty
quantification), and stability
analysis to fully exploit and
contextualize scientific results
are rare

DD15 Tutorial, Berlin, 17-18 July 2003

Architecturally driven ideas in DD

l Chaotic Relaxation (1969)

l Schwarz Waveform Relaxation (1997)

l Restricted Additive Schwarz (1997)

l C(p,q,j) schemes (2000)

l Hybrid MPI/OpenMP-based domain
decomposition (2000)

DD15 Tutorial, Berlin, 17-18 July 2003

Chaotic Relaxation

l By Chazan & Miranker (1969)

l Basic idea: assign subsets of interdependent equations to
different processors and relax concurrently, importing refreshed
data on which a given processor depends “as available”

l Convergence (for certain problem classes) as long as no subset
goes infinitely long without being updated

l Weak results from theory, but occasional encouraging numerical
experiments, including Giraud (2001), who showed that chaotic
relaxation can be marginally faster, both in execution time (from
relaxation of synchrony) and in terms of actual floating point
work done!

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be
solved, solve in each domain over all time, and exchange
interface data over (0,T) at all overlapping Schwarz interfaces
less frequently

l Nice convergence theory for parabolic problems using maximum
principle

l Interesting for high-latency systems; also for multiphysics
systems, since some subdomains can “step over” most restrictive
time step arising in other domain

l Disadvantage: memory!

DD15 Tutorial, Berlin, 17-18 July 2003

Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be
solved, solve in each domain over all time, and exchange
interface data over (0,T) at all overlapping Schwarz interfaces
less frequently

l Nice convergence theory for parabolic problems using maximum
principle

l Interesting for high-latency systems; also for multiphysics
systems, since some subdomains can “step over” most restrictive
time step arising in other domain

l Disadvantage: memory!

DD15 Tutorial, Berlin, 17-18 July 2003

Restrictive Additive Schwarz

l By Cai & Sarkis (1997)

l Consider restriction and extension
operators for subdomains,

l Restrict either the restriction or the extension
operator to ignore the overlap:

l Solve as usual Krylov-Schwarz
l Saves 50% of communication, and actually

converges faster in many cases; default in PETSc
l Active area in DD-13:

n Cai, Dryja & Sarkis’ RASHO shows that symmetry can be
preserved if one projects to stay in a certain subspace

n Frommer, Nabben & Szyld give an algebraic theory,
including multiplicative RAS

iΩ
iR

T
ii RR ,

ii
T

ii RARB 11 −− ∑=

DD15 Tutorial, Berlin, 17-18 July 2003

C(p,q,j) schemes

l By Garbey & Tromeur-Dervout (2000)

l To conquer high-latency environments, extrapolate
missing boundary data (treating higher and lower
Fourier modes differently), and to accommodate low
bandwidth environments, reuse extrapolations over
several steps

l Employ a posteriori checks against real boundary data
when it appears, and adjust as necessary

l Nice results for parabolic problems in the
“computational grid” environment

DD15 Tutorial, Berlin, 17-18 July 2003

OpenMP/MPI tradeoffs

l By I. Charpentier & AHPIK software team (2000);
explored for just two procs by Keyes et al. (1999)

l For p processors, rather than using p subdomains,
use fewer, larger subdomains, and split a subdomain
over several processors, using multithreaded
subdomain solver, in a hybrid SPMD programming
model

l Advantage: fewer subdomains, larger H , gives
logarithmic or fractional power improvement in
convergence for most DD methods (less information
lost on subdomain cuts)

DD15 Tutorial, Berlin, 17-18 July 2003

Conclusions/summary
l Domain decomposition is the dominant paradigm in contemporary

terascale PDE simulation
l Several freely available software toolkits exist, and successfully scale

to thousands of tightly coupled processors for problems on quasi-
static meshes

l Concerted efforts underway to make elements of these toolkits
interoperate, and to allow expression of the best methods, which tend
to be modular, hierarchical, recursive, and above all — adaptive!

l Many challenges loom at the “next scale” of computation
l Implementation of domain decomposition methods on parallel

computers has inspired many useful variants of domain
decomposition methods

l The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

l Undoubtedly, new theory/algorithms will be part of the solution!

EOF

