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Recall Newton methods
l Given                                                           and iterate      

we wish to pick          such that

where

l Neglecting higher-order terms, we get

where                                   is the Jacobian matrix, 
generally large, sparse, and ill-conditioned for PDEs

l In practice, require

l In practice, set                                     where      is 
selected to minimize         
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Newton’s method: pros and cons
l Locally quadratically convergent (if Jacobian is 

nonsingular at the solution)
n number of significant digits doubles asymptotically at each 

step
n not globally convergent from arbitrary initial iterate

l Requires Jacobian evaluation at each iteration
n may be nontrivial for user to supply derivatives
n may require large fraction of code size and execution time
n if exact derivative information is sacrificed, so if quadratic 

convergence

l Requires solution of linear system with Jacobian at 
each iteration
n bottleneck when ill-conditioned
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Recall Krylov methods
l Given                                            and iterate    , we 

wish to generate a basis                                        for  x
(                ) and a set of coefficients                    
such that       is a best fit in the sense that                 
minimizes 

l Krylov methods define a complementary basis 

so that        
may be solved for y

l In practice  k << n and the bases are grown from seed 
vector                                   via recursive multiplication 
by       and Gram-Schmidt

l Does not require inverse of A
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Recall Schwarz preconditioning
l Given  A x = b , partition  x into 

subvectors, corresp. to subdomains       of 
the domain      of the PDE, nonempty, 
possibly overlapping, whose union is all 
of the elements of nx ℜ∈
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l Let Boolean rectangular 
matrix      extract the     
subset of       : 

l Let The Boolean matrices are gather/scatter 
operators, mapping between a global 
vector and its subdomain support
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Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Popularized in parallel Jacobian-free form under this name by 
Cai, Gropp, Keyes & Tidriri (1994)
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Jacobian-Free Newton-Krylov Method
l In the Jacobian-Free Newton-Krylov (JFNK) 

method, a Krylov method solves the linear Newton 
correction equation, requiring Jacobian-vector 
products

l These are approximated by the Fréchet derivatives

so that the actual Jacobian elements are never 
explicitly needed, where  ε is chosen with a fine 
balance between approximation and floating point 
rounding error

n Schwarz preconditions, using approximate elements
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PETSc codeUser 
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

User Code/PETSc Library Interactions
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PETSc codeUser 
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

User Code/PETSc Library Interactions

To be AD code
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Philosophy of Jacobian-free NK
l To evaluate the linear residual, we use the true F’(u) , giving a 

true Newton step and asymptotic quadratic Newton convergence

l To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics in 
the system and respects the limitations of the parallel computer
architecture and the cost of various operations:
n combinations of operator-split Jacobians (for reasons of physics or 

reasons of numerics)

n Jacobian of related discretization (for “fast” solves)
n Jacobian of lower-order discretization (for more stability, less storage)

n Jacobian with “lagged” values for expensive terms (for less 
computation per degree of freedom)

n Jacobian stored in lower precision (for less memory traffic per 
preconditioning step)

n Jacobian blocks decomposed for parallelism
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Philosophy of Jacobian-free NK, cont.
l These motivations are not new; most large-scale application 

codes also take “short cuts” on the approximate Jacobian 
operator to be inverted – showing physical intuition

l The problem with many codes is that they do not anywhere have 
an accurate global Jacobian operator; they use only the weak 
Jacobian

l This leads to a weakly nonlinearly converging “defect correction
method”
n Defect correction:

n in contrast to preconditioned Newton:
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Jacobian-free NKS
l In the Jacobian-free Newton-Krylov 

(JFNK) framework, any standard 
nonlinear solver, which maps a 
residual into a correction, can be 
regarded as a preconditioner

l The true Jacobian is never formed 
yet the time-implicit nonlinear 
residual at each time step can be 
made as small as needed for 
nonlinear consistency in long time 
integrations
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Using Jacobian of lower order discretization
l Orszag popularized the use of linear finite element 

discretizations as preconditioners for high-order spectral 
element discretizations in the 1970s; both approach the 
same continuous operator 

l It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for 
higher-order operators:
n better factorization stability

n smaller matrix bandwidth and complexity

l With Jacobian-free NK, we can have the best of both 
worlds – a stable factorization/cheap solve and a true 
Jacobian step
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Using Jacobian with lagged terms
l Newton-chord methods (e.g., papers by Smooke et al.) “freeze”

the Jacobian matrices:
n saves Jacobian evaluation and factorization, which can be up to 90% 

of the running time of the code in some apps
n however, nonlinear convergence degrades to linear rate

l In Jacobian-free NK, we can “freeze” some or all of the terms in 
the Jacobian preconditioner, while always accessing the action of 
the true Jacobian for the Krylov matrix-vector multiply:
n still saves Jacobian work
n maintains asymptotically quadratic rate for nonlinear convergence

l See (Knoll-Keyes ’03) for example with coupled edge plasma and 
Navier-Stokes, showing five-fold improvement over full Newton 
with constantly refreshed Jacobian on LHS, versus JFNK with 
preconditioner refreshed once each ten timesteps
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Using Jacobian with lower precision elements
l Memory bandwidth is the critical architectural 

parameter for sparse linear algebra computations

l Storing the preconditioner elements in single precision 
effectively doubles memory bandwidth (and potentially 
halves runtime) for this critical phase

l We still form the Jacobian-vector product with full 
precision and “zero-pad” the preconditioner elements 
back to full length in the arithmetic unit, so the 
numerical quality of the Krylov subspace does not 
degrade
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Memory BW bottleneck revealed 
via precision reduction

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble 

OverallLinear Solve

Computational Phase
Number of 

Processors

Execution times for unstructured NKS Euler Simulation on Origin 2000:  
double precision matrices versus single precision preconditioner

Note that times are nearly halved, along with precision, for the BW-limited linear solve 
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!
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l Aztec: efficient parallel linear solvers
n Krylov methods + preconditioners
n variable overlap Schwarz
n subdomain “solvers”: ILU, MILU, ILUT, BILU, LU, 

Krylov, … 
www.cs.sandia.gov/CRF/aztec1.html

l ML: parallel multigrid linear solvers
n Algebraic : classical, smoothed aggregation,  H-curl 
n Geometric: FE basis domain decomp., grid refinement
www.cs.sandia.gov/~tuminaro/ML_Description.html

l MPSalsa: parallel transport / reaction system simulator
n GLS FE formulation; variable density fluid flow, heat 

and mass transfer with non-equilibrium chemical 
reactions

n Fully-coupled Newton/Krylov iterative solution methods
n CVD, catalytic reactors, combustion, chemical detectors
www.cs.sandia.gov/CRF/MPSalsaCVD of GaAs in 3D horizontal 

rotating disk reactor

NKS for transport modeling 
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1 proc

Algorithmic scaling of 1- and 2-level DD 
preconditioners 

Newton-Krylov solver with Aztec non-restarted GMRES with 1 – level domain decomposition 
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver. 
Coarse Solver: “Exact” = Superlu (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines 
on slice plane, velocity 
iso-surfaces and 
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse 
Solve

2 – Level DD  
Approx. Coarse 
Solve

1 – Level 
DD3D Results

512 procs

Total Unknowns
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Thermal Convection 
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro
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Nonlinear Robustness
l Problem:

n Attempts to handle nonlinear problems with nonlinear implicit 
methods often encounter stagnation failure of Newton away 
from the neighborhood of the desired root

l Algebraic solutions:
n Linesearch and trust-region methods
n “Forcing terms” 

l Physics-based solutions:
n Mesh sequencing
n Continuation (homotopy) methods for directly addressing this 

through the physics, e.g., pseudo-transient continuation
n Transform system to be solved so that neglected curvature 

terms of multivariate Taylor expansion truncated for 
Newton’s method are smaller (nonlinear Schwarz)
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Standard robustness features
l PETSc contains in its nonlinear solver library some standard 

algebraic robustness devices for nonlinear rootfinding from 
Dennis & Schnabel, 1983

l Line search
n Try to ensure that F(u) is strictly monotonically decreasing
n Parameterize reduction of |F(u + ?du)| along Newton step du
n Solve scalar minimization problem for ?

l Trust region
n Define a region about the current iterate within which we trust a 

model of the residual
n Approximately minimize the model of the residual within the region 

(again with low-dimensional parameterization of convex combination 
of descent direction and Newton direction)

n Shrink or expand trust region according to history
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Standard robustness features
l PETSc contains in its nonlinear solver library 

standard algebraic robustness devices for nonlinear 
rootfinding from Eisenstat & Walker (1996)
n EW’96 contains three heuristics for the accuracy with which a 

Newton step should be solved
n relies intrinsically on iterative solution of the Newton 

correction equation
n tolerance for linear residual (“forcing factor”) computed based 

on norms easily obtained as by-products of the rootfinding
computation – little additional expense

n tolerance tightens dynamically as residual norm decreases 
during the computation

n “oversolving” not only wastes execution time, but may be less 
robust, since early Newton directions are not reliable
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Time-implicit Newton-Krylov-Schwarz
For  accommodation of unsteady problems, and nonlinear robustness in 

steady ones, NKS iteration is wrapped in time-stepping:
for (l = 0; l < n_time; l++) {

select time step

for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian

for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently

} // End of loop over subdomains

perform Jacobian-vector product

enforce Krylov basis conditions

update optimal coefficients 

check linear convergence

} // End of linear solver

perform DAXPY update 

check nonlinear convergence

} // End of nonlinear loop

} // End of time-step loop

NKS 
loop

Pseudo-
time 
loop
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Time integrators w/ sensitivity analysis
l Transient multirate problems require stiff 

integrators, a known art, assuming a powerful 
nonlinear solver capability 

l SUNDIALS and PETSc both implement the 
PVODE backward differentiation schemes for 
temporal discretization

l PETSc supplies a variety of distributed data 
structures

l Users who want to use their own data 
structures, or to utilize built-in sensitivity 
estimation may prefer SUNDIALS

l Especially recommended for parameterized 
applications, requiring uncertainty 
quantification

0),,,( =ptxxf &
Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer
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Integrators progress
l PVODE, IDA, and KINSOL (an NK solver) now wrapped 

together in SUNDIALS and augmented with forward and 
adjoint sensitivity analysis capabilities

l Embodies decades of work in variable-order, variable-
timestep method-of-lines and Newton-Krylov solvers at 
LLNL
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Pseudo-transient continuation (Ψtc)
l Solve F(u)=0 through a series of problems 

derived from method of lines model

l is advanced from              to ∞ as               so 
that        approaches the root 

l With initial iterate for       as        , the first 
Newton correction for (*) is

l Note that ||F(u)|| can climb hills during Ψtc
l Can subcycle inside physical timestepping
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Algorithmic tuning - continuation parameters
l “Switched Evolution-Relaxation” (SER) heuristic

l Analysis in SIAM papers by Kelley & Keyes (1999 for 
parabolized, 2002 for mixed elliptic/parabolized)

l Parameters of interest:
n Initial CFL number

n Exponent in the Power Law
u = 1 normally

u > 1 for first-order discretization (1.5)

u < 1 at outset of second-order discretization (0.75) 

n Switch-over ratio between FO and SO
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Application Domain: 
Computational Aerodynamics
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Effect of initial CFL number
ONERA M6 aerodynamics problem on grid of 2.8M vertices

Pseudo-time Iterations
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Ψtc in combustion application

Accommo-
dation to BCs Flame front 

stabilization
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Velocity-vorticity governing equations
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Extension to DAE systems

l Some PDEs act as 
elliptic constraints 
on the others and 
should not be 
parabolized, e.g., 
incompressible 
flow (continuity, 
streamfunction-
vorticity, velocity-
vorticity)

l Fast-converging 
results enforced 
incompressibility; 
slower (fully 
parabolized) did 
not
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Mesh sequencing

• Technique for robustifying nonlinear 
rootfinding for problems based on continuum 
approximation
• Relies on several levels of refinement from 
coarse to fine
• Theory exists showing (for nonlinear elliptic 
problems) that, asymptotically, the root on a 
coarser mesh, appropriately interpolated onto a 
finer mesh, lies in the domain of convergence 
of Newton’s method on the finer grid
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smoother

Finest Grid

First Coarse 
Grid

coarser grid has fewer cells
(less work & storage)

Restriction
transfer from 
fine to coarse 
grid

Recursively apply this 
idea until we have an 
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse 
to fine grid

Multilevel preconditioning
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Mesh sequencing example
l From Knoll & McHugh (SIAM J. Sci. Comput., 1999) summarized in Ref 

[1]
l Execution times for 8-equation 2d BVP steady-state coupled edge 

plasma/Navier-Stokes problem
l Each grid in sequence is solved from a “cold” initial iterate or initialized 

for Newton’s method by the solution on the previous coarse grid
l See Smooke & Mattheij (Appl. Num. Math, 1985) for BVP theory
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Other continuation methods
l There is often a physical “knob,” such as Reynolds number, that 

can be varied to “sneak up” on a hard problem 

l Let the parameter at which the solution is sought be π and let 
the solution at a value π0 be such that F(u, π0 )=0 be “easy”
(e.g., linear) 

l By implicit differentiation of F(u, π )=0 , we get

l By Taylor expansion

l This allows bootstrapping with a series of Newton problems

0=
∂
∂

+
∂
∂

∂
∂

ππ
Fu

u
F

ππ ∂
∂









∂
∂

−=
∂
∂

−
F

u
Fu

1

or

)()( 111 −−− −
∂
∂

+≈ lllll πππ
π
u

uu



DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz preconditioning
l Nonlinear Schwarz has Newton both inside and 

outside and is fundamentally Jacobian-free

l It replaces                with a new nonlinear system 
possessing the same root, 

l Define a correction            to the     partition (e.g., 
subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the components 
of the     partition

l Then sum the corrections: 
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Nonlinear Schwarz, cont.
l It is simple to prove that if the Jacobian of  F(u) is 

nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root

l To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :
n The residual 
n The Jacobian-vector product

l Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
l All required actions are available in terms of            !
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Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re
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Common software infrastructure for 
nonlinear PDE solvers

l User codes to the problem they are 
solving, not the algorithm used to solve 
the problem

l Implementation of various algorithms 
reuse common concepts and code when 
possible, without losing efficiency 

bAx =
Optimizer

Linear 
solver

Eigensolver

Time 
integrator

Nonlinear 
solver

Indicates 
dependence

Sens. Analyzer
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Encompassing …
l Newton’s method

n Direct solvers
n Matrix-based preconditioned solvers
n Matrix-free methods
n Multigrid linear solvers (Newton-MG)

u Matrix-based and matrix-free

l Nonlinear multigrid
n a.k.a. Full approximation scheme (FAS) 
n a.k.a. MG-Newton
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Software engineering ingredients

l Standard solver interfaces

l Solver libraries

l Automatic differentiation (AD)

l Code generation
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Algorithm review

F(u) = 0, Jacobian A(u)
Newton  

Newton – SOR (1 inner sweep)

SOR-Newton (1 inner sweep)
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Cute observation
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⇒ Matrix-free linear relaxation 

(Gauss-Seidel) 

is almost identical to nonlinear relaxation
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Function and Jacobian evaluation

l FAS requires pointwise

l Newton desires global

l Newton-MG desires both
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Automatic Differentiation

l Given code for              can compute

n A(u) and

n A(u)*w efficiently
l Given code for              can compute

n and

n efficiently
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Code generation (in-lining ☺)

• Inside the small dimensional Newton methods is 
a user-provided function and (AD) Jacobian 

• Big performance hit if handled directly with 
components
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Coarse grid correction is not an issue ☺

l Newton-MG

l MG-Newton
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Conclusion

The algorithmic/mathematical building blocks for 
Newton-MG and MG-Newton are essentially the 
same

Thus the software building blocks should be also 
(and they will be in the next release of PETSc).


