
Algorithms for Nonlinear

and Transient Problems

David E. Keyes

Department of Applied Physics & Applied Mathematics

Columbia University

Institute for Scientific Computing Research
Lawrence Livermore National Laboratory

DD15 Tutorial, Berlin, 17-18 July 2003

Recall Newton methods
l Given and iterate

we wish to pick such that

where

l Neglecting higher-order terms, we get

where is the Jacobian matrix,
generally large, sparse, and ill-conditioned for PDEs

l In practice, require

l In practice, set where is
selected to minimize

nnFuF ℜ→ℜ= :,0)(0u
1+ku

0)()()('1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+

DD15 Tutorial, Berlin, 17-18 July 2003

Newton’s method: pros and cons
l Locally quadratically convergent (if Jacobian is

nonsingular at the solution)
n number of significant digits doubles asymptotically at each

step
n not globally convergent from arbitrary initial iterate

l Requires Jacobian evaluation at each iteration
n may be nontrivial for user to supply derivatives
n may require large fraction of code size and execution time
n if exact derivative information is sacrificed, so if quadratic

convergence

l Requires solution of linear system with Jacobian at
each iteration
n bottleneck when ill-conditioned

DD15 Tutorial, Berlin, 17-18 July 2003

Recall Krylov methods
l Given and iterate , we

wish to generate a basis for x
() and a set of coefficients
such that is a best fit in the sense that
minimizes

l Krylov methods define a complementary basis

so that
may be solved for y

l In practice k << n and the bases are grown from seed
vector via recursive multiplication
by and Gram-Schmidt

l Does not require inverse of A

nnAbAx ×ℜ∈= , 0x
{ } kn

kvvvV ×ℜ∈= ,...,, 21

kx
{ }kyyy ,...,, 21

ky ℜ∈
|||| bAVy −

{ } kn
kwwwW ×ℜ∈= ,...,, 21 0)(=− bAVyW T

bAxr −= 00

Vyx ≈

A

DD15 Tutorial, Berlin, 17-18 July 2003

Recall Schwarz preconditioning
l Given A x = b , partition x into

subvectors, corresp. to subdomains of
the domain of the PDE, nonempty,
possibly overlapping, whose union is all
of the elements of nx ℜ∈

iR

thi

thi

xRx ii =
T
iii ARRA =

ii
T
ii RARB 11 −− ∑=

Ω
iΩ

x

l Let Boolean rectangular
matrix extract the
subset of :

l Let The Boolean matrices are gather/scatter
operators, mapping between a global
vector and its subdomain support

DD15 Tutorial, Berlin, 17-18 July 2003

Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Popularized in parallel Jacobian-free form under this name by
Cai, Gropp, Keyes & Tidriri (1994)

DD15 Tutorial, Berlin, 17-18 July 2003

Jacobian-Free Newton-Krylov Method
l In the Jacobian-Free Newton-Krylov (JFNK)

method, a Krylov method solves the linear Newton
correction equation, requiring Jacobian-vector
products

l These are approximated by the Fréchet derivatives

so that the actual Jacobian elements are never
explicitly needed, where ε is chosen with a fine
balance between approximation and floating point
rounding error

n Schwarz preconditions, using approximate elements

)]()([
1

)(uFvuFvuJ −+≈ ε
ε

DD15 Tutorial, Berlin, 17-18 July 2003

PETSc codeUser
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

User Code/PETSc Library Interactions

DD15 Tutorial, Berlin, 17-18 July 2003

PETSc codeUser
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

User Code/PETSc Library Interactions

To be AD code

DD15 Tutorial, Berlin, 17-18 July 2003

Philosophy of Jacobian-free NK
l To evaluate the linear residual, we use the true F’(u) , giving a

true Newton step and asymptotic quadratic Newton convergence

l To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics in
the system and respects the limitations of the parallel computer
architecture and the cost of various operations:
n combinations of operator-split Jacobians (for reasons of physics or

reasons of numerics)

n Jacobian of related discretization (for “fast” solves)
n Jacobian of lower-order discretization (for more stability, less storage)

n Jacobian with “lagged” values for expensive terms (for less
computation per degree of freedom)

n Jacobian stored in lower precision (for less memory traffic per
preconditioning step)

n Jacobian blocks decomposed for parallelism

DD15 Tutorial, Berlin, 17-18 July 2003

Philosophy of Jacobian-free NK, cont.
l These motivations are not new; most large-scale application

codes also take “short cuts” on the approximate Jacobian
operator to be inverted – showing physical intuition

l The problem with many codes is that they do not anywhere have
an accurate global Jacobian operator; they use only the weak
Jacobian

l This leads to a weakly nonlinearly converging “defect correction
method”
n Defect correction:

n in contrast to preconditioned Newton:

)()(11 kkk uFBuuJB −− −=δ

)(kk uFuB −=δ

DD15 Tutorial, Berlin, 17-18 July 2003

Jacobian-free NKS
l In the Jacobian-free Newton-Krylov

(JFNK) framework, any standard
nonlinear solver, which maps a
residual into a correction, can be
regarded as a preconditioner

l The true Jacobian is never formed
yet the time-implicit nonlinear
residual at each time step can be
made as small as needed for
nonlinear consistency in long time
integrations

DD15 Tutorial, Berlin, 17-18 July 2003

Using Jacobian of lower order discretization
l Orszag popularized the use of linear finite element

discretizations as preconditioners for high-order spectral
element discretizations in the 1970s; both approach the
same continuous operator

l It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for
higher-order operators:
n better factorization stability

n smaller matrix bandwidth and complexity

l With Jacobian-free NK, we can have the best of both
worlds – a stable factorization/cheap solve and a true
Jacobian step

DD15 Tutorial, Berlin, 17-18 July 2003

Using Jacobian with lagged terms
l Newton-chord methods (e.g., papers by Smooke et al.) “freeze”

the Jacobian matrices:
n saves Jacobian evaluation and factorization, which can be up to 90%

of the running time of the code in some apps
n however, nonlinear convergence degrades to linear rate

l In Jacobian-free NK, we can “freeze” some or all of the terms in
the Jacobian preconditioner, while always accessing the action of
the true Jacobian for the Krylov matrix-vector multiply:
n still saves Jacobian work
n maintains asymptotically quadratic rate for nonlinear convergence

l See (Knoll-Keyes ’03) for example with coupled edge plasma and
Navier-Stokes, showing five-fold improvement over full Newton
with constantly refreshed Jacobian on LHS, versus JFNK with
preconditioner refreshed once each ten timesteps

DD15 Tutorial, Berlin, 17-18 July 2003

Using Jacobian with lower precision elements
l Memory bandwidth is the critical architectural

parameter for sparse linear algebra computations

l Storing the preconditioner elements in single precision
effectively doubles memory bandwidth (and potentially
halves runtime) for this critical phase

l We still form the Jacobian-vector product with full
precision and “zero-pad” the preconditioner elements
back to full length in the arithmetic unit, so the
numerical quality of the Krylov subspace does not
degrade

DD15 Tutorial, Berlin, 17-18 July 2003

Memory BW bottleneck revealed
via precision reduction

106s122s16s31s120

181s205s34s60s64

331s373s67s117s32

657s746s136s223s16

SingleDoubleSingleDouble

OverallLinear Solve

Computational Phase
Number of

Processors

Execution times for unstructured NKS Euler Simulation on Origin 2000:
double precision matrices versus single precision preconditioner

Note that times are nearly halved, along with precision, for the BW-limited linear solve
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!

DD15 Tutorial, Berlin, 17-18 July 2003

l Aztec: efficient parallel linear solvers
n Krylov methods + preconditioners
n variable overlap Schwarz
n subdomain “solvers”: ILU, MILU, ILUT, BILU, LU,

Krylov, …
www.cs.sandia.gov/CRF/aztec1.html

l ML: parallel multigrid linear solvers
n Algebraic : classical, smoothed aggregation, H-curl
n Geometric: FE basis domain decomp., grid refinement
www.cs.sandia.gov/~tuminaro/ML_Description.html

l MPSalsa: parallel transport / reaction system simulator
n GLS FE formulation; variable density fluid flow, heat

and mass transfer with non-equilibrium chemical
reactions

n Fully-coupled Newton/Krylov iterative solution methods
n CVD, catalytic reactors, combustion, chemical detectors
www.cs.sandia.gov/CRF/MPSalsaCVD of GaAs in 3D horizontal

rotating disk reactor

NKS for transport modeling

DD15 Tutorial, Berlin, 17-18 July 2003

1 proc

Algorithmic scaling of 1- and 2-level DD
preconditioners

Newton-Krylov solver with Aztec non-restarted GMRES with 1 – level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = Superlu (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D

N.45

N.24

N0

2 – Level DD
Exact Coarse
Solve

2 – Level DD
Approx. Coarse
Solve

1 – Level
DD3D Results

512 procs

Total Unknowns

A
vg

. I
te

ra
tio

ns
 p

er
 N

ew
to

n
S

te
p

Thermal Convection
Problem (Ra = 1000)

c/o J. Shadid and R. Tuminaro

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Robustness
l Problem:

n Attempts to handle nonlinear problems with nonlinear implicit
methods often encounter stagnation failure of Newton away
from the neighborhood of the desired root

l Algebraic solutions:
n Linesearch and trust-region methods
n “Forcing terms”

l Physics-based solutions:
n Mesh sequencing
n Continuation (homotopy) methods for directly addressing this

through the physics, e.g., pseudo-transient continuation
n Transform system to be solved so that neglected curvature

terms of multivariate Taylor expansion truncated for
Newton’s method are smaller (nonlinear Schwarz)

DD15 Tutorial, Berlin, 17-18 July 2003

Standard robustness features
l PETSc contains in its nonlinear solver library some standard

algebraic robustness devices for nonlinear rootfinding from
Dennis & Schnabel, 1983

l Line search
n Try to ensure that F(u) is strictly monotonically decreasing
n Parameterize reduction of |F(u + ?du)| along Newton step du
n Solve scalar minimization problem for ?

l Trust region
n Define a region about the current iterate within which we trust a

model of the residual
n Approximately minimize the model of the residual within the region

(again with low-dimensional parameterization of convex combination
of descent direction and Newton direction)

n Shrink or expand trust region according to history

DD15 Tutorial, Berlin, 17-18 July 2003

Standard robustness features
l PETSc contains in its nonlinear solver library

standard algebraic robustness devices for nonlinear
rootfinding from Eisenstat & Walker (1996)
n EW’96 contains three heuristics for the accuracy with which a

Newton step should be solved
n relies intrinsically on iterative solution of the Newton

correction equation
n tolerance for linear residual (“forcing factor”) computed based

on norms easily obtained as by-products of the rootfinding
computation – little additional expense

n tolerance tightens dynamically as residual norm decreases
during the computation

n “oversolving” not only wastes execution time, but may be less
robust, since early Newton directions are not reliable

DD15 Tutorial, Berlin, 17-18 July 2003

Time-implicit Newton-Krylov-Schwarz
For accommodation of unsteady problems, and nonlinear robustness in

steady ones, NKS iteration is wrapped in time-stepping:
for (l = 0; l < n_time; l++) {

select time step

for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian

for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {

solve subdomain problems concurrently

} // End of loop over subdomains

perform Jacobian-vector product

enforce Krylov basis conditions

update optimal coefficients

check linear convergence

} // End of linear solver

perform DAXPY update

check nonlinear convergence

} // End of nonlinear loop

} // End of time-step loop

NKS
loop

Pseudo-
time
loop

DD15 Tutorial, Berlin, 17-18 July 2003

Time integrators w/ sensitivity analysis
l Transient multirate problems require stiff

integrators, a known art, assuming a powerful
nonlinear solver capability

l SUNDIALS and PETSc both implement the
PVODE backward differentiation schemes for
temporal discretization

l PETSc supplies a variety of distributed data
structures

l Users who want to use their own data
structures, or to utilize built-in sensitivity
estimation may prefer SUNDIALS

l Especially recommended for parameterized
applications, requiring uncertainty
quantification

0),,,(=ptxxf &
Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

DD15 Tutorial, Berlin, 17-18 July 2003

Integrators progress
l PVODE, IDA, and KINSOL (an NK solver) now wrapped

together in SUNDIALS and augmented with forward and
adjoint sensitivity analysis capabilities

l Embodies decades of work in variable-order, variable-
timestep method-of-lines and Newton-Krylov solvers at
LLNL

DASPK

GEAR

IDADASSL

PVODE
CVODE

KINSOL

SensPVODE

ODEPACK

NKSOL

VODE VODPK
CVODE
CVODES

KINSOLS
KINSOL

IDA
IDAS

SensKINSOL

SensIDA

FORTRAN ANSI C

SU
N

D
IA

L
S

1974 1982 1988 1990 1994 1998 2000 today

DD15 Tutorial, Berlin, 17-18 July 2003

Pseudo-transient continuation (Ψtc)
l Solve F(u)=0 through a series of problems

derived from method of lines model

l is advanced from to ∞ as so
that approaches the root

l With initial iterate for as , the first
Newton correction for (*) is

l Note that ||F(u)|| can climb hills during Ψtc
l Can subcycle inside physical timestepping

lτ 10 <<τ ∞→l

Lll

l
l ,2,1,0)()(

1

==+
−

=
−

uF
uu

uf
τ

lu
lu 1−lu

(*)

)()](
1

[111'1 −−−− +−= ll
l

ll uFuFIuu
τ

DD15 Tutorial, Berlin, 17-18 July 2003

Algorithmic tuning - continuation parameters
l “Switched Evolution-Relaxation” (SER) heuristic

l Analysis in SIAM papers by Kelley & Keyes (1999 for
parabolized, 2002 for mixed elliptic/parabolized)

l Parameters of interest:
n Initial CFL number

n Exponent in the Power Law
u = 1 normally

u > 1 for first-order discretization (1.5)

u < 1 at outset of second-order discretization (0.75)

n Switch-over ratio between FO and SO

p

u lf

uf
N CFLN l

CFL

−
=

)1(

)0(
0

DD15 Tutorial, Berlin, 17-18 July 2003

Application Domain:
Computational Aerodynamics

DD15 Tutorial, Berlin, 17-18 July 2003

Effect of initial CFL number
ONERA M6 aerodynamics problem on grid of 2.8M vertices

Pseudo-time Iterations

R
es

id
ua

lN
or

m

0 50 100 150
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Initial CFL = 10
Initial CFL = 50

DD15 Tutorial, Berlin, 17-18 July 2003

Ψtc in combustion application

Accommo-
dation to BCs Flame front

stabilization

DD15 Tutorial, Berlin, 17-18 July 2003

Velocity-vorticity governing equations

02 =
∂
∂

−∇−
y

u
ω

02 =
∂
∂

+∇−
x

v
ω

0Gr2 =
∂
∂

−
∂
∂

+
∂
∂

+∇−
x
T

y
v

x
u

ωω
ω

0)(Pr2 =
∂
∂

+
∂
∂

+∇−
y
T

v
x
T

uT

x-velocity

y-velocity

vorticity

internal energy

t∂
∂ ω

t
T

∂
∂

DD15 Tutorial, Berlin, 17-18 July 2003

Extension to DAE systems

l Some PDEs act as
elliptic constraints
on the others and
should not be
parabolized, e.g.,
incompressible
flow (continuity,
streamfunction-
vorticity, velocity-
vorticity)

l Fast-converging
results enforced
incompressibility;
slower (fully
parabolized) did
not

DD15 Tutorial, Berlin, 17-18 July 2003

Mesh sequencing

• Technique for robustifying nonlinear
rootfinding for problems based on continuum
approximation
• Relies on several levels of refinement from
coarse to fine
• Theory exists showing (for nonlinear elliptic
problems) that, asymptotically, the root on a
coarser mesh, appropriately interpolated onto a
finer mesh, lies in the domain of convergence
of Newton’s method on the finer grid

DD15 Tutorial, Berlin, 17-18 July 2003

smoother

Finest Grid

First Coarse
Grid

coarser grid has fewer cells
(less work & storage)

Restriction
transfer from
fine to coarse
grid

Recursively apply this
idea until we have an
easy problem to solve

A Multigrid V-cycle

Prolongation
transfer from coarse
to fine grid

Multilevel preconditioning

DD15 Tutorial, Berlin, 17-18 July 2003

Mesh sequencing example
l From Knoll & McHugh (SIAM J. Sci. Comput., 1999) summarized in Ref

[1]
l Execution times for 8-equation 2d BVP steady-state coupled edge

plasma/Navier-Stokes problem
l Each grid in sequence is solved from a “cold” initial iterate or initialized

for Newton’s method by the solution on the previous coarse grid
l See Smooke & Mattheij (Appl. Num. Math, 1985) for BVP theory

0

2

4

6

8

10

12

14

16

32x16 64x32 128x64

without MS
with MS

DD15 Tutorial, Berlin, 17-18 July 2003

Other continuation methods
l There is often a physical “knob,” such as Reynolds number, that

can be varied to “sneak up” on a hard problem

l Let the parameter at which the solution is sought be π and let
the solution at a value π0 be such that F(u, π0)=0 be “easy”
(e.g., linear)

l By implicit differentiation of F(u, π)=0 , we get

l By Taylor expansion

l This allows bootstrapping with a series of Newton problems

0=
∂
∂

+
∂
∂

∂
∂

ππ
Fu

u
F

ππ ∂
∂

∂
∂

−=
∂
∂

−
F

u
Fu

1

or

)()(111 −−− −
∂
∂

+≈ lllll πππ
π
u

uu

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz preconditioning
l Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free

l It replaces with a new nonlinear system
possessing the same root,

l Define a correction to the partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the components
of the partition

l Then sum the corrections:

0)(=uF
0)(=Φ u
thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

DD15 Tutorial, Berlin, 17-18 July 2003

Nonlinear Schwarz, cont.
l It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

l To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
n The residual
n The Jacobian-vector product

l Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
l All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

DD15 Tutorial, Berlin, 17-18 July 2003

Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

DD15 Tutorial, Berlin, 17-18 July 2003

Common software infrastructure for
nonlinear PDE solvers

l User codes to the problem they are
solving, not the algorithm used to solve
the problem

l Implementation of various algorithms
reuse common concepts and code when
possible, without losing efficiency

bAx =
Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

DD15 Tutorial, Berlin, 17-18 July 2003

Encompassing …
l Newton’s method

n Direct solvers
n Matrix-based preconditioned solvers
n Matrix-free methods
n Multigrid linear solvers (Newton-MG)

u Matrix-based and matrix-free

l Nonlinear multigrid
n a.k.a. Full approximation scheme (FAS)
n a.k.a. MG-Newton

DD15 Tutorial, Berlin, 17-18 July 2003

Software engineering ingredients

l Standard solver interfaces

l Solver libraries

l Automatic differentiation (AD)

l Code generation

DD15 Tutorial, Berlin, 17-18 July 2003

Algorithm review

F(u) = 0, Jacobian A(u)
Newton

Newton – SOR (1 inner sweep)

SOR-Newton (1 inner sweep)

1() ()u u A u F u−← −

1(){ () ()[]}i ji ii i ij j
j i

u u A u F u A u u u−

<

← − − −∑
1() ()ii ii iu u A u F u−← −

DD15 Tutorial, Berlin, 17-18 July 2003

Cute observation

() ()

() () ()[]

ii ii

ji i ij j

A u A u

F u F u A u u u

≈

≈ + −∑

1(){ () ()[]}i ji ii i ij j
j i

u u A u F u A u u u−

<

← − − −∑

1() ()ii ii iu u A u F u−← −
SOR-Newton

With approximations

Gives Newton-SOR

DD15 Tutorial, Berlin, 17-18 July 2003

⇒ Matrix-free linear relaxation

(Gauss-Seidel)

is almost identical to nonlinear relaxation

DD15 Tutorial, Berlin, 17-18 July 2003

Function and Jacobian evaluation

l FAS requires pointwise

l Newton desires global

l Newton-MG desires both

DD15 Tutorial, Berlin, 17-18 July 2003

Automatic Differentiation

l Given code for can compute

n A(u) and

n A(u)*w efficiently
l Given code for can compute

n and

n efficiently

()F u

()iF u
()iiA u

()ij j
j

A u w∑

DD15 Tutorial, Berlin, 17-18 July 2003

Code generation (in-lining ☺)

• Inside the small dimensional Newton methods is
a user-provided function and (AD) Jacobian

• Big performance hit if handled directly with
components

DD15 Tutorial, Berlin, 17-18 July 2003

Coarse grid correction is not an issue ☺

l Newton-MG

l MG-Newton

() ()H H

T
H

A Ru c RF u

u u R c

=

← −

)

() () () 0H H HF Ru c F Ru RF u+ − + =
))

DD15 Tutorial, Berlin, 17-18 July 2003

Conclusion

The algorithmic/mathematical building blocks for
Newton-MG and MG-Newton are essentially the
same

Thus the software building blocks should be also
(and they will be in the next release of PETSc).

