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Who is this guy up front?
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l Assoc. Prof., Computer Science, Old 
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DOE Defense Lab
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How does this lecture series fit in?

l Compared to Gropp’s lectures on what is in 
PETSc and how to use PETSc …
… these lectures describe why certain algorithms are in 

PETSc.

l Compared to the careful, systematic, theoretical 
approach of a mathematician …
… these lectures are practical, rely on intuition, and 

defer missing details to other sources
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Overall series and on-line resources

l Four lectures on:
n Introduction and DD for basic linear problems
n Nonlinear and transient problems
n Examples of advanced applications
n Physics-based preconditioning and optimization

l Roughly coordinated with W. D. Gropp’s
l See DD-15 website for recently posted links to 

publicly available pdfs of three papers each 
per lecture
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Resources for deeper study

1992
1997

2003?

O. B . Widlund
and A. Toselli

Domain 
Decomposition 
Methods

See also famous SIAM Review paper by Xu, 1992
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Plan of presentation

l Imperative of domain decomposition (DD) for 
terascale computing
n from viewpoint of architecture
n from applications (more on this Friday AM)

l Basic DD algorithmic concepts
n Schwarz
n Schur
n Schwarz-Schur combinations

l Basic DD convergence and scaling properties
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Terascale simulation has been “sold”

Environment
global climate
contaminant 

transport

Lasers & Energy
combustion 

ICF

Engineering
crash testing
aerodynamics

Biology
drug design
genomics

Applied
Physics

radiation transport
supernovae

Scientific 

Simulation

In these, and many other areas, simulation is an 
important complement to experiment.
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Large platforms provided for ASCI
l ASCI roadmap is to go 

to 100 Teraflop/s by 
2006

l Use variety of vendors
n Compaq
n Cray
n Intel
n IBM
n SGI

l Rely on commodity 
processor/memory 
units, with tightly 
coupled network

l Massive software 
project to rewrite 
physics codes for 
distributed shared 
memory
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…and now for SciDAC

§IBM Power4 Regatta

§32 procs per node

§24 nodes

§166 Gflop/s per node

§4Tflop/s (10 in 2003)

§IBM Power3+ SMP 

§16 procs per node

§208 nodes

§24 Gflop/s per node

§5 Tflop/s (upgraded to 10, Feb 2003)

Berkeley

Oak Ridge
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New architecture on horizon: Blue Gene/L
l 180 Tflop/s configuration (65536 dual processor chips)
l Closely related to QCDOC prototype (IBM system-on a chip)
l Ordered for LLNL institutional computing (not ASCI)

To be delivered 2004
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New architecture just arrived: Cray X1
l Massively parallel-vector machine highly desired by global climate simulation community

l 32-processor prototype ordered for evaluation

l Scale-up to 100 Tflop/s peak planned, if prototype proves successful

Delivered to ORNL 18 March 2003 
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NSF’s 13.6 TF TeraGrid coming on line

26

24

8

4 HPSS

5

HPSS

HPSS UniTree

External 
Networks

External 
NetworksExternal 

Networks

External 
Networks

Site Resources Site Resources

Site ResourcesSite Resources SDSC
4.1 TF
225 TB

Caltech

NCSA/PACI
8 TF
240 TB

Argonne

TeraGrid: NCSA, SDSC, Caltech, Argonne       www.teragrid.org



DD15 Tutorial, Berlin, 17-18 July 2003

Does anyone recognize this sequence?

5120

8192

2304

8192

6656

1920

2304

1540

3016

2560

Listed is the number of 
processors on the top 10 
machines in the “Top500”, 
compiled by the University of 
Mannheim, the University of 
Tennessee, and NERSC/LBNL:
from the Japanese Earth 
Simulator (#1, 41 Tflop/s) to the 
French HP machine at CEA (#10, 
5.1 Tflop/s).  Machines #2, #3, 
and #6 are at Lawrence 
Livermore National Lab
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Algorithmic requirements from architecture

l Must run on physically distributed memory units 
connected by message-passing network, each serving 
one or more processors with multiple levels of cache 

T3E

“horizontal” aspects “vertical” aspects
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Building platforms is the “easy” part

l Algorithms must be
n highly concurrent and straightforward to load balance

n latency tolerant

n cache friendly (good temporal and spatial locality)

n highly scalable (in the sense of convergence)

l Domain decomposition “natural” for all of these

l Domain decomposition also “natural” for 
software engineering

l Fortunate that mathematicians built up its 
theory in advance of requirements!
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Algorithmic requirement

l Goal for algorithmic scalability: fill up memory 
of arbitrarily large machines to increase 
resolution, while preserving nearly constant* 
running times with respect to proportionally 
smaller problem on one processor

*at worst logarithmically growing
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Application properties
l After modeling and spatial discretization, we end up 

with large nonlinear algebraic system                          
(which could come from                           , after 
implicit temporal discretization, at each time step)

l For PDEs, the Jacobian matrix             is sparse
n Each equation comes from a local flux balance
n In unsteady case, timestep improves diagonal 

dominance

l For conservation law PDEs, there is a hierarchy of 
successively coarser approximate discretizations 
available (e.g., fusing control volumes)

l Discrete Green’s function is generally global, with 
decaying tail

0)( =uF
0),,( =tuuf &

)(' uF
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Dominant data structures are grid-based

finite differences finite 
elements

finite volumes

All lead to problems 
with sparse Jacobian 
matrices

J=

node i

row i
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Decomposition strategies for Lu=f  in Ω

l Operator decomposition

l Function space decomposition

l Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

fuuyx
kk II +=++ + )()1(][ ττ LL

Consider the implicitly discretized parabolic case
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Operator decomposition

l Consider ADI

fuyux
kk II +−=+ + )()2/1( ][][ 2/2/

LL ττ

fuxuy
kk II +−=+ ++ )2/1()1( ][][ 2/2/

LL ττ
l Iteration matrix consists of four multiplicative 

substeps per timestep
n two sparse matrix-vector multiplies
n two sets of unidirectional bandsolves

l Parallelism within each substep
l But global data exchanges between bandsolve substeps
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Function space decomposition

l Consider a spectral Galerkin method
),()(),,(

1

yxtatyxu j

N

j
j Φ= ∑

=

Nifuu iiidt
d ,...,1),,(),(),( =Φ+Φ=Φ L

Nifau ijjijdt
da

ij
j ,...,1),,(),(),( =Φ+ΦΦ∑=Φ∑ L

fMKaMdt
da 11 −− +=

l System of ordinary differential equations
l Perhaps                                                        are diagonal 

matrices 
l Parallelism across spectral index
l But global data exchanges to transform back to 

physical variables at each step

)],[()],,[( ijij KM ΦΦ≡ΦΦ≡ L
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure 
on the Jacobian

Ω1

Ω2

Ω3

A2
3

A2
1

A2
2

rows assigned 
to proc “2”
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Schwarz domain decomposition method

l Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,

l Replace discretized                   with

l Solve by a Krylov method

l Matrix-vector multiplies with
n parallelism on each subdomain
n nearest-neighbor exchanges, global reductions
n possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =
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Recall Krylov methods

l Given                                            and iterate    , we 
wish to generate a basis                                        for  x
(                ) and a set of coefficients                    
such that       is a best fit in the sense that                 
minimizes 

l Krylov methods define a complementary basis 

so that        
may be solved for y

l In practice  k << n and the bases are grown from seed 
vector                                   via recursive multiplication 
by       and Gram-Schmidt

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

ky ℜ∈
|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)( =− bAVyW T

bAxr −= 00

Vyx ≈

A
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Algebraic “picture” of Krylov iteration

l Krylov iteration is an algebraic Galerkin method (or 
more generally Petrov-Galerkin method) for 
converting a high-dimensional linear system into a 
lower-dimensional linear system

l E.g., conjugate gradients (CG) for symmetric, positive 
definite systems, and generalized minimal residual 
(GMRES) for nonsymmetry or indefiniteness

AVWH T≡
=

=

bAx = =
bWg T=

=

Vyx = =
gHy =
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Now, let’s compare!

l Operator decomposition (ADI)
n natural row-based assignment requires global all-to-

all, bulk data exchanges in each step (for transpose)

l Function space decomposition (Fourier)
n Natural mode-based assignment requires global all-to-

all, bulk data exchanges in each step (for transform)

l Domain decomposition (Schwarz)
n Natural domain-based assignment requires local

surface data exchanges, global reductions, and 
optional small global problem

(Of course, domain decomposition can be interpreted 
as a special operator or function space decomposition)
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Estimating scalability of stencil computations 
l Given complexity estimates of the leading terms of:

n the concurrent computation (per iteration phase)

n the concurrent communication

n the synchronization frequency

l And a bulk synchronous model of the architecture including:
n internode communication (network topology and protocol reflecting horizontal 

memory structure)

n on-node computation (effective performance parameters including vertical 
memory structure)

l One can estimate optimal concurrency and optimal execution 
time
n on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)

n simply differentiate time estimate in terms of (N,P) with respect to P, equate to 

zero and solve for P in terms of N



DD15 Tutorial, Berlin, 17-18 July 2003

Estimating 3D stencil costs (per iteration)
l grid points in each direction n, total work N=O(n3)
l processors in each direction p, total procs P=O(p3)
l memory per node requirements O(N/P)

l execution time per iteration A n3/p3

l grid points on side of each processor subdomain
n/p

l neighbor communication per iteration B n2/p2

l cost of global reductions in each iteration  C log p 
or C p(1/d)

n C includes synchronization frequency

l same dimensionless units for measuring A, B, C 
n e.g., cost of scalar floating point multiply-add
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3D stencil computation illustration
Rich local network, tree-based global reductions

l total wall-clock time per iteration

l for optimal p,            , or  

or (with                        ),

l without “speeddown,”  p can grow with n

l in the limit as 
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3D stencil computation illustration 
Rich local network, tree-based global reductions

l optimal running time

where

l limit of infinite neighbor bandwidth, zero neighbor latency (   )

(This analysis is on a per iteration basis; fuller analysis would 
multiply this cost by an iteration count estimate that generally
depends on n and p.)

( ),log))(,( 23 nC
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Scalability results for DD stencil computations

l With tree-based (logarithmic) global reductions and 
scalable nearest neighbor hardware:
n optimal number of processors scales linearly with problem 

size

l With 3D torus-based global reductions and scalable 
nearest neighbor hardware:
n optimal number of processors scales as three-fourths power 

of problem size (almost “scalable”)

l With common network bus (heavy contention):
n optimal number of processors scales as one-fourth power 

of problem size (not “scalable”)

n bad news for conventional Beowulf clusters, but see 2000 
Bell Prize “price-performance awards”, for multiple NICs
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Factoring convergence into estimates 

l In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

? (P1/3)? (P1/2)1-level Additive Schwarz

? (1)? (1)2-level Additive Schwarz

? ((NP)1/6)? ((NP)1/4)Domain Jacobi (δ=0)
? (N1/3)? (N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

l Krylov-Schwarz iterative methods typically converge in a 
number of iterations that scales as the square-root of the 
condition number of the Schwarz-preconditioned system
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Where do these results come from?

l Point Jacobi is well known (see any book on the numerical analysis 
of elliptic problems)

l Subdomain Jacobi has interesting history (see ahead a few slides)

l Schwarz theory is neatly and abstractly summarized in Section 5.2 
of book by Smith, Bjorstad & Gropp (“Widlund School”)

n condition number, κ = ω [1+ρ(ε)] C0
2

n C0
2 is a splitting constant for the subspaces of the decomposition

n ρ(ε) is a measure of the orthogonality of the subspaces

n ω is a measure of the approximation properties of the subspace solvers 
(can be unity for exact subdomain solves)

n These properties are estimated for different subspaces, different 
operators, and different subspace solvers and the “crank” is turned



DD15 Tutorial, Berlin, 17-18 July 2003

Comments on the Schwarz results

l Basic Schwarz estimates are for:
n self-adjoint elliptic operators
n positive definite operators
n exact subdomain solves, 
n two-way overlapping with 
n generous overlap, δ=O(H) (otherwise 2-level result is O(1+H/δ))

l Extensible to:
n nonself-adjointness (e.g, convection) 
n indefiniteness (e.g., wave Helmholtz) 
n inexact subdomain solves
n one-way overlap communication (“restricted additive Schwarz”)
n small overlap

T
ii RR ,

1−
iA
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Comments on the Schwarz results, cont.

l Theory still requires “sufficiently fine” coarse mesh
n However, coarse space need not be nested in the fine space or in the 

decomposition into subdomains

l Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

— Yogi Berra

l Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency:
n standard Schwarz Dirichlet boundary conditions can lead to 

undamped resonances within subdomains,

n remedy involves Robin-type transmission boundary conditions 
on subdomain boundaries,

0=Γu

0)/( =∂∂+ Γnuu α
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Block Jacobi preconditioning: 1D example

Consider the scaled F.D. Laplacian on an interval:
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Bound on block Jacobi preconditioning

l Consider decomposition of 1D, 2D, or 3D 
domain into subdomains by cutting planes

l Well known (e.g., late 1980’s TR by Dryja & 
Widlund) that zero overlap Schwarz on elliptic 
problem improves conditioning from               
for native problem to   

)( 2−hO
)( 11 −− hHO

Ω
H

h
or
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Mirror result from linear algebra
l Chang & Schultz (1994) proved same result from 

algebraic approach, from eigenanalysis of                , 
where  A is F.D. Laplacian in 1D, 2D, or 3D, and  B
is  A with entries removed by arbitrary cutting planes

l Their Theorem 2.4.7: Given                  grid, cut by 

n q planes in x (slabs)

n q planes in x or y (beams)

n q planes in x, y, or z (subcubes)

(with cuts anywhere) then

l Note:                          and                        if cut evenly 

l Proof: eigenanalysis of low-rank matrices

)( 1AB−

nnn ××

1)( 1 ++≤− qqnABκ
)( 1−= HOq )( 1−= hOn

)( 1ABI −−
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Mirror results from graph theory

l Boman & Hendrickson (2003) proved same result 
from graph-theoretic approach, using their new 
“support theory” (SIMAX, to appear)

l Section 9 of SIMAX paper “Support Theory for 
Preconditioning,” using congestion-dilation lemma 
from graph theory (Vaidya et al.) derives                 , 
for point Jacobi

l Extended January 2003 to block Jacobi, to get 

l Fascinating to see how many different tools can be 
used for this divide and conquer preconditioning idea

)( 2−hO

)( 11 −− hHO
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“Unreasonable effectiveness” of Schwarz
l When does the sum of partial inverses equal the 

inverse of the sums?  When the decomposition is right!

l Good decompositions are a compromise between 
conditioning and parallel complexity, in practice

{ }ir
iii raAr = T

iii Arra =
Let        be a complete set of orthonormal row 
eigenvectors for A :                        or

ii
T

ii rarA Σ=
Then

rArrrrarA T
ii

T
iiii

T
ii

111 )( −−− Σ=Σ=
and

— the Schwarz formula!
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Basic Domain Decomposition Concepts

l Iterative correction

l Schwarz preconditioning

l Schur preconditioning

“Advanced” Domain Decomposition Concepts

l Polynomial combinations of Schwarz projections

l Schwarz-Schur combinations
n Neumann-Neumann/FETI (Schwarz on Schur)

n LNKS (Schwarz inside Schur) (Friday afternoon)

l Nonlinear Schwarz (Thursday afternoon)
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Iterative correction

l The most basic idea in iterative methods

l Evaluate residual accurately, but solve approximately, 
where        is an approximate inverse to A

l A sequence of complementary solves can be used, e.g., 
with        and         one has

)(1 AufBuu −+← −

)]([ 1
1

1
2

1
2

1
1 AufABBBBuu −−++← −−−−

2B1B

1−B

RRARRB TT 11
2 )( −− =

)( 1AB−

l Scale recurrence, e.g., with                                    , 
leads to multilevel methods

l Optimal polynomials of                 leads to various 
preconditioned Krylov methods
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Schwarz Preconditioning
l Given  A x = b , partition  x into 

subvectors, corresp. to subdomains       of 
the domain      of the PDE, nonempty, 
possibly overlapping, whose union is all 
of the elements of nx ℜ∈

iR

thi

thi

xRx ii =
T
iii ARRA =

ii
T
ii RARB 11 −− ∑=

Ω
iΩ

x

l Let Boolean rectangular 
matrix      extract the     
subset of       : 

l Let The Boolean matrices are gather/scatter 
operators, mapping between a global 
vector and its subdomain support
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Schur complement substructuring

l Given a partition

l Condense:








=

















ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

gSu =Γ Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

l Properties of the Schur complement:
n smaller than original A, but generally dense
n expensive to form, to store, to factor, and to solve

n better conditioned than original A
l Therefore, solve iteratively, with action of S on each 

Krylov vector

Γ
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Schur preconditioning

l Let  M-1 be a good preconditioner for  S
l Let                                           

l Then B-1 is a preconditioner for A
l So, instead of                                 , use full system

l Here, solves with       may be done approximately since 
all degrees of freedom are retained
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Schwarz polynomials

l Polynomials of Schwarz projections that are 
combinations of additive and multiplicative may be 
appropriate for certain implementations

l We may solve the fine subdomains concurrently and 
follow with a coarse grid (redundantly/cooperatively) 
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1 −−−− Σ−+= iiBABIBB
l This leads to algorithm “Hybrid II” in S-B-G’96:                                                        

l Convenient for “SPMD” (single prog/multiple data)
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Schwarz-on-Schur

l Preconditioning the Schur complement is complex in 
and of itself; Schwarz is used on the reduced 
problem

l Neumann-Neumann

l Balancing Neumann-Neumann
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l Other variants:
n Bramble-Pasciak-Schatz
n multigrid on the Schur complement
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l Finite Element Tearing and Interconnection
l Domain decomposition iterative linear solver that uses 

Lagrange multipliers to solve A x = b
l Numerically scalable (convergence rate bounded)
l Parallel scalability up to 1000s of processors
l Used to solve large scale finite element models (10-100 

million equations)
l Sandia’s Salinas and SIERRA implementations of the 

Dual/Primal FETI method (FETI-DP) won Gordon 
Bell Prize in “special” category in 2002 (w/ C. Farhat, 
invited to speak Monday afternoon at DD-15)

FETI overview (next 8 slides, c/o K. Pierson)
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Interface Continuity 
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• Subscript r for interior DOFs; subscript c for interface DOFs

• Interface continuity enforced through Lagrange multipliers
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Equilibrium & Compatibility
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• The u’s are primal variables; the ? are dual variables

• FETI-DP master system (symmetric) is:
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FETI-DP interface problem

After some algebraic manipulation …
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FETI-DP coarse problem
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• Couples all subdomains
• Global propagation of residual error 
• Solved with parallel distributed sparse solver
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Solving A x = b using FETI-DP

l Construct & factorize subdomain operators

l Construct & factorize preconditioner

l Construct & factorize coarse grid

l Solve for Lagrange multipliers (with 
preconditioned Conjugate Gradients)

l Solve for displacements using back substitution
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c/o C. Farhat and K. Pierson

l Numerically scalable, hardware scalable solutions for 
realistic solid/shell models

l Used in Sandia applications Salinas, Adagio, Andante
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Agenda for future DD research

l High concurrency (100,000 processors)
l Asynchrony
l Fault tolerance
l Automated tuning of algorithm (to application 

and to architecture)
l Integration of “forward” simulation with 

studies of sensitivity, stability, and 
optimization
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High Concurrency
Today                                                         Future

l 100,000 processors, in a room or 
as part of a grid

l Most phases of DD computations 
scale well
n favorable surface-to-volume 

comm-to-comp ratio

l However, latencies will nix 
frequent exact reductions

l Paradigm: extrapolate data in 
retarded messages; correct (if 
necessary) when message arrives, 
such as in C(p,q,j) schemes by 
Garbey and Tromeur-Dervout

l 10,000 processors in a single 
room with tightly coupled 
network

l DD computations scale well, 
when provided with
n network rich enough for 

parallel near neighbor 
communication

n fast global reductions 
(complexity sublinear in 
processor count)
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Asynchrony
Today                                                         Future

l Adaptivity requirements and far-
flung, nondedicated networks will 
lead to idleness and imbalance at 
synchronization points

l Need algorithms with looser 
outer loops than global Newton-
Krylov

l Can we design algorithms that 
are robust with respect to 
incomplete convergence of inner 
tasks, like inexact Newton?

l Paradigm: nonlinear Schwarz
with regional (not global) 
nonlinear solvers where most 
execution time is spent

l A priori partitionings for quasi-
static meshes provide load-
balanced computational tasks 
between frequent 
synchronization points

l Good load balance is critical to 
parallel scalability on 1,000 
processors and more
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Fault Tolerance
Today                                                         Future

c/o A. Geist

l With 100,000 processors or 
worldwide networks, MTBF will 
be in minutes

l Checkpoint-restart could take 
longer than the time to next 
failure

l Paradigm: naturally fault tolerant 
algorithms, robust with respect to 
failure, such as a new FD 
algorithm at ORNL

l Fault tolerance is not a driver in 
most scientific application code 
projects

l FT handled as follows:
n Detection of wrong

u System – in hardware
u Framework – by runtime env
u Library – in math or comm lib

n Notification of application
u Interrupt – signal sent to job
u Error code returned by app 

process

n Recovery
u Restart from checkpoint
u Migration of task to new 

hardware
u Reassignment of work to 

remaining tasks
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Automated Tuning
Today                                                         Future

l Less knowledgeable users 
required to employ parallel 
iterative solvers in taxing 
applications

l Need safe defaults and automated 
tuning strategies

l Paradigm: parallel direct search 
(PDS) derivative-free optimization 
methods, or other machine 
learning (ML), using overall 
parallel computational 
complexity as objective function 
and algorithm tuning parameters 
as design variables, to tune solver 
in preproduction trial executions

l Knowledgeable user-developers 
parameterize their solvers with 
experience and theoretically 
informed intuition for:
n problem size/processor ratio

n outer solver type

n Krylov solver type

n DD preconditioner type

n maximum subspace dimensions

n overlaps

n fill levels

n inner tolerances

n potentially many others
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Integrated Software
Today                                                         Future

l Analysis increasingly an “inner 
loop” around which more 
sophisticated science-driven 
tasks are wrapped

l Need PDE task functionality 
(e.g., residual evaluation, 
Jacobian evaluation, Jacobian 
inverse) exposed to 
optimization/sensitivity/stability 
algorithms

l Paradigm: integrated software 
based on common distributed 
data structures

l Each analysis is a “special 
effort”

l Optimization, sensitivity 
analysis (e.g., for uncertainty 
quantification), and stability 
analysis to fully exploit and 
contextualize scientific results 
are rare
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Architecturally driven ideas in DD

l Chaotic Relaxation (1969)

l Schwarz Waveform Relaxation (1997)

l Restricted Additive Schwarz (1997)

l C(p,q,j) schemes (2000)

l Hybrid MPI/OpenMP-based domain 
decomposition (2000) 
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Chaotic Relaxation

l By Chazan & Miranker (1969)

l Basic idea: assign subsets of interdependent equations to 
different processors and relax concurrently, importing refreshed
data on which a given processor depends “as available”

l Convergence (for certain problem classes) as long as no subset 
goes infinitely long without being updated

l Weak results from theory, but occasional encouraging numerical 
experiments, including Giraud (2001), who showed that chaotic 
relaxation can be marginally faster, both in execution time (from 
relaxation of synchrony) and in terms of actual floating point 
work done!
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Schwarz Waveform Relaxation

l By Dauod & Gander (1997; see also DD-13 proceedings)

l Rather than exchanging messages at every time step in a space-
time cylindrical domain, (Ω,(0,T)), over which a PDE is to be 
solved, solve in each domain over all time, and exchange 
interface data over (0,T) at all overlapping Schwarz interfaces 
less frequently

l Nice convergence theory for parabolic problems using maximum 
principle

l Interesting for high-latency systems; also for multiphysics 
systems, since some subdomains can “step over” most restrictive 
time step arising in other domain

l Disadvantage: memory!
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Restrictive Additive Schwarz

l By Cai & Sarkis (1997)

l Consider restriction and extension 
operators for subdomains,           

l Restrict either the restriction or the extension 
operator to ignore the overlap:

l Solve as usual Krylov-Schwarz
l Saves 50% of communication, and actually 

converges faster in many cases; default in PETSc
l Active area in DD-13:

n Cai, Dryja & Sarkis’ RASHO shows that symmetry can be 
preserved if one projects to stay in a certain subspace

n Frommer, Nabben & Szyld give an algebraic theory, 
including multiplicative RAS
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C(p,q,j) schemes

l By Garbey & Tromeur-Dervout (2000)

l To conquer high-latency environments, extrapolate 
missing boundary data (treating higher and lower 
Fourier modes differently), and to accommodate low 
bandwidth environments, reuse extrapolations over 
several steps

l Employ a posteriori checks against real boundary data 
when it appears, and adjust as necessary

l Nice results for parabolic problems in the 
“computational grid” environment
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OpenMP/MPI tradeoffs

l By I. Charpentier & AHPIK software team (2000); 
explored for just two procs by Keyes et al. (1999)

l For  p processors, rather than using  p subdomains, 
use fewer, larger subdomains, and split a subdomain 
over several processors, using multithreaded 
subdomain solver, in a hybrid SPMD programming 
model

l Advantage: fewer subdomains, larger  H , gives 
logarithmic or fractional power improvement in 
convergence for most DD methods (less information 
lost on subdomain cuts)
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Conclusions/summary
l Domain decomposition is the dominant paradigm in contemporary 

terascale PDE simulation 
l Several freely available software toolkits exist, and successfully scale 

to thousands of tightly coupled processors for problems on quasi-
static meshes

l Concerted efforts underway to make elements of these toolkits 
interoperate, and to allow expression of the best methods, which tend 
to be modular, hierarchical, recursive, and above all — adaptive!

l Many challenges loom at the “next scale” of computation
l Implementation of domain decomposition methods on parallel 

computers has inspired many useful variants of domain 
decomposition methods 

l The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight

l Undoubtedly, new theory/algorithms will be part of the solution!
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