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Recall Newton methods

Given F (U) = O F:A"® A "anditerateu’
WeW|shtop|cku ' such that

FU“")» FW")+ F (u)du® =0
wheredu® = u**- u*. k=0,12....
Neglecting higher -order terms, we get

-1 (U)] TF (u™)
where J F (u¥) istheJacobian matrix,
generally large, sparse, and ill-conditioned for PDEs
In practice, require || F (U k) + J (u k)dU : |I< e
Inpractice, set U™ =uX +1 du® where | is

selected tominimize || F (u* + | du®) ||

P
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Newton’s method: prosand cons

L ocally quadratically convergent (if Jacobian is
nonsingular at the solution)
= number of significant digits doubles asymptotically at each
step
= not globally convergent from arbitrary initial iterate
Requires Jacobian evaluation at each iteration
= may benontrivial for user to supply derivatives
= may requirelargefraction of code size and execution time
m If exact derivativeinformation issacrificed, so if quadratic
conver gence
Requires solution of linear system with Jacobian at
each iteration
= bottleneck when ill-conditioned
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Recall Krylov methods
Given Ax = b, AT A " "anditerate 0 ,we
wish to generate a basis V:_{_Vl,Vz,...,Vk}T An'kal’ X
(x y» \Ay)@ndasetof coefflc:lents{y’ 2’___’yk}
such that ykisabest fit in the sense that yT A K
minimizes H Avy - b “
Krylov methods define a complementary basis

An'k 0 that W T (AVy _ b) — O

N\

W=iw, W,,.... Wl
may e solved folF}y

In practice k << n and the bases are grown from seed
vector 0 — Ay O _ p viarecursivemultiplication

by A and Gram-Schmidt

Does not requireinverse of A

P
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Recall Schwar z preconditioning

e Given Ax= Db, partition X Into

A

subvectors, corresp. to subdomains W, of i
thedomain Wof the PDE, nonempty, I
possibly overlapping, whose unionisall | g LS
of theelementsof x1 A " ot

e LetBooleanrectangular ]
matrix R, extract thej™ Q’ Q"
R e

X = R;X BEE =d B
o Let A = RIAR, iiieinmancemesne i

B-l

o _ oper ators, mapping between a global
a i RiT Ai 1 Ri vector and its subdomain support
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Newton-Krylov-Schwar z

Popularized in parallel Jacobian-free form under this name by
Cai, Gropp, Keyes& Tidriri (1994)

Newton Krylov Schwarz

nonlinear solver accelerator preconditioner
asymptotically quadratic spectrally adaptive parallelizable
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Jacobian-Free Newton-Krylov M ethod

e |In the Jacobian-Free Newton-Krylov (JFNK)
method, a Krylov method solvesthe linear Newton
correction equation, requiring Jacobian-vector
products

e Theseareapproximated by the Fréchet derivatives

J(u)v»%[F(wev)- F ()

s0 that the actual Jacobian elements are never

explicitly needed, where e ischosen with afine
balance between approximation and floating point
rounding error

e Schwarz preconditions, using approximate elements
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User Code/PETSc Library Interactions

[ Timesteppi ng Solvers (TS) ]
[ Nonllnear Solvers (SNES)
Llnear Solvers (SL ES)
PETSC

<> PETSc code
code
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User Code/PETSc Library Interactions

[ Timesteppi ng Solvers (TS) ]

Nonllnear Solvers (SNES)

L Inear Solvers (SL ES)
PETSC
Jacobian
EvaI uati on

OPETSccode <> TobeAD code

code
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Philosophy of Jacobian-free NK

o Toevaluatethelinear residual, weusethetrue F’(U) , giving a
true Newton step and asymptotic quadratic Newton conver gence

e Topreconditionthelinear resdual, we do anything convenient
that uses under standing of the dominant physicmathematicsin
the system and respects the limitations of the parallel computer
architecture and the cost of various oper ations:

combinations of oper ator-split Jacobians (for reasons of physics or
reasons of numerics)

Jacobian of related discretization (for “fast” solves)
Jacobian of lower-order discretization (for more stability, less storage)

Jacobian with “lagged” valuesfor expensive terms (for less
computation per degree of freedom)

Jacobian stored in lower precision (for lessmemory traffic per
preconditioning step)

Jacobian blocks decomposed for parallelism -
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Philosophy of Jacobian-free NK, cont.

e These motivations are not new; most large-scale application
codes also take “ short cuts’ on the approximate Jacobian
operator to beinverted — showing physical intuition

e Theproblem with many codesisthat they do not anywhere have
an accur ate global Jacobian operator; they use only the weak
Jacobian

e Thisleadsto aweakly nonlinearly converging “defect correction
method”

m Defect correction:

Bdu“ =- F (u")

= incontrast to preconditioned Newton:

B 'J(u“)du*

- B"'F (u®)
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Jacobian-free NK S

e |n the Jacobian-free Newton-Krylov
(JFNK) framework, any standard
nonlinear solver, which maps a
residual into a correction, can be
regarded asa preconditioner

e ThetrueJacobian isnever formed
yet thetime-implicit nonlinear
residual at each time step can be
made as small as needed for
nonlinear consistency in long time
Integrations

&
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Using Jacobian of lower order discretization

Orszag popularized the use of linear finite element
discretizations as preconditioners for high-order spectral
element discretizationsin the 1970s; both approach the
same continuous oper ator

It iIscommon in CFD to employ first-order upwinded
convective operators as approximate inversions for
higher-order operators.

m Dbetter factorization stability

= smaller matrix bandwidth and complexity

With Jacobian-free NK, we can have the best of both
wor lds — a stable factorization/cheap solve and atrue
Jacobian step
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Using Jacobian with lagged terms

e Newton-chord methods (e.g., papers by Smooke et al.) “freeze”
the Jacobian matrices:

= savesJacobian evaluation and factorization, which can be up to 90%
of therunning time of the code in some apps

= however, nonlinear convergence degradesto linear rate

e In Jacobian-free NK, we can “freeze” someor all of thetermsin
the Jacobian preconditioner, while always accessing the action of
the true Jacobian for the Krylov matrix-vector multiply:

= Still saves Jacobian work
= Mmaintains asymptotically quadratic rate for nonlinear conver gence

o See(Knoll-Keyes’03) for example with coupled edge plasma and
Navier-Stokes, showing five-fold improvement over full Newton
with constantly refreshed Jacobian on LHS, versus JFNK with
preconditioner refreshed once each ten timesteps

SR
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Using Jacobian with lower precision elements

e Memory bandwidth isthecritical architectural
parameter for sparselinear algebra computations

e Storingthe preconditioner elementsin single precision
effectively doubles memory bandwidth (and potentially
halvesruntime) for thiscritical phase

e Wedtill form the Jacobian-vector product with full
precision and “zero-pad” the preconditioner elements
back to full length in the arithmetic unit, so the
numerical quality of the Krylov subspace does not
degrade
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Memory BW bottleneck revealed

via precision reduction

Execution timesfor unstructured NK S Euler Smulation on Origin 2000:
double precision matrices versussingle precision preconditioner

Computational Phase
Number of _
Linear Solve Overall
Processor s _ _
Double| Single |Double| Single
16 223s 136s 746s 657s
32 117s 6/S 373s 331s
64 60s 34s 205s 181s
120 31s 16s 122s 106s

Notethat timesarenearly halved, along with precision, for the BW-limited linear solve

phase, indicating that the BW can be at least doubled befor e hitting the next bottleneck!

Py
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NKSfor transport modeling

e Aztec: efficient parallel linear solvers
= Krylov methods + preconditioners
= variable overlap Schwarz

s subdomain “solvers’: ILU, MILU, ILUT, BILU, LU,
Krylov, ...

www.cs.sandia.gov/CRF/aztecl.html
e ML: parallel multigrid linear solvers
= Algebraic : classical, smoothed aggregation, H-curl
s Geometric: FE basisdomain decomp., grid refinement
www.cs.sandia.gov/~tuminaro/ML_Description.html|
e MPSalsa: paralle transport / reaction system simulator

s GLSFE formulation; variable density fluid flow, heat
and masstransfer with non-equilibrium chemical
reactions

m Fully-coupled Newton/Krylov iterative solution methods
m CVD, catalytic reactors, combustion, chemical detectors

CVD of GaAs in 3D horizontal  \ww.cs.sandia.gov/CRF/MPSalsa ank
rotating disk reactor [ﬂ][:g?unes
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Algorithmic scaling of 1- and 2-level DD
preconditioners

Thermal Convection
Problem (Ra = 1000)

3d Thermal Convection

10 [ T™T=TTTTT T TTTTT T T T T
[ ] 1-Level
3D Results { oD
oy B2 Level xacl 512 procs i
‘n e 1
UC) ¢ 2 Level Approx. {1 2-Level DD
S e 33424 / Approx. Coarse
g 1 Solve
Z
o 2
Q 10 F .
(%2} E
c o
o L
b= ] 2-Level DD
o) | Exact Coarse
g’» Py NO L”Solve
z . ‘Z . /
- .
r!-
Temperature iso-lines 10" L : ; : ;
: , 10 10 n 10 10
on slice plane, velocity
iso-surfaces and Total Unknowns
streamlines in 3D c/o J. Shadid and R. Tuminaro
Newton-Krylov solver with Aztec non-restarted GMRES with 1— level domain decomposition Sandia
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver. National
Coarse Solver: “Exact” = Superlu (1 proc), “Approx” =onestep of ILU (8 proc. in parallel) Laboratories
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e Problem:

m Attemptsto handle nonlinear problemswith nonlinear implicit
methods often encounter stagnation failure of Newton away
from the neighborhood of the desired r oot

e Algebraic solutions:
m Linesearch and trust-region methods
s “Forcingterms’

e Physics-based solutions:

s Mesh sequencing
= Continuation (homotopy) methods for directly addressing this
through the physics, e.g., pseudo-transient continuation

m Transform system to be solved so that neglected curvature
terms of multivariate Taylor expansion truncated for
Newton’s method are smaller (nonlinear Schwar z)
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Standard robustness featur es

PET Sc containsin itsnonlinear solver library some standard
algebraic robustness devices for nonlinear rootfinding from
Dennis & Schnabel, 1983

Line search
s Trytoensurethat F(u) isstrictly monotonically decreasing
m Parameterizereduction of |F(u + du)| along Newton step du
m Solve scalar minimization problem for ?

Trust region

m Definearegion about the current iterate within which wetrust a
model of theresidual

= Approximately minimize the model of the residual within the region
(again with low-dimensional parameterization of convex combination
of descent direction and Newton direction)

= Shrink or expand trust region according to history

P
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Standard robustness featur es

e PETSc containsin itsnonlinear solver library
standard algebraic robustness devices for nonlinear
rootfinding from Eisenstat & Walker (1996)

s EW’96 containsthree heuristics for the accuracy with which a
Newton step should be solved

m reliesintrinsically on iterative solution of the Newton
correction equation

m tolerancefor linear residual (“forcing factor”) computed based
on norms easily obtained as by-products of the rootfinding
computation — little additional expense

= tolerancetightensdynamically asresidual norm decreases
during the computation

m “oversolving” not only wastes execution time, but may be less
robust, since early Newton directions arenot reliable

Sy

P
e
e
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Time-implicit Newton-Krylov-Schwar z

For accommodation of unsteady problems, and nonlinear robustnessin
steady ones, NK Siteration iswrapped in time-stepping:

[ for (I =0; | <n_time; [++) {
select time step

compute nonlinear residual and Jacobian
for j =0; ) <n_Krylov; j++) {

forall (i=0;i<n_Precon; it++) {

solve subdomain problems concurrently
Pseudo- } /I End of loop over subdomains
time NKS perform Jacobian-vector product
Ioop Ioop < enforce Krylov basis conditions

update optimal coefficients
check linear convergence
} /I End of linear solver
perform DAXPY update
check nonlinear convergence

K } I End of time-step loop
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Timeintegratorsw/ sensitivity analysis

Transient multirate problems requir e stiff f (X, X1, p) =0
Integrators, a known art, assuming a power ful »

nor?ﬁ near solver capability oo Optimizer —Jp S0 Ancyyze
SUNDIALS and PETSc both implement the

PVODE backward differentiation schemesfor imTegTaetor

temporal discretization

PETSc suppliesavariety of distributed data l

structures Nonlinear Eigensolver
Userswho want to use their own data o

structures, or to utilize built-in sensitivity l

estimation may prefer SUNDIALS Linear

Especially recommended for parameterized solvef
applications, requiring uncertainty

quantification , Indicates

dependence

S8
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| ntegrator s progr ess

e PVODE, IDA, and KINSOL (an NK solver) now wrapped
together in SUNDIALS and augmented with forward and
adjoint sensitivity analysis capabilities

e Embodiesdecades of work in variable-order, variable-
timestep method-of-lines and Newton-Krylov solvers at

LLNL
1974 1982 1988 1990 1994 1998 2000 today
GEAR =& DEPACK=P VODE VODPK=pCVODE (
= PVODE »CVODE .
=—nsPY O DF———pC\VODES (
DASSL » DASPK =—=p |DA » |IDA p
= Sensl DA » IDAS | ;
NKSOL »KINSOL K INSOL
— TN G P INSOL $
FORTRAN

TR AL VERS
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Pseudo-transient continuation (Y tc)

Solve F(u)=0through a series of problems
derived from method of lines model
ff(u):u-tlj +F@U) =0, /=12, - (*)

t “isadvanced fromt ° <<1to¥ as /® ¥ SO
that U" approachestheroot

With initial iteratefor U’ asu’* thefirst

Newton correction for (*) Is
uf :uﬁ-l_ tlgl _I_F'(uf-l)]-lF(uE-l)
Note that ||F(u)|| can climb hillsduring Y tc

Can subcycle inside physical timestepping

]

S
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Algorithmic tuning - continuation parameters

e “Switched Evolution-Relaxation” (SER) heuristic
< P
2 o] @
N | = N -
CFL CFL é”f (Ul - 1)“3
e Analysisin SIAM papersby Kelley & Keyes (1999 for
parabolized, 2002 for mixed elliptic/parabolized)

e Parametersof interest:
= Initial CFL number

= EXxponent in the Power Law

4 =1 normally
& > 1for first-order discretization (1.5)
€ <1 at outset of second-order discretization (0.75)

m Switch-over ratio between FO and SO

: : S5
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Effect of initial CFL number
ONERA M6 aerodynamics problem on grid of 2.8M vertices

100 | | | | | l | | | | | l | | | | | l | |
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=
e
[N
N
I
—
I

10-14||||||||||||||||||||
0 50 100 150

Pseudo-time Iterations
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Y tc in combustion application
10° . . . .
107 dt -

¢
10 H Accommo- 3
al dation to BCs Flame front
10 _'.1 ~ stapilization |
ffffff

10f
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107 |

.. res
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1
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—
-
—
)
(N 2
)
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Velocity-vorticity governing equations

X-velocity - N4y - ﬂ_W =0
Ty

y-velocity _ N2V+ﬂ_w =0
11X

vorticity M- IQIZW+uﬂ—W +Vﬂ—W- Grﬂ =0
it ™ Ty Tx

internal energy ﬂ - N4T + PI’(UE +V£) =0
Tt x Ty

&
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Extension to DAE systems

Some PDEs act as
elliptic constraints
on the othersand
should not be
parabolized, e.g.,
Incompressible
flow (continuity,
streamfunction-
vorticity, velocity-
vorticity)

Fast-converging
results enforced
Incompressibility;
slower (fully
parabolized) did
not

10 H T T T T
4 dt t
- / dae parab
10° | . // TR
\‘,ﬁ 3 s x}(/
A s
0oL e - X |
10 [l e {
—5'—_—___-_-5_—# llI
]
107 | '- |
; b
; |
Il ]
3
1077 | \ | -
H 1
| |
I )
'II !I
107 | 'i |
I |
| |
[ )
1
- ] res
107 - "3 e i parab
10'”:' I I i | | i
0 10 15 20 25 230 as 40
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M esh sequencing

» Technique for robustifying nonlinear
rootfinding for problems based on continuum
approximation

* Relies on several levels of refinement from
coarse to fine

 Theory exists showing (for nonlinear €liptic
problems) that, asymptotically, the root on a
coarser mesh, appropriately interpolated onto a
finer mesh, liesin the domain of convergence
of Newton’s method on the finer grid

]
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Multilevel preconditioning

A
-2

M2

‘,\
i

5

i

SN
3::‘03‘*333\‘
O

Restriction
transfer from
fine to coarse
grid

coarser grid has fewer cells

(less work & storage)

A Multigrid V-cycle

First Coarse

Grid

Recursively apply this
idea until we have an

easy problem to solve

Prolongation
transfer from coarse

to fine grid

]
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M esh sequencing example

From Knoll & McHugh (SIAM J. Sci. Comput., 1999) summarized in Ref
[1]

Execution timesfor 8-equation 2d BVP steady-state coupled edge
plasma/Navier-Stokes problem

Each grid in sequenceissolved from a “ cold” initial iterateor initialized
for Newton’s method by the solution on the previous coarse grid

See Smooke & Matthej (Appl. Num. Math, 1985) for BVP theory

16
14+
127
10

8- E without M S
6. M with MS

4

2

0-

32x16 64x32 128x64
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Other continuation methods

Thereisoften a physical “knob,” such as Reynolds number, that
can bevaried to “sneak up” on a hard problem

L et the parameter at which the solution issought bep and let
the solution at a value p° be such that F(u, p® )=0 be*“easy”

(e.g., linear)
By implicit differentiation of F(u, p )=0, we get
. 1
iF v +ﬂF =0 or T_U:_géTFg 1
lufp p ip| efug Tp
By Taylor expansion
fu

uf » u€-1+ ﬂ (p E-l) (pé _ pé-l)
P

Thisallows bootstrapping with a series of Newton problems .

DD15 Tutorial, Berlin, 17-18 July 2003 @



Nonlinear Schwar z preconditioning

Nonlinear Schwar z has Newton both inside and
outside and is fundamentally Jacobian-free

It replaces F(u) =0 with anew nonlinear system
possessing the sameroot, F (u) =0
Definea correction d.(u) tothei™ partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

RF(u+d;(u))=0
whered, (U)] A" isnonzero only in the components
of thei™ partition

Then sum thecorrections: F (u) =&, d, (u)

: : S5
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Nonlinear Schwarz, cont.
e [tissimpleto provethat if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then F(u)=0 andF(u)=0 havethesameunique
r oot
e Tolead to a Jacobian-free Newton-Krylov algorithm
we need to be ableto evaluate for any y vi A":
= Theresidual F(u)=a,d (u)
= The Jacobian-vector product F () v
e Remarkably, (Cai-Keyes, 2000) it can be shown that
F (uyv» a (R'J 'R )J
whereJ =F'(u) and J, = R JR/
e All required actionsare availablein termsof F(u) !

SR
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Experimental example of nonlinear Schwar z

10 T T T T T
II
.III
| Re=1.0p4
TR Re=1 o3
L Il
I
o \ Stagnation
3 _|'|I '| beyond
g ||| '|| critical Re
%
2 |
10 |
: |H‘%=1.DEU 'll
E | M | Diffi_culty at
5 | | critical Re
0| =106 \Hﬂﬂ.t’:ﬂﬁa
|| |
| |
10-2:' | || |
|
| | |
] |
1 | |
1I:I-' | 11 L 1 1 l
& 10 15 20 25 30 3 40 45
Mawton iterations
Newton’s method

Monlinear residuals

I —

Convergence
for all Re

PIN iterations

Additive Schwar z Preconditioned | nexact Newton

(ASPIN)
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Common softwar e infrastructure for
nonlinear PDE solvers

User codesto the problem they are
solving, not the algorithm used to solve
the problem

| mplementation of variousalgorithms
reuse common concepts and code when
possible, without losing efficiency

Optimizer _> Sens. Analyzer

Time
integrator

|

Nonlinear
solver

!

Linear
solver

Eigensolver

> Indicates

dependence

e
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Encompassing ...

Newton’s method
m Direct solvers
s Matrix-based preconditioned solvers
x Matrix-free methods

s Multigrid linear solvers (Newton-MG)
¢ Matrix-based and matrix-free

Nonlinear multigrid

x ak.a. Full approximation scheme (FAS)
x a.k.a. MG-Newton

=

P
e
e
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Softwar e engineering ingredients

Standard solver interfaces
Solver libraries
Automatic differentiation (AD)

Code generation
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Algorithm review

F(u) = 0, Jacobian A(u)
Newton L
u- u- A*(u)F(u)
Newton — SOR (1|nner Sweep)

U - ui- AR W- a AWl - uld

SOR-Newton (1 inner SNeep) J<

u - ui- A (U)F (u)

P
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Cute observation
SOR-Neaewton

U= Ui AT (W R ()
With approximations

A (u)» A (a)
F(u)» Fu)+a A Wy, - uj]
Gives Newton-SOR
u - ui- AR @U)- QA Wy - ul)

j<i

=8
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b Matrix-freelinear relaxation
(Gauss-Seldel)
ISalmost identical to nonlinear reaxation

: : S5
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Function and Jacobian evaluation

e FASrequirespointwise
e Newton desiresglobal
e Newton-MG desiresboth

3
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Automatic Differentiation

e Given code for F(u) can compute
= A(u) and
s A(u)*w efficiently
e Given code for Fi (u) can compute
= A(u) and
= 3 A (uwefficiently
|

]

P
DD15 Tutorid, Berlin, 17-18 July 2003 @ﬂ



Code generation (in-lining ©)

Inside the small dimensional Newton methods s
a user-provided function and (AD) Jacobian

Big performance hit if handled directly with
components
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Coarsegrid correction isnot an issue ©

e Newton-MG
A, (Ru)c, = RF(U)
u- u- R'c,
e MG-Newton

F,(Ru+c,)- F,(Ru)+RF(u)=0

SR
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Conclusion

Thealgorithmic/mathematical building blocksfor

Newton-M G and M G-Newton are essentially the
same

Thusthe softwar e building blocks should be also
(and they will bein the next release of PET Sc).

: : S5
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