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3 Using Automatic
Di�erentiation for Second-Order
Matrix-free Methods in
PDE-constrained Optimization

David E. Keyes, Paul D. Hovland,
Lois C. McInnes and Widodo Samyono

ABSTRACT Classical methods of constrained optimization are often based
on the assumptions that projection onto the constraint manifold is routine,
but accessing second-derivative information is not. Both assumptions need
revision for the application of optimization to systems constrained by par-
tial di�erential equations, in the contemporary limit of millions of state
variables and in the parallel setting. Large-scale PDE solvers are complex
pieces of software that exploit detailed knowledge of architecture and appli-
cation and cannot easily be modi�ed to �t the interface requirements of a
black box optimizer. Furthermore, in view of the expense of PDE analyses,
optimization methods not using second derivatives may require too many
iterations to be practical. For general problems, automatic di�erentiation
is likely to be the most convenient means of exploiting second derivatives.
We delineate a role for automatic di�erentiation in matrix-free optimiza-
tion formulations involving Newton's method, in which little more storage
is required than that for the analysis code alone.

3.1 Introduction

Years of two-sided (from architecture up, from applications down) algo-
rithms research has made it possible to solve partial di�erential equation
(PDE) problems implicitly with reasonable scalability. PDEs are equality
constraints on the state variables in many optimization problems. Hardly
auxiliary, the PDE system may contain millions of degrees of freedom.
In problems of shape optimization and control, the number of optimiza-
tion parameters is typically much smaller than the number of state vari-
ables. In problems of parameter identi�cation, the number of parameters
to be optimized may be comparable to the number of state variables, but
few general-purpose optimization frameworks have been demonstrated at
the scale required for three-dimensional problems. We therefore propose
that large-scale PDE-constrained optimization codes usually should be con-
structed around the data structures and functional capabilities of the PDE
solver.
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Optimization is easily incorporated through the Lagrange saddle-point
formulation into a Newton-like parallel PDE framework that accommodates
substructuring. Newton's method is a common element in the most rapidly
convergent solvers and optimizers. Furthermore, a PDE solver that is not
part of an optimization framework is probably short of what the client
really wants. Hence, for both algorithmic and teleological reasons, analysis
and optimization belong together.
We focus in �3.2 on the Newton-Krylov-Schwarz (NKS) family of parallel

implicit root �nders, and we give an example of pseudo-transient global-
ization of NKS (	NKS) in a large-scale parallel context, aerodynamics.
The �rst-order optimality conditions of equality-constrained optimization
using the Lagrangian are presented in �3.3, which introduces a parallel
optimization framework called LNKS (Lagrange-Newton-Krylov-Schur or
Lagrange-Newton-Krylov-Schwarz). In �3.4 we sketch a prototype param-
eter identi�cation example from the �eld of radiation transport. The com-
plexity of LNKS when automatic di�erentiation (AD) is employed in the
Krylov matrix-vector operation is discussed in �3.5. Finally, in �3.6 we
summarize our work and indicate some future directions.

3.2 Newton-Krylov-Schwarz

In this section, we describe the NKS framework from the inside outward,
then illustrate it in a large-scale parallel context.

3.2.1 Schwarz

Schwarz [10, 13, 21] methods are solvers or preconditioners that create
concurrency at a desired granularity algorithmically and explicitly through
partitioning, without the necessity of any code dependence analysis or spe-
cial compiler. Generically, in continuous or discrete settings, Schwarz parti-
tions a solution space into n subspaces, possibly overlapping, whose union
is the original space, and forms an approximate inverse of the operator in
each subspace. Algebraically, to solve the discrete linear system, Ax = f ,
let Boolean rectangular matrix Ri extract the i

th subset of the elements
of x: xi = Rix, and let Ai = RiAR

T
i . Then the Schwarz approximate

inverse, B�1, is de�ned as
P

i R
T
i A

�1
i Ri. From the PDE perspective, sub-

space decomposition is domain decomposition. We form B�1 � A�1 out
of (approximate) local solves on (possibly overlapping) subdomains, as in
Figure 3.1. This can be used to iterate in a stationary way, as a splitting
matrix: xk+1 = (I�B�1A)xk+B�1f . However, since �(I�B�1A) may be
greater than unity in general, this additive splitting may not converge as a
stationary iteration. �Multiplicative� Schwarz methods (Gauss-Seidel-like,
relative to the Jacobi-like �additive� above) can be proved convergent when
A derives from an elliptic PDE, under certain partitionings.
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FIGURE 3.1. Upper: A domain 
 partitioned into nine overlapping subdomains,

i, extended slightly by overlapping to subdomains 
0

i, showing the scales of the
mesh spacing (h), the subdomain overlap (Æ), and the subdomain diameter (H).
Lower: Two adjacent subdomains with common edge � pulled apart to show
overlap regions as separate bu�ers, which are implemented in the local data
structures of each.

In the PDE context, Boolean operators Ri and RT
i , i = 1; : : : ; n, rep-

resent gather and scatter (communication) operations, mapping between
a global vector and its ith subdomain support. When A derives from an
elliptic operator and Ri is the characteristic function of unknowns in a sub-
domain, optimal convergence (independent of dim(x) and the number of
partitions) can be proved, with the addition of a coarse grid, which is de-
noted with subscript �0�: B�1 = RT

0 A
�1
0 R0+

P
i>0R

T
i A

�1
i Ri. Here, R0 is a

conventional geometrically based multilevel interpolation operator. It is an
important freedom in practical implementations that the coarse grid space
need not be related to the �ne grid space or to the subdomain partitioning.
The A�1

i (i > 0) in B�1 are often replaced with inexact solves in practice.
The exact forward matrix-vector action of A in B�1A is still required, even
if inexact solves are employed in the preconditioner.
Condition number estimates for B�1A are given in Table 3.2.2 for gen-

erous overlap Æ = O(H). Otherwise, if Æ � H , the two-level result is
O(1 + H=Æ). The two-level Schwarz method with generous overlap has a
condition number that is independent of the �neness of the discretization
and the granularity of the decomposition, which implies perfect algorith-
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mic scalability. However, there is an increasing implementation overhead
in the coarse-grid solution required in the two-level method that o�sets
this perfect algorithmic scalability. In practice, a one-level method is often
used, since it is amenable to a perfectly scalable implementation. These
condition number results are extensible to nonself-adjointness, mild inde�-
niteness, and inexact subdomain solvers. The theory requires a �su�ciently
�ne� coarse mesh, H , for the �rst two of these extensions, but computa-
tional experience shows that the theory is often pessimistic.

3.2.2 Krylov-Schwarz

Although the spectral radius, �(I � B�1A), may exceed unity, the spec-
trum, �(B�1A), is profoundly clustered, so Krylov acceleration methods
should work well on the preconditioned solution ofB�1Ax = B�1f . Krylov-
Schwarz methods typically converge in a number of iterations that scales as
the square-root of the condition number of the Schwarz-preconditioned sys-
tem. For convergence scalability estimates, assume one subdomain per pro-
cessor in a d-dimensional isotropic problem, where N = h�d and P = H�d.
Then iteration counts may be estimated as in the last two columns of Ta-
ble 3.2.2.

TABLE 3.1. Theoretical condition number estimates �(B�1A), for self-adjoint
positive-de�nite elliptic problems [21] and corresponding iteration count esti-
mates for Krylov-Schwarz based on an idealized isotropic partitioning of the do-
main in two or three dimensions.

Preconditioning �(B�1A) 2D Iter. 3D Iter.

Point Jacobi O(h�2) O(N1=2) O(N1=3)

Domain Jacobi O((hH)�1) O((NP )1=4) O((NP )1=6)

1-level Additive Schwarz O(H�2) O(P 1=2) O(P 1=3)
2-level Additive Schwarz O(1) O(1) O(1)

3.2.3 Newton-Krylov-Schwarz

Let F (x) = 0 be a discrete system of nonlinear equations arising from
an elliptically dominated system of PDEs. Let its Jacobian be denoted
J � @F=@x. Inexact Newton iteration on F (x) = 0, involves selecting
an initial iterate x(0) and iterating for a correction to the current x(k):
x(k+1) = x(k) + �kÆx, where jjJ(x

(k))Æx + F (x(k))jj < �k. A large body of
literature exists on how to choose �k and �k for robustness and e�ciency.
Any of these members of the inexact Newton family of algorithms may
be implemented as a Newton-Krylov-Schwarz method, by iterating for Æx
with a linear Krylov-Schwarz method. Partitioning x induces block struc-
ture on the Jacobian matrix. As anticipated in the presentation of Schwarz
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above, we do not need any Jacobians explicitly; rather, matrix-vector ac-
tion of the Jacobian at point x(k) may be performed with �nite Fréchet
di�erencing (FD) or automatic di�erentiation (AD) about the point, and
preconditioning of the Jacobian is done with approximate local operators,
approximately solved in accordance with overall performance trade-o�s.
Newton-Krylov-Schwarz has been demonstrated to be an e�ective par-

allel implicit solver for large-scale nonlinear problems derived from PDEs
(see, e.g., P. Brown and collaborators at LLNL [7, 8] and D. Knoll and
collaborators at LANL [17, 18]). It has been applied to problems in aero-
dynamics, radiation transport, porous media, semiconductors, geophysics,
astrophysical MHD, population dynamics, and other �elds. It has been
implemented in a parallel matrix-free object-oriented framework, including
both FD and AD distributed matvecs, in PETSc software from Argonne [2].
We advocate using NKS in a split-discretization formulation, in which

economizations are taken in the left-hand side preconditioner blocks of J
relative to the more accurate, physical discretization-dictated right-hand
operator for J . Examples of such economizations include sacri�ced cou-
pling for process concurrency, segregation of physics into successive phases
with simple structure (operator-splitting), the Jacobian of a lower-order
discretization for fewer nonzeros and fewer colors in a minimal coloring,
the Jacobian of a related discretization allowing �fast� solves, a Jacobian
with lagged values for any terms that are expensive to compute or small or
both, and a Jacobian stored in half precision for superior (nearly doubled)
memory bandwidth, as measured in words per second, in the bandwidth-
limited linear algebra routines of a sparse, unstructured PDE solver.

3.2.4 Pseudo-Transient Newton-Krylov-Schwarz

NKS is commonly robusti�ed with pseudo-transience (	NKS) [15, 20] or
other continuation strategies. In 	NKS one solves F (x) = 0 through a
series of modi�ed problems

H`(x) �
x� x`�1

Æt`
+ F (x) = 0; ` = 1; 2; : : : ;

each of which is solved (approximately) for x`. This sequence hugs a phys-
ical transient when Æt` is small, for which the associated diagonally dom-
inant Jacobians are well conditioned. Æt` is advanced from Æt0 � 1 to
Æt` ! 1 as ` ! 1, so that x` approaches the root of F (x) = 0. Un-
like many robusti�cation techniques, 	NKS does not require reduction in
jjF (x)jj at each step; its ability to climb hills in the residual norm is useful
in problems with complex physics, such as combustion, in which a local
minimum (e.g., extinction) may not be the physically desired one.
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3.2.5 Example from computational aerodynamics

To illustrate the e�ectiveness of NKS in practice, we quote below some
performance data for a computational aerodynamics problem, which won a
1999Gordon Bell prize [1]. The Euler equations were solved on a tetrahedral
unstructured grid for the �ow over an ONERA M6 wing.
The �nest-granularity decomposition consisted of 3072 subdomains on a

grid of approximately 2.8M vertices. Each subdomain was computed on a
pair of Intel Pentium Pro processors (6144 processors altogether) on the
ASCI Red machine at Sandia, which executed in shared-memory OpenMP
mode on the evaluation of F (x), while the linear algebra portions of the
computation were left single-threaded on each node. Up to 0.227 T�op/s
were achieved; see [1, 14] for details.
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FIGURE 3.2. Execution time and aggregate �op rate for 	NKS on incompressible
Euler �ow over an ONERA M6 wing, on a tetrahedral grid of 2,761,744 vertices,
based on the KMeTiS-PETSc implementation of the NASA code FUN3D run on
up to 3072 nodes of ASCI Red.

3.3 Implications of NKS for Optimization

Equality constrained optimization leads, through the Lagrangian formu-
lation, to a multivariate nonlinear root�nding problem for the gradient
(the �rst-order necessary conditions), which is amenable to treatment by
Newton's method. To establish notation, consider the following canonical
framework, in which we enforce equality constraints on the state variables
only. (Design variable constraints require additional notation, and inequal-
ity constraints require additional algorithmics, but these generalizations are
well understood.) Choose m design variables u to minimize the objective
function, �(u; x), subject to n state constraints, h(u; x) = 0, where x is the
vector of state variables. In the Lagrange framework, a stationary point of
the Lagrangian function

L(x; u; �) � �(x; u) + �Th(x; u)
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is sought. When Newton's method is applied to the �rst-order optimality
conditions, a linear system known as the Karush-Kuhn-Tucker (KKT) sys-
tem arises at each step. There is a natural �outer� partitioning: the vector
of parameters is often of lower dimension than the vectors of states and
multipliers. This suggests a Schur complement-like block elimination pro-
cess at the outer level, not for concurrency, but for numerical robustness
and conceptual clarity. Within the state-variable subproblem, which must
be solved repeatedly in the Schur complement reduction, Schwarz provides
a natural �inner� partitioning for concurrency.
A major choice to be made in the Newton approach to constrained opti-

mization is between exact elimination of the states and multipliers by satis-
fying constraint feasibility at every step (reduced system), and progress in
all variables simultaneously, possibly violating constraints on intermediate
iterates (full system). An advantage of the former is the existence of high-
quality, robust black box software for this reduced sequential quadratic
programming (RSQP) approach. The advantages of the latter are in reuse
of high-quality parallel PDE software, the freedom to use inexact solves
(since �nely resolved PDE discretizations in 3D militate against exact elim-
ination), and the ease of application of automatic di�erentiation software,
without having to di�erentiate through the nonlinear subiterations that
would be implied by repeated projection to the constraint manifold in
RSQP.
We mention three classes of PDE-constrained optimization:

� Design optimization (especially shape optimization): u parame-
trizes the domain of the PDE (e.g., a lifting surface) and � is a cost-
to-bene�t ratio of forces, energy expenditures, etc. Typically, m is
small compared with n and does not scale directly with it. However,
m may still be hundreds or thousands in industrial applications.

� Optimal control: u parametrizes a continuous control function act-
ing in part of or on the boundary of the domain, and � is the norm
of the di�erence between desired and actual responses of the system.
For boundary control, m / n2=3.

� Parameter identi�cation/data assimilation: u parametrizes an
unknown continuous constitutive or forcing function de�ned through-
out the domain, and � is the norm of the di�erence between measure-
ments and simulation results. Typically, m / n.

Written out in partial detail, the optimality conditions are

@L

@x
�

@�

@x
+ �T

@h

@x
= 0 ; (3.1)

@L

@u
�

@�

@u
+ �T

@h

@u
= 0 ; (3.2)

@L

@�
� h = 0 : (3.3)



40 Keyes, Hovland, McInnes and Samyono

Newton's method iteratively seeks a correction,

0
@

Æx
Æu
Æ�

1
A to the iterate

0
@

x
u
�

1
A :

With subscript notation for the partial derivatives, the Newton correction
(KKT) equations are

2
4

(�;xx + �Th;xx) (�;xu + �Th;xu) hT;x
(�;ux + �Th;ux) (�;uu + �Th;uu) hT;u

h;x h;u 0

3
5
0
@

Æx
Æu
Æ�

1
A = �

0
@

�;x + �Th;x
�;u + �Th;u

h

1
A

or

2
4

Wxx W T
ux JTx

Wux Wuu JTu
Jx Ju 0

3
5
0
@

Æx
Æu
�+

1
A = �

0
@

gx
gu
h

1
A ; (3.4)

where Wab �
@2�
@a@b + �T @2h

@a@b , Ja �
@h
@a , and ga =

@�
@a , for a; b 2 fx; ug, and

where �+ = �+ Æ�.

3.3.1 Newton Reduced SQP

The RSQP method [19] consists of a three-stage iteration. We follow the
language and practice of [4, 5] in this and the next subsection.

� Design Step (Schur complement for middle blockrow):

H Æu = f ;

where H and f are the reduced Hessian and gradient, respectively:

H �Wuu � JTu J
�T
x W T

ux +
�
JTu J

�T
x Wxx �Wux

�
J�1
x Ju

f � �gu + JTu J
�T
x gx �

�
JTu J

�T
x Wxx �Wux

�
J�1
x h

� State Step (last blockrow):

Jx Æx = �h� Ju Æu

� Adjoint Step (�rst blockrow):

JTx �+ = �gx �Wxx Æx�W T
ux Æu

In each overall iteration, we must form and solve with the reduced Hes-
sian matrix H , and we must solve separately with Jx and JTx . The latter
two solves are almost negligible compared with the cost of formingH , which
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is dominated by the cost of forming the sensitivity matrix J�1
x Ju. Because

of the quadratic convergence of Newton, the number of overall iterations
is few (asymptotically independent of m). However, the cost of forming
H at each design iteration is m solutions with Jx. These are potentially
concurrent over independent columns of Ju, but prohibitive.
In order to avoid computing any Hessian blocks, the design step may be

approached in a quasi-Newton (e.g., BFGS) manner [19]. Hessian terms are
dropped from the adjoint step RHS.

� Design Step (severe approximation to middle blockrow):

Q Æu = �gu + JTu J
�T
x gx ;

where Q is a quasi-Newton approximation to the reduced Hessian

� State Step (last blockrow):

Jx Æx = �h� Ju Æu

� Adjoint Step (approximate �rst blockrow):

JTx �+ = �gx

In each overall iteration of quasi-Newton RSQP, we must perform a low-
rank update on Q or its inverse, and we must solve with Jx and JTx . This
strategy vastly reduces the cost of an iteration; however, it is no longer
a Newton method. The number of overall iterations is many. Since BFGS
is equivalent to unpreconditioned CG for quadratic objective functions,
O(mp) sequential cycles (p > 0, p � 1

2 ) may be anticipated. Hence, quasi-
Newton RSQP is not scalable in the number of design variables, and no
ready form of parallelism can address this convergence-related defect.
To summarize, conventional RSQP methods apply a (quasi-)Newton

method to the optimality conditions: solving an approximatem�m system
to update u, updating x and � consistently (to eliminate them), and iterat-
ing. The unpalatable expense arises from the exact linearized analyses for
updates to x and � that appear in the inner loop. We therefore consider
replacing the exact elimination steps of RSQP with preconditioning steps
in an outer loop, as described in the next subsection.

3.3.2 Full Space Lagrange-NKS Method

The new philosophy is to apply a Krylov-Schwarz method directly to the
(2n+m) � (2n +m) KKT system (3.4). For this purpose, we require the
action of the full matrix on the full-space vector and a good full-system
preconditioner, for algorithmic scalability. One Newton SQP iteration is
a perfect preconditioner�a block factored solver, based on forming the
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reduced Hessian of the Lagrangian H�but, of course, far too expensive.
Backing o� wherever storage or computational expense becomes impracti-
cal for large-scale PDEs generates a family of attractive methods.
To precondition the full system, we need approximate inverses to the

three left-hand side matrices in the �rst algorithm of �3.3.1, namely, H , J ,
and JT . If a preconditioner is available for H , and exact solves are available
for J , and JT , then it may be shown [16] that conjugate gradient Krylov
iteration on the (assumed symmetrizable) reduced system and conjugate
gradient iteration on the full system yield the same sequence of iterates.
The iterates are identical in the sense that if one were to use the values of
u arising from the iteration on the reduced system in the right-hand side
of the block rows for x and �, one would reconstruct the iterates of the
full system, when the same preconditioner used for H in the reduced sys-
tem is used for the Wuu block in the full system. Moreover, the spectrum
of the full system is simply the spectrum of the reduced system supple-
mented with a large multiplicity of unit eigenvalues. If one retreats from
exact solves with J and JT , the equivalence no longer holds; however, if
good preconditioners are used for these Jacobian blocks, then the cloud of
eigenvalues around unity is still readily shepherded by a Krylov method,
and convergence should be nearly as rapid as in the case of exact solves.
This Schur-complement-based preconditioning of the full system was

proposed in this equality-constrained optimization context by Biros and
Ghattas in 1998 [4] and earlier in a related context by Batterman and
Heinkenschloss [3]. From a purely algebraic point of view, the same Schur-
complement-based preconditioning was advocated by Keyes and Gropp in
1987 [16] in the context of domain decomposition. There, the reduced sys-
tem was a set of unknowns on the interface between subdomains, and the
savings from the approximate solves on the subdomain interiors more than
paid for the modest degradation in convergence rate relative to interface
iteration on the Schur complement. The main advantage of the full system
problem is that the Schur complement never needs to be formed. Its exact
action is felt on the design variable block through the operations carried
out on the full system.
Biros and Ghattas have demonstrated the large-scale parallel e�ective-

ness of the full system algorithm on a 3D Navier-Stokes �ow boundary
control problem, where the objective is dissipation minimization of �ow
over a cylinder using suction and blowing over the back portion of the
cylinder as the control variables [5]. They performed this optimization with
domain-decomposed parallelism on 128 processors of a T3E, using an orig-
inal optimization toolkit add-on to the PETSc [2] toolkit. To quote one
result from [5], for 6� 105 state constraints and 9� 103 controls, full-space
LNKS with approximate subdomain solves beat quasi-Newton RSQP by
an order of magnitude (4.1 hours versus 53.1 hours).
Two names have evolved for the new algorithm: Lagrange-Newton-Krylov-

Schwarz was proposed by Keyes in May 1999 at the SIAM Conference on
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Optimization, and Lagrange-Newton-Krylov-Schur by Biros and Ghattas
in [5]. The former emphasizes the use of NKS to precondition the large
Jacobian blocks, the latter the use of Schur complements to precondition
the overall KKT matrix. Both preconditioner su�xes are appropriate in
a nested fashion, so we propose Lagrange-Newton-Krylov-Schur-Schwarz
(LNKSS) when both preconditioners are used (see Figure 3.3).

Lagrange
optimizer

Newton
nonlinear solver

Krylov
accelerator

Schur
subspace precond.

Schwarz
subdomain precond.

FIGURE 3.3. LNKSS: A Parallel Optimizer for BVP-constrained Problems

Automatic di�erentiation has two roles in the new algorithm: formation
of the action on a Krylov vector of the full KKT matrix, including the full
second-order Hessian blocks, and supply of approximations to the elements
of J (and JT ) for the preconditioner. While the synergism of AD with
LNKSS is in many ways obvious, advocacy of this novel combination is the
primary thrust of this chapter.

3.4 Example of LNKS Parameter Identi�cation

The e�ectiveness of Schwarz preconditioning is illustrated in the analysis
context in �3.2.5. In this section, we illustrate Schur preconditioning and
automatic di�erentiation in the parameter identi�cation context. Schwarz
and Schur techniques will be combined in a large-scale example from multi-
dimensional radiation transport in the future. The governing constraint for
our one-dimensional problem is the steady state version of the following
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radiation di�usion equation for material temperature:

@T

@t
= r � (�(x)T� rT ): (3.5)

Instead of solving the impulsive Marshak wave formulation of this prob-
lem, we ignore the time derivative and impose Dirichlet boundary con-
ditions of 1.0 and 0.1, respectively, on T (x) at the left- and right-hand
endpoints of the unit interval. The resulting ODE boundary value prob-
lem is discretized with centered �nite di�erences. The state variables are
the discrete temperatures at the mesh nodes, and the design variables are
the parameters � and �(x). The cost function is temperature matching,
�(u; T ) = 1

2 jjT (x) �
�T (x)jj2, where �T is based on a given �, �(x) pro-

�le. These parameters are speci�ed for the computation of �T (x), and then
�withheld,� to be determined by the optimizer. More generally, �T (x) would
be a desired or experimentally measured pro�le, and the phenomenolog-
ical law and material speci�cation represented by � and �(x) would be
determined to �t. The Brisk-Spitzer form of the nonlinear dependence of
the di�usivity on the temperature is � = 2:5. For �T we assume a jump in
material properties at the midpoint of the interval: �(x) = 1; 0 � x � 1

2
and �(x) = 10; 12 < x � 1.
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FIGURE 3.4. Left: Four convergence histories for (�; �right) merged into one
plot. Right: KKT norm convergence history for the parameter identi�cation
problem with initial iterate based on � = 0:5, �right = 1:5.

Our initial implementation of LNKS is in the software framework of
MATLAB [22] and ADMAT [12]. ADMAT is an automatic di�erentiation
framework for MATLAB, based on operator overloading. After an m-�le is
supplied for the cost function and constraint functions, all gradients, Jaco-
bians, and Hessians (as well as their transposes and their contracted action
on vectors) used anywhere in the LNKS algorithm are computed automat-
ically without further user e�ort. There is one exception in the current
code: our almost trivial cost function (with no parametric dependence and
separable quadratic state dependence) is di�erentiated by hand, yielding
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FIGURE 3.5. Initial and �nal temperature distributions for the radiation di�usion
example with a starting point in each quadrant relative to the pro�le-matching
parameters for (�; �right) = (2:5; 10): upper left (0:5; 1:5), upper right (0:5; 12),
lower left (2:8; 8), lower right (2:9; 15).

an identity matrix for �xx. Our preconditioner is the RSQP block factor-
ization, except that the reduced Hessian preconditioner is replaced with
the identity. The reduced Hessian preconditioner block should be replaced
with a quasi-Newton reduced Hessian in the future. In the present simple
experiments, Newton's method is used without robusti�cation of any kind.
Figure 3.4 shows how the optimizer eventually �nds the values of 2.5 for
� and 10 for �right � �(x) in the interval 1

2 � x < 1, from four di�erent
starting points of (0:5; 1:5); (0:5; 12); (2:8; 8) and (2:9; 15). A sample con-
vergence history for the norm of the residual of (3.1)�(3.3) shows quadratic
behavior.
Shown in Figure 3.5 are initial and �nal distributions of T (x) for � and

�right displaced as in Figure 3.4 in all directions away from the �true� values
of (2:5; 10). The graphs show the �true� temperature pro�le to be matched
at the �nal converged values of (�; �right) (the curve common to all four
plots) and the equilibrium temperature pro�le at the initial values of the pa-
rameters. Within each half-interval, the temperature gradient is sharper on
the right (smaller values of T (x)), since the heat �ux across every station is
the same and the temperature-dependent di�usion coe�cient factor inside
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the divergence operator of (3.5) is smaller in zones of smaller temperature.
In regions with a larger �-factor, the overall average temperature drop is
smaller by the same reasoning. Small � suppresses the nonlinear depen-
dence of the di�usivity on temperature, so the initial temperature pro�les
are nearly linear within each constant-� region in the �rst two plots. Only
in the �rst case is the approach to the true (�; �right) monotonic, but plain
Newton is robust enough to converge from all quadrants.

3.5 Complexity of AD-based LNKS

Although our demonstration example is low dimensional, LNKS will gen-
erally be applied to large problems of n state variables and m parameters.
Upon surveying existing AD tools, we conclude that the preconditioned
matrix-vector product can be formed in time linear in these two param-
eters. The shopping list of matrix actions in forming the preconditioned
Jacobian-vector product of LNKS is Wxx;Wuu;Wux, W

T
ux, Ju, J

T
u , J

�1
x ,

J�T
x , and H�1.
The �rst six are needed in the full-system matrix-vector multiplication.

For this multiplication we require �working accuracy� comparable to the
state of the art in numerical di�erentiation.
Accurate action of the last three is required in RSQP but not in the full

system preconditioner. We recommend approximate factorizations of lower-
quality approximations, including possibly just Wuu for H , or a traditional
quasi-Newton rank-updated approximation to the inverse.
We estimate the complexity of applying each block of the KKT Jacobian,

assuming only that h(x; u) is available in subroutine call form and that all
di�erentiated blocks are from AD tools, such as the ADIC [6] tool we are
using in a parallel implementation of LNKSS. We assume that Jx is needed,
element by element, in order to factor it; hence, JTx is also available. Since
these are just preconditioner blocks, we generally derive these elements
from a di�erent (cheaper) function call for the gradient of the Lagrangian
than that used for the matvec. De�ne Ch, the cost of evaluating h; px, 1 +
the chromatic number of Jx � h;x; and pu, 1 + the chromatic number of
Ju � h;u. Then the costs of the Jacobian objects are shown in the �rst
three rows of Table 3.5.
For the Hessian arithmetic complexity, we estimate the cost of apply-

ing each forward block to a vector. Assume that h(x; u) and �(x; u) are
available and that all di�erentiated blocks are results of AD tools. De�ne
C�, the cost of evaluating �; q, 1 + number of nonzero rows in �00; and r,
an implementation-dependent �constant,� typically ranging from 3 to 100.
Then the cost of the Hessian-vector products can be estimated from the
last two rows of Table 2.
For the inverse blocks, we need only low-quality approximations or limited-

memory updates [9] of the square systems J�1
x , J�T

x , and H�1.
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TABLE 3.2. Complexity of formation of matrix objects or matrix-vector actions
using forward or hybrid modes of modern automatic di�erentiation software. The
asterisk signi�es that the reverse mode consumes memory, in a carefully drawn
time-space trade-o�, so r is implementation-dependent.

Object Cost: Forward Mode Cost: Fastest (Hybrid) Mode

Jx; J
T
x pxCh pxCh

Juv 2Ch 2Ch

JTu v puCh rCh
�

Wxxv;W
T
uxv pxCh + qC� r(Ch + C�)

�

Wuuv;Wuxv puCh + qC� r(Ch + C�)
�

The complexities for all operations required to apply the full-system
matrix-vector product and its preconditioner are at worst linear in n or m,
with coe�cients that depend upon chromatic numbers (a�ected by stencil
connectivity and intercomponent coupling of the PDE, and by separability
structure of the objective function) and the implementation e�ciency of
AD tools.

3.6 Summary and Future Plans

As in domain decomposition algorithms for PDE analysis, partitioning in
PDE-equality constrained optimization may be used to improve some com-
bination of robustness, conditioning, and concurrency. Orders of magnitude
of savings may be available by converging the state variables and the design
variables within the same outer iterative process, rather than a conventional
SQP process that exactly satis�es the auxiliary state constraints.
As with any Newton method, globalization strategies are important.

These include parameter continuation (physical and algorithmic), mesh
sequencing and multilevel iteration (for the PDE subsystem, at least; prob-
ably for controls, too), discretization order progression, and model �delity
progression. The KKT system appears to be a preconditioning challenge,
but an exact factored preconditioner is known, and departures of precondi-
tioned eigenvalues from unity can be quanti�ed with comparisons of origi-
nal blocks with blockwise substitutions in inexact models and solves. (For
the full system, the preconditioned KKT matrix will be nonnormal, so its
spectrum does not tell all.)
With the extra, but automatable, work of forming Jacobian transposes

and Hessian blocks, but no extra work in Jacobian preconditioning, any
parallel analysis code may be converted into a parallel optimization code�
and automatic di�erentiation tools will shortly make this relatively painless.
The gamut of PDE solvers based on partitioning should be mined for ap-

plication to the KKT necessary conditions of constrained optimization and
for direct use in inverting the state Jacobian blocks inside the optimizer.
We expect shortly to migrate our ADMAT/MATLAB code into the
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parallel ADIC/PETSc framework, while increasing physical dimensional-
ity and parameter dimensionality. We will also tune the numerous pre-
conditioning parameters for optimal parallel execution time. In the multi-
dimensional large-scale context, we will incorporate multilevel Schwarz lin-
ear preconditioning for the spatial Jacobian. Following the recent invention
of the additive Schwarz preconditioned inexact Newton (ASPIN) [11], we
will also experiment with full nonlinear preconditioning of the KKT system.
This could include individual discipline optimizations as nonlinear precon-
ditioner stages in a multidisciplinary computational optimization process�
a key engineering (and software engineering) challenge of the coming years.
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