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Abstract.
Scientific programmers are accustomed to expressing in their programs

the “who” (variable declarations) and the “what” (operations), in some se-
quentialized order, and leaving to the systems software and hardware the
questions of “when” and “where”. This act of delegation is appropriate
at the small scales, since programmer management of pipelines, multiple
functional units, and multilevel caches is presently beyond reward, and the
depth and complexity of such performance-motivated architectural devel-
opments are sure to increase. However, disregard for the differential costs
of accessing different locations in memory (the “flat memory” model) can
put unnecessary amounts of synchronization and data motion on the criti-
cal path of program execution. Different organization of algorithms leading
to mathematically equivalent results can have very different levels of ex-
posed synchronization and data motion, and algorithmicists of the future
will have to be conscious of and adapt to the distributed and hierarchical
aspects of memory architecture.

Plenty of examples of architecturally motivated algorithmic adaptations
can be given today; we illustrate herein with examples from recent aero-
dynamics simulations. For this purpose, pseudo-transient Newton-Krylov-
Schwarz methods are briefly introduced and their parallel scalability in bulk
synchronous SPMD applications is explored. We also indicate some funda-
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mental limitations of bulk synchronous implicit solvers and propose asyn-
chronous forms of nonlinear Schwarz methods as perhaps better adapted
both to massively parallel architectures and strongly nonuniform applica-
tions. Suitably adapted PDE solvers seem to be readily extrapolated to
the 100 Tflop/s capabilities envisioned in the coming decade. Making use
of some novel quantitative metrics for the memory access efficiencies of
high performance applications (“memtropy”) and for the local strength of
nonlinearity (“tensoricity”) in applications with spatially nonuniform char-
acteristics, we propose a migration path for scientific and engineering sim-
ulations towards the distributed and hierarchical Teraflops world, and we
consider what simulations in this world will look like.

1. Introduction

By way of introduction, we sketch two fictional on-the-job scenarios that
exemplify our vision of highly parallel, adaptive, immersive computations
in the aerosciences of the very early 21st century.

1.1. AIRPLANE INDUSTRY SCENARIO

Hector returns from lunch, checks the parallel batch queue, and notices that
the first twelve of the twenty 32-processor jobs he launched on his way out
are complete, and five more are in various stages of execution.

“Lotta nodes free today. . . ,” he hums to himself as he dons the goggles,
steps into the CAVE and summons the first set of on-wing pressure coef-
ficient contours. He cycles repeatedly through the dozen images, slowly at
first, as they are rendered from disk files and as he checks general features,
then faster, as they are cached from main memory of the display engine.
Tracking just the foot of the main shock between successive frames, and
observing it to advance towards the leading edge as the leading edge thick-
ness parameter increases, he recalls that the thickest wings were towards
the end of the batch queue, he snoops on the partially converged latest case.
The image materializes in patches at random intervals, which reminds him
of the new asynchronous nonlinear Schwarz algorithm to which he recently
upgraded the parallel solver. Visualization is a snooping thread of tertiary
priority, active only during cycles when the Schwarz solver and the local Ja-
cobian refresh threads are stalled on memory operands, or when the entire
global analysis occasionally synchronizes to compute a norm for convergence
checking.

“That asynch Schwarz saves me more than an order of magnitude by
skipping most of the farfield updates until after the shock position con-
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verges,” he reflects. “Of course, that’s on top of the factor of near 25 in
memory I get over most of the farfield by abandoning primitive variables
outside of the wake region and replacing those 5×5 primitive variable Jaco-
bian blocks with scalar elements of the full potential equation.” Just thinking
about all the memory he used to waste in every Euler run back when mem-
ory was the main cost of outfitting a supercomputer embarrasses him. “Of
course, memory isn’t such a limiting cost anymore, now that we have so
enhanced data locality that we can even cover the latency of private disks
in out-of-core Schwarz solvers.”

Still, he knows that the senior members of the wing design team don’t
trust the multi-model Euler/full potential pressure data, so he squeezes a
pre-scripted button in the wand, rotates the wing for a view from the out-
board end in towards the fuselage, peers spanwise, and superposes the phys-
ical three-dimensional shock surface onto an image of the thick fringe of
gridpoints that indicates the adaptively chosen transition zone between the
Euler model used in shocks and wakes — capable of describing entropy
generation and rotation — and the full potential model used in isentropic
regions.

“Shock safely contained inside the Euler region,” he nods, calling for the
same superposition from another thick wing case, which he notices has just
finished. “Actually, I trust these Euler-FP runs more than the full Euler
runs,” he thinks. “Too much spurious entropy generation from the Euler
discretization where there shouldn’t be any! Then it convects downstream
where it’s hard to isolate from local effects by the time it reaches the rudder.”

With the requisite data already in the bag for his afternoon design meet-
ing, he retreats to his desktop to steal an hour for research. He stores the
memory reference and execution time traces from a run based his latest
meshpoint ordering to the data base of the memtropy optimizer, and restarts
the optimizer to generate a new ordering with improved memory reference
locality. He then writes a script to display 3D isosurfaces of the latest form
of his tensoricity metric. Tensoricity, a localized measure of Fréchet deriva-
tive of the Jacobian elements, helps the nonlinear Schwarz adaptively apply
effort where the computation is highly nonlinear, where the Newton tan-
gent hyperplanes are constantly shifting. Checking his watch, he pings a
cross-country colleague, pops open the remote collaboration tool, frames a
midspan cross section, and highlights a crescent of cells near the shock for
discussion . . .

1.2. AUTOMOBILE INDUSTRY SCENARIO

Helene sits in front of the windtunnel’s glass window, slowly steering a wheel
that rotates the instrumented automobile model plus or minus 15 degrees
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with respect to the oncoming 50 mph wind while listening to headphones,
which are connected to microphones at the ear locations of a dummy driver.
Simultaneously, she studies the Fourier signature of the broadband noise,
as it is projected on the heads-up see-through display panel. Occasionally,
she footpedals the smoke tracer to reveal the position of the vortex rolling
up along the driver-side window aft of the passenger compartment A-pillar.
Standing behind her is an engineering collaborator, similarly equipped with
headphones and similarly visually transfixed. Using smoke traces, she settles
on a particularly interesting yaw angle and dispatches the coordinates to an
offsite parallel engine.

“Stand by for the simulation,” she calls out, and hits a control sequence
on the keyboard. Several seconds later a sentinel silence occurs, then a split
second of numerically synthesized sound. A corresponding spectrum, much
“whiter” than that of the experiment, appears and is captured on the display.
Groans follow. “Okay, we knew we might want to increase the coefficient
on the dissipation rate term in the turbulence model,” says the engineer, at
the beginning of a week of dedicated windtunnel timeslots. He remembers
the days when a single Navier-Stokes run over such a bluff body could not
be done in a week.

Helene, meanwhile, projects the computational grid on the heads-up
panel, aligns it to the physical geometry with size and position verniers,
and triggers another smoke trace. “It looks like the grid adaptation routine
is completely missing the main reattachment zone,” she says. “Let’s adjust
the surface stress refinement indicator before we monkey with the turbu-
lence model.” Within the first two hours of tunnel time, the investigators
explore many hypotheses, many adaptations of the grid and tunings of the
turbulence model, then retreat to a conference room, where other engineers
gather. Helene presents a short lecture on their new parallel multi-model
technique, in which a turbulent Navier-Stokes simulation is used to gen-
erate noise in the vicinity of the A-pillar, which is then Fourier-analyzed,
filtered, and propagated throughout the car interior by means of parallel
Helmholtz solves at hundreds of component frequencies. Each of the inde-
pendent Helmholtz solves is then further decomposed for parallel solution
on an appropriately resolved grid by means of a discontinuous Schwarz pre-
conditioner, and the signal is reconstructed.

“Tens of thousands of processors are needed to do the work of the micro-
phone in the windtunnel,” she laughs, “but if we ever get these simulations
to be predictive, we can play with the geometry without folding any metal
or molding any clay. But none of this is practical without the multi-model
capability or without the data-parallel analysis capability for the individual
task-parallel problems. Can’t afford to run Navier-Stokes everywhere, and
the energy in the noise signal would be lost in the discretization error even
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if we could. Solving for the scalar disturbance potential is the obvious way
to propagate the noise in the cabin. Linking the models up is where the
real research lies. And until it was convenient to cut-and-try with a parallel
algorithmic breadboard, we could never consider doing this . . . ”

1.3. ORGANIZATION OF THIS CHAPTER

With these scenarios as a foretaste, we consider in Section 2 the historical
role of algorithmic research and how it is being redefined as a result of its
own success. Section 3 summarizes some of the principal forces on contem-
porary algorithmic research, which point to the centrality of latency toler-
ance, the subject of Section 4. Section 5 introduces an important class of so-
lution algorithms for the nonlinear systems of PDEs that occur throughout
the aerosciences, which have been designed with latency tolerance foremost
in mind. Adaptivity or “tuning” of these algorithms is considered within the
context of bulk synchronous SPMD applications. The next three sections
(6–8) present the need for more radical forms of adaptivity, to extremes
of application nonuniformity, memory hierarchy, and distributed memory
granularity. Novel metrics are introduced to quantify novel algorithmic de-
sign criteria. Asynchronous nonlinear methods, representing a break with
the traditional SPMD model, are suggested as a means of providing the
additional flexibility required to accommodate these coming extremes. Sec-
tion 9 defines a class of nonlinear Schwarz methods that can be run in syn-
chronous, pipelined-deferred synchronous, or partially asynchronous modes.
We conclude in Section 10 with a summary agenda for research in algo-
rithms for the computational aerosciences, and for algorithm research more
generally.

2. The Role of Algorithmic Research

The complementary roles and co-importance of progress in algorithms and
progress in computer architecture were canonized in the first of the U.S.
federal interagency HPCC initiative “bluebooks” (FCCSET, 1992). The
fruits of algorithmic progress considered therein were confined to the realm
of operation count reduction, and were assumed to be orthogonal to the
fruits of architectural progress, namely faster processing of operations. This
implies that that factors of improvement in algorithms and architecture can
simply be multiplied in order to arrive at the overall factor of performance
improvement. Such simple models are no longer adequate.
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2.1. BEYOND “OPTIMAL” LIES “ADAPTIVELY OPTIMAL”

The “bluebook” illustration culminated with an algorithm that is arith-
metically optimal for an expanding class of applications, namely multigrid.
Algorithmic progress of the future will — by definition — not lie in a fur-
ther reduction of the arithmetic complexity for these applications, but in
adaptation to the increasingly severe architectural environment, so that op-
timal arithmetic complexity translates into optimal execution time. It will
also lie in the development of optimal methods for an ever expanding class
of applications that are pronouncedly nonuniform in character throughout
the simulation domain.

Throughout the history of high performance computing initiatives, it
has always been assumed that algorithms can be adapted to satisfy the
“boundary conditions” imposed by applications requirements and archi-
tectural availability. The exponentially diverging service times of floating
point processors and memory systems make this assumption increasingly
nontrivial. However, the resulting pressure on algorithms to be memory
latency-tolerant and synchronization-tolerant at least gives a clear direction
for extrapolation of algorithmic progress. The extrapolations of application
requirements and architectural availability into the next 10 years seem rel-
atively straightforward, and algorithms will evolve to attempt to span the
gap.

2.2. MINING THE LITERATURE FOR “NEW” ALGORITHMS

We predict that much of what will be called “algorithmic progress” in the
next 10–20 years is published already — some of it long ago. Algorith-
mic advances often spend decades in the literature, dormant with respect
to computational science, before triggering revolutionary advances in the
latter when adapted to the service of contemporary architecture.

Space-filling Curves were described as topological curiosities in (Peano,
1890) and (Hilbert, 1891), but were recognized by Warren & Salmon (1995)
to provide a 1D ordering on points in 3D space that translates physical
locality into memory locality. They are now the basis of Bell-prize-winning
N -body gravitational simulations for hundreds of millions of particles on
thousands of processors and a cost-effective out-of-core Beowulf version of
the same simulation (Warren et al., 1998).

The Schwarz Alternating Procedure was described as a proof of exis-
tence and uniqueness for the solution of elliptic boundary value problems
on geometrically irregular regions in (Schwarz, 1869), but was recognized
by Dryja & Widlund (1987) to provide a projection operator framework
for solving PDEs that satisfies memory locality. It is now the basis for
distributed-memory algorithms for solving PDEs with tens of millions of
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degrees of freedom on hundreds of processors (Kaushik et al., 1998) and of
the PDE solver in a major parallel software library (Balay et al., 1998).

The Method of Conjugate Gradients was described as a direct method in
(Hestenes & Stiefel, 1952), but was recognized by Reid (1971) as an iterative
method for large, sparse, well-conditioned problems in linear algebra that
does not require workspace for factorization. It is now the basis (through
preconditioning) of solutions to linear systems of dimensions in the tens of
millions with memory overhead proportional to a small multiple of system
size. It has been generalized to Krylov methods for nonsymmetric and in-
definite systems (e.g., GMRES (Saad & Schultz, 1986)), and shown to be
an effective alternative to direct methods even on well-conditioned dense
systems (e.g., arising from integral equations with compact operators). Its
property of accessing the matrix only in the form of matrix-vector products
makes it amenable to abstract, data structure-neutral implementation.

A common theme in these examples (Table 1) is adaptation to the lim-
itations of contemporary memory systems. We have the luxury of concen-
trating on memory system bottlenecks only because processing bottlenecks
have been conquered through optimal algorithms such as multigrid, fast
multipoles, and fast transforms.

TABLE 1. Classical mathematical constructs reborn as important con-
temporary algorithms

invented recognized motivation

Conjugate Gradients 1952 1970’s memory capacity

Alternating Procedure 1869 1980’s memory locality

Space-filling Curves 1890 1990’s memory locality

There are many other themes in algorithmic progress in which pre-
computational classical results have been revived to meet computational
demands. Plate, shell, and beam theories from classical mechanics are the
basis of “multi-model” finite element libraries, where extreme aspect ratios
make full three-dimensional linear elasticity less suited than its asymptotic
counterparts in accommodating modeling complexity. Classical Delaunay
and Voronoi tesselations are the basis of important contemporary algo-
rithms for constructing unstructured grids and discretizing upon them in
accommodating geometric complexity.

The needs of large-scale computational science have also been met from
technology that is contemporary, but has its origins in other fields. For
instance, data compression methods for network and archival technologies
now reduce transmission and storage complexity in scientific codes. Im-
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mersive technology from pilot training now reduces the complexity of the
human-computer interface.

3. Trends in Algorithmic Research

The preceding examples suggest that many algorithmic breakthroughs are
found and adapted at the time of need or opportunity, not necessarily
spontaneously created at that time. The organizing principles for this con-
tribution on future trends in algorithmic research are therefore: (1) iden-
tification of needs and opportunities, in view of trends in application and
architectural (hardware and software) boundary conditions; (2) adaptation
of current algorithms; and (3) searching for algorithms to borrow.

3.1. TRENDS IN APPLICATIONS

The important application boundary conditions are well articulated by
framing documents from the federal agencies, such as the “Grand Chal-
lenge” program (NSF, 1996), the Accelerated Strategic Computing Initia-
tive (DOE, 1997) and the interagency High Performance Computing and
Communications initiative (FCCSET, 1992). These are characterized by:
first-principles or multiple-scale modeling, billions of degrees of freedom,
real-time simulations (in some cases, e.g., to control an on-going process),
parametric studies (using analysis codes as fluently as spreadsheets), and
immersive interaction. Essentially, applications should be as large, run as
fast, and their data sets be as rapidly transmitted and post-processed as
possible. In these regards, there is no concern that the customer will become
satisfied anytime soon!

3.2. TRENDS IN HARDWARE

The hardware architecture boundary conditions are easily extrapolated by
the technology roadmap of the Semiconductor Industry Association (1998).
The following approximate trends are reasonably steady: processor speed
doubles about every 3 years1, memory and disk access time halve about
every 10 years, memory and disk capacity quadruple about every 3 years,
program memory consumption rises to fill capacity (invested in friendlier
user interfaces and increased resolution), larger and cheaper means slower
at all levels of storage, memory is still the most expensive component of a
supercomputer, and disk is two orders of magnitude cheaper than memory

1Moore’s Law, which states that transistor count on a chip quadruples about every
three years, is often misapplied directly to logic speed. In practice, the marginal benefit
of the additional transistors to processing rates saturates. A more careful projection of
the growth rate of processor speed is approximately a factor of 2.8 in three years.



TRENDS IN ALGORITHMS FOR NONUNIFORM APPLICATIONS 9

per byte but three orders of magnitude slower. Essentially, the premiums
on anticipating data requirements in advance and on data locality increase
dramatically due to the increasing latency of memory system relative to pro-
cessor capability. These industry-wide trends in commodity microprocessor
architecture also apply qualitatively (though with different constants) to
special-purpose supercomputer architecture, which is now primarily based
on commodity processor and memory components. Cray’s own homepage
shows that their top-of-the-line Cray T3E suffers a single memory latency
of 252 floating point operations — more than 25 times worse than the
same dimensionless measure of memory latency for the CDC 7600, which
preceded it by 25 years. Whereas the number of floating point operations
lost on a cache miss is in the hundreds, the number lost on a message start-
up in a contemporary multiprocessor is in the thousands. For the HTMT
Petaflops machine, memory latencies are forecast to be in the 10,000’s of
floating point operations (Sterling et al., 1997). If 1 Pflop/s (1015 float-
ing point operations per second) is achieved with one million of today’s
1 Gflop/s processors, interprocessor latencies will rise with the broaden-
ing network. If, instead, it is achieved with ten thousand of tomorrow’s 100
Gflop/s quantum logic processors, intraprocessor latencies will rise with the
deepening memory hierarchy. With the increasing cost of accessing mem-
ory accompanying either design, there will be no relief from the necessity
of user management of storage anytime soon!

3.3. TRENDS IN THE SOFTWARE ENVIRONMENT

The major software architecture boundary conditions are more qualitative
than quantitative, and more informally accepted than officially articulated.
They include: multilevel design (on a scale from “opaque” to “transparent”,
in order to provide an appropriate impedance match to users ranging from
computationally naive to computationally sophisticated); object-oriented
design (at least encapsulation, abstraction, and polymorphism) at all but
the lowest levels2; adherence to standards and portability across all com-
puters that support the model of message-passing communication through
the MPI standard; extensibility to multi-threaded environments; and incor-
poration of intelligence.

The last two points deserve particular elaboration in the context of com-
putational science. Computational science environments of the near future
will offer interactive, immersive visualization via multithreaded memory

2For scientific codes, it is well documented that too much performance is left on the
table when lowest level scalar arithmetic operations are not bound at compile time.
Furthermore, scientific codes are sufficiently limited in the way that their components
interact that very little useful expressivity and flexibility of object orientation is sacrificed
together with the fourth object-oriented pillar of inheritance.
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snooping and computational steering through interactive modification of
the flow of control of a program, accompanied by memory modification.
Components of multithreaded solvers may run asynchronously, both with
respect to the threads enabling these interactive tasks, and with respect to
other components of the same multithreaded solver.

“Intelligence” implies more than the forms of adaptivity that are rou-
tine today, such as optimization of a relaxation parameter, discovery and
retention of an approximate null space for deflation purposes on subsequent
systems, or scheduling recomputation of an expensive Jacobian or a Hessian
in an inexact Newton or optimization method. These are nontrivial tasks
when posed as optimization problems in their own right, but heuristics ex-
ist that permit their automation, given relatively modest observations of
the local behavior of a code. A typical solver has literally dozens of such
tuning parameters associated with it, apart from the parameters of the
discretization and the parameters of the physical system (see Section 5.2).
The intelligent drivers for future algorithms will take advantage of more
global knowledge of a problem-algorithm-architecture class, using informa-
tion mined from a data base of similar cases. Newly engineered systems
are often similar enough to previously engineered systems, that experience
with previous systems is valuable. Today this experience resides in the peo-
ple who run the codes, but a team of people is a fragile, distributed, and
unreliable reservoir of such experience, and for some purposes it is better
replaced by an intelligent agent.

3.4. ALGORITHMIC RESPONSE

In response to the changing climate in applications and architecture, al-
gorithms will adapt. Algorithms already adapt, of course; scientific codes
contain a wide variety of compile-time and run-time options, or “tuning pa-
rameters,” some of which are set automatically. Section 5 reviews the state
of the art of one such tunable family, which has already been stretched to
close to the limits of its scalability by synchronization latency on the 512-
node message-passing supercomputers of 1998. First, we review the central
emerging issue in algorithms for high-performance computers.

4. The Holy Grail of Latency Tolerance

Given the demands of applications for more memory, and the weakening
ability of the hardware to provide fast access to arbitrary elements of mem-
ory, the memory model upon which algorithm performance evaluation is
based must evolve from the outdated illusion of a flat memory space to the
present and future reality of hierarchical distributed memory.
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We may distinguish between the vertical latencies within a processor-
memory node arising from the hierarchical aspect and the horizontal la-
tencies between nodes arising from the distributed aspect. The former is
nearly universally under hardware control in today’s processors. The latter
is either under user control in the message-passing model, or under some
combination of hardware and system software control in the cache-coherent
shared-memory model. We may also distinguish between the startup (size-
independent) part of a data access (when the data itself is ready) and
the synchronization cost (when the data is not ready). For many purposes
in the analysis of algorithmic performance, these various types of laten-
cies “look the same.” The same locality-enhancing blocking practices that
reduce vulnerability to message-passing latency on a parallel architecture
tend to reduce vulnerability to cache-miss latency on any architecture. In
assessing the penalty of message-passing latency, startup and synchroniza-
tion effects are summed, and special diagnostics are generally required to
separate them. Therefore, except when otherwise explicitly mentioned, we
use the term “latency” generically in this chapter.

Whenever the latency potentially inherent in a data dependency cannot
be removed by removing the data dependency, itself, the latency must be
tolerated by:

− Arranging for temporal locality of memory references: once an operand
is cached on a processor, use it as many times as practical before
sending it “down” or “out”.

− Arranging for spatial locality of memory references: when an operand
needs to be moved “up” or “across”, fill up the slots in the same packet
with other operands that will be required soon.

− Arranging for other things to do while stalled for data: perform light-
weight multithreading and/or extra work (relative to optimal work
complexity) per data transfer-laden “cycle” if it reduces the total num-
ber of such cycles.

Fortunately, these arrangements are easier to make for a typical PDE
solution algorithm than for many less regular large-scale computational
tasks. We claim that certain scalable algorithms for general purpose PDE
simulations in use today will in theory3 survive in the future application
and architecture climate. But, in practice, we must simultaneously strive
improve adaptivity to the application and tolerance of memory latency of
the architecture. To these ends, everything in algorithmics and scientific
software engineering should be placed on the table as negotiable.

3“In theory there is no difference between theory and practice. In practice, there is.”
— Yogi Berra (1925–), baseball player and philosopher.
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“Unstable” methods may get new life, particularly in high precision en-
vironments (e.g., 128-bit floats). Optimal arithmetic complexity may need
to be sacrificed in favor of optimal overall solution time. Data locality con-
siderations may need to be given priority over functionally clean, modular
coding practices. Computational scientists may need to learn about many
new areas — architecture, software engineering, control theory, optimiza-
tion — not to expand their application domain, but just to run in place.
Despite the potential discomfort implied by some of these heresies, PDE
solution algorithms are still the “easy” problems of the next 10–20 years
since ample concurrency with locality is readily exposed. Hardware and sys-
tems software will not necessarily expose all of the mathematically available
concurrency or locality because allowable program transformations are too
restrictive, so users must be given tools to help expose it.

The latency tolerance techniques available to architects fall into two cat-
egories (Culler et al., 1998): amortization via block transfers that pay the
overhead only once for several pieces of data, and covering via precommuni-
cation (anticipating future needs for data so that they arrive when needed),
proceeding past an outstanding communication in the same thread (also
known as “hit-under-miss”), and multithreading. The requirements for all
of these techniques are excess instruction-level or thread-level concurrency
in the program (beyond the number of processors being used) and excess
capacity in the memory and communication architecture. When there is
excess concurrency, the temporal behavior of the program can be improved
at the expense of extra spatial resources.

All of the strategies mentioned above, which are typically under hard-
ware or system software control, have counterparts under user control. In a
sufficiently rich programming environment, the algorithmicist can express
to potential advantage the “when” and the “where,” in addition to the
“who” and the “what,” of a given algorithm. In addition, algorithmicists
have a unique strategy, not available to architects by definition: reformula-
tion of the problem to create concurrency. There are mathematical limits
to this opportunity, which are defined by the error to be tolerated in the
final result and/or the rate of convergence to be tolerated in achieving it.
The opportunity stems from the observation that not all nonzero data de-
pendencies are created equal and some can be dropped or deferred. We may
accept extra outer iterations if doing so greatly reduces the latency of the
iteration body.

Adapting the algorithm directly requires an understanding of the con-
vergence behavior of the problem, especially the dependence of the con-
vergence behavior on special exploitable structure, such as heterogeneity
(region-dependent variation) and anisotropy (direction-dependent varia-
tion).



TRENDS IN ALGORITHMS FOR NONUNIFORM APPLICATIONS 13

5. Parallel Implicit PDE Solvers and the Newton-Krylov-Schwarz
Method

The illustrations of algorithmic adaptivity and the motivation for the in-
novative features of this chapter come from the implicit solution of non-
linear systems of PDEs from computational aerodynamics. In this section
we make parallel complexity estimates for the pseudo-transient Newton-
Krylov-Schwarz (ΨNKS) family of algorithms, which is designed for par-
allel implicit nonlinear applications. Space limitations do not permit self-
contained development of ΨNKS methods, but many references are avail-
able. For an survey article with an emphasis on software aspects, see (Gropp
et al., 1998). For a theoretical introduction to ΨNKS, see (Kelley & Keyes,
1998). For a focus on scalability and large-scale problems, see (Kaushik et
al., 1998). Finally, (Cai et al., 1998) is a reasonably self-contained discussion
of a model application.

If u` represents state variable (unknown) vector at the `th step in an
iterative process converging to the solution of f(u) = 0, where f is a vector
of residuals of conservation laws, a pseudo-transient implicit method solves
successively

u`

∆t`
+ f(u`) =

u`−1

∆t`
,

for timesteps ∆t`, ` = 1, 2, . . ., such that ∆t` → ∞ as ` → ∞. Each step
u` is obtained from an Newton iteration with Jacobian matrix ( 1

∆t`
I + ∂f

∂u).
These linear systems are solved via a matrix-free Krylov method precon-
ditioned by a Schwarz method. Pseudo-code for the complete algorithm is
shown in Fig. 1. Operations shown in uppercase customarily involve global
synchronizations.

For a three-dimensional problem with a discrete size of N , domain-
decomposed into P subdomains, each subdomain containing N/P points,
the concurrency is pointwise, O(N), for all aspects of the problem ex-
cept for the Schwarz preconditioner, where it is subdomainwise, O(P ).
The communication-to-computation ratio is surface-to-volume (apart from
global reduction steps), namely O

(
(N

P )−1/3
)
. Therefore, it remains con-

stant if N and P are scaled in proportion. The communication is mainly
nearest-neighbor, but convergence checking, orthogonalization/conjugation
steps, and any hierarchically coarsened problems included in the Schwarz
preconditioner add nonlocal communication. Depending upon implementa-
tion, the synchronization frequency is often more than once per concurrent
mesh-sweep, up to K, the Krylov dimension, namelyO

(
K(N

P )−1
)
. If K can

be kept independent of problem size and granularity this, too, is constant.
Typically, K grows slowly with problem size.
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do l = 1, n_time
SELECT TIME-STEP
do k = 1, n_Newton

compute nonlinear residual and Jacobian
do j = 1, n_Krylov

doall i = 1, n_Precon
solve subdomain problems concurrently

enddoall
perform Jacobian-vector product
ENFORCE KRYLOV BASIS CONDITIONS
update optimal coefficients
CHECK LINEAR CONVERGENCE

enddo
perform DAXPY update with robustness conditions
CHECK NONLINEAR CONVERGENCE

enddo
enddo

Figure 1. Pseudo-code for the ΨNKS method

5.1. PARALLEL COMPLEXITY ESTIMATION FOR
BULK-SYNCHRONIZED STENCIL COMPUTATIONS

Given complexity estimates of the leading terms of the concurrent computa-
tion (taking intra-node memory latencies into account), the communication-
to-computation ratio, and the synchronization frequency, as well as a model
of the architecture including internode communication (namely, the net-
work topology and protocol reflecting horizontal memory structure), we
can formulate optimal concurrency and optimal execution time estimates.
This can be done on a per-iteration basis or overall (by taking into account
any granularity-dependent convergence rate). Let there be n grid points in
each direction, with storage O(N) = O(n3), and p processors in each direc-
tion, with total processors P = p3, giving memory per node requirements
of O(N/P ). The execution time per iteration is An3/p3, where coefficient
A lumps together factors including number of components at each point,
number of points in stencil, number of auxiliary arrays, and the recipro-
cal of the effective per node computation rate. With n/p grid points on
a side of a single processor’s subdomain the neighbor communication per
iteration, apart from latency, is Bn2/p2. The cost of an individual global
reduction is assumed to be logarithmic or fractional power in p. The cost
per iteration, C log p or Cp1/d, includes synchronization frequency as a fac-
tor. Coefficients A, B, and C are all expressed in the same dimensionless
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units, for instance, multiples of the scalar floating point multiply-add.
For a 3D stencil-based computation with tree-based global reductions,

the total wall-clock time per iteration is

T (n, p) = A
n3

p3
+ B

n2

p2
+ C log p . (1)

The optimal p is found at ∂T
∂p = 0, or −3An3

p4 − 2B n2

p3 + C
p = 0, or (with

θ ≡ 32·B3

243·A2C
),

popt =
(

3A
2C

)1/3 ([
1 + (1−

√
θ)

]1/3
+

[
1− (1−

√
θ)

]1/3
)
· n . (2)

It is apparent that p can grow with n without “speeddown.” In limit as
B/C → 0, popt = (3A/C)1/3 · n.

With this value the optimal execution time in the limit as B/C → 0 is

T (n, popt(n)) = C

[
log n +

1
3

log
A

C
+ const.

]
. (3)

(This analysis is on a per iteration basis; fuller analysis would multiply this
cost by an iteration count estimate, which may generally depend upon n
and p and affect the optimal scaling. The optimal execution time is directly
proportional to coefficient C, which contains the synchronization latency
and synchronization frequency.)

The estimates above are based upon Additive Schwarz preconditioning
of the Jacobian J = ( 1

∆t`
I + ∂f

∂u). The preconditioner for J is built out of
(approximate) local solves on (overlapping) subdomains. Figure 2(a) shows
a square domain Ω divided into nine square subdomains Ωi, which overlap
each other to a depth of 3h, where h is the width of a subinterval. The over-
lapped domains are denoted Ω′

i. Two horizontally adjacent subdomains Ωi

and Ωj are shown in Fig. 2(b). The right solid boundary of Ωi coincides
with the left solid boundary of Ωj, but the domains are pulled apart to
show the nearest neighbor exchange buffers that each one fills for the other
prior to performing a subdomain solve its overlapped region. If Ri and RT

i

represent Boolean gather and scatter operations, mapping between a global
vector and its extended ith subdomain support then the action of the Addi-
tive Schwarz preconditioner can be specified algebraically as

∑
i RT

i J̃i
−1

Ri,
where, in turn, subdomain Jacobian block Ji is RiJRT

i . The “˜” in the for-
mula indicates that an approximate solution with the local Jacobian block,
rather than a full direct solution, may be carried out in parallel on each
extended subdomain.



16 DAVID E. KEYES

x

y
Ω

Ωi

Ω
′
i

�

-

Ωi Ωj

Ω
′
i Ω

′
j

(a) (b)

Figure 2. Overlapping Additive Schwarz domain decomposition and detail of overlapped
data buffering

Iteration count estimates from the Schwarz theory for elliptic PDEs
(Smith et al., 1996) are put in the context of point Jacobi and nonoverlap-
ping subdomain block Jacobi in Table 2. Preconditioned Krylov iterative
methods typically converge in a number of iterations that scales as the
square-root of the condition number of the preconditioned system. Observe
that the Schwarz methods converge at a rate independent of the size of the
discrete system, and a 2-level version of the Schwarz method (Dryja & Wid-
lund, 1987) converges at a rate independent of the number of processors.
This optimal convergence rate is often nearly achieved even without a 2-
level preconditioner for parabolic problems, including the pseudo-transient
parabolization of an elliptic problem.

TABLE 2. Iteration counts for preconditioned Krylov itera-
tion on elliptic problems

Preconditioning 2D 3D

Point Jacobi O(N1/2) O(N1/3)

Subdomain Block Jacobi O(N1/4P 1/4) O(N1/6P 1/6)

1-level Additive Schwarz O(P 1/2) O(P 1/3)

2-level Additive Schwarz O(1) O(1)

Armed with these convergence estimates, we can repeat the estimates
of popt and Topt above on an overall execution time basis, rather than a
per-iteration basis (see Keyes et al. (1998)).
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5.2. ALGORITHMIC TUNING

The goal of adaptivity is to take advantage of data-dependent features that
are known at problem definition or discovered during runtime to minimize
some combination of computational resources required to arrive at a result
of given quality. A disadvantage of adaptive algorithms is that it may be
difficult for inexperienced users to tune the parameters that give them their
adaptive power. A mistuned algorithm may perform much less efficiently
than a nonadaptive version with conservative defaults. The ΨNKS family of
methods contains numerous parameters, which can be associated primarily
with different loop levels of the pseudo-code in Fig. 1.

The outermost pseudo-transient continuation relies on a sequence of
timesteps, ∆t`, and a steady-state residual tolerance for convergence.

The inexact, matrix-free Newton iteration requires a Fréchet differenc-
ing parameter for the Jacobian-vector products, a damping method, a non-
linear residual tolerance for convergence at each time step, a recovery mech-
anism (feeding back on timestep selection) in case Newton’s method fails to
converge, and possibly additional continuation devices (e.g., continuation
in boundary condition enforcement or dimensionless physical parameters).

The Krylov iteration requires a maximum Krylov subspace dimension,
an orthogonalization frequency (with direct effect on coefficient C in (3)),
a preconditioner refresh frequency, linear tolerance for convergence at each
Newton step, and a failure recovery mechanism in case the Krylov method
stagnates.

The innermost Schwarz preconditioner contains parameters that di-
rectly affect the overall concurrency in the algorithm and the communi-
cation cost of each iteration. Subdomain granularity P is directly related
to processor granularity. Subdomain overlap width enters into B in (1).
Subdomain solution quality is a leading contributor to the work per itera-
tion in A of (1). The presence of a coarse grid and its density affect A and C
and are not considered in the simple estimates leading to (3). Finally, par-
titioning governing subdomain orientation and aspect ratio in nonuniform
problems can have a strong effect on the quality of the linear conditioning
and therefore the number of iterations.

Besides the obvious adaptation of the Schwarz preconditioner to the
granularity of the architecture, there are several choices and trade-offs in
the implementation of an ΨNKS code which can effect substantial rebal-
ancing between coefficients A, B, and C, or the total number of iterations.
We can think of these decisions as architectural tuning parameters, includ-
ing: inspector/executor trade-offs, dispatch/merge trade-offs, buffer/recopy
trade-offs, and store/recompute trade-offs. Blocking parameters and data
orderings for cache, and loop unrolling parameters for registers also sub-
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stantially affect A. In Section 9, we bring out two additional architectural
tuning parameters: the number of user-managed threads per processor, and
frequency of deferred synchronization for convergence testing and timestep
selection.

Some of these parameters, like timestep, Newton damping parameter,
and Fréchet differencing parameter, are continuous and supported by sound
theory or heuristics that allow their selection to be automated. Others, like
subdomain partitioning, are presently chosen intuitively. Still others, like
the use of a coarse grid and the amount of overlap in a Schwarz precondi-
tioner are tuned by trial and error. Many examples of such tunings in the
context of a 3D transonic Euler flow code are given in (Gropp et al., 1998).

More systematic choices can be made in problem and architecture-
specific environments by exhaustive search or more efficient parallel di-
rect search methods (Dennis & Torczon, 1991). We mention the PHiPAC
project at Berkeley (Bilmes et al., 1998) and the Atlas project at the Uni-
versity of Tennessee (Whaley & Dongarra, 1998) as extreme examples of
architectural tuning for the blocking of kernel loops. PHiPAC, for instance,
reports attainment of 90% or better of theoretical peak for the BLAS3 rou-
tine DGEMM on all major RISCstations, sometimes improving upon the
vendor implementations. The application of optimization techniques with
execution time as the objective function and the parameters mentioned
above as the design space would automate the adaptivity, relieving users of
it though possibly at considerable resource cost.

Besides optimization, we mention control theory as a likely source for au-
tomated parametric tuning of dynamically adaptive computations. Söderlind
(1998) has pointed out the disproportionate amount of effort that goes into
stiff ODE integrators compared to the effort that goes into timestep se-
lection for the integrators, even though many of the practical difficulties
that with which the integrators must cope arise from poor timestep se-
lection analogous to rudimentary “deadbeat” control. More sophisticated
strategies are already available, but relatively uknown in the computational
science community.

6. Adaptivity to Problem Nonuniformity

The theoretical scalability of ΨNKS methods, a representative bulk syn-
chronous SPMD application, was presented in Section 5.1. This analysis
shows that on a network with sufficiently fast global reductions, ΨNKS can
be within a logarithmic factor constant efficiency, as problem size and pro-
cessor number are scaled in proportion. It is not easy to improve upon this
scalability for any parallel implicit method for systems of elliptic boundary
value problems. Nevertheless, it is very easy to imagine improving upon
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the total execution time of a global Newton method. The example of this
section is only one of a plethora of problems with nonuniform character-
istics throughout the spatial domain that could be employed to illustrate
this point.

As an example of algorithmic adaptivity to application nonuniformity,
consider the nonlinear full potential model for steady flow over a tran-
sonic flow over a smooth two-dimensional airfoil described in (Cai et al.,
1998). Figure 3(a), from (Cai et al., 1998), shows the norm of the nonlinear
residual for a finite element discretization of this problem, resolved with ap-
proximately a quarter million degrees of freedom and solved with a straight
NKS method (no pseudo-transient continuation) in twenty iterations. Dur-
ing the first three iterations, substantial progress is made towards the final
solution from a uniform flow initial iterate. During the final five iterations,
Newton’s method makes rapid progress towards the machine-precision con-
vergence tolerance attainable for this discrete problem. Between iterations
3 and 15, very little progress is made. Figure 3(b) reveals why. This plot
of dimensionless pressure distributions over the upper surface of the air-
foil, with iterations 1 through 20 superposed, shows that during the initial
three iterations the distribution evolves rapidly in shape, during the final
five iterations, it does not change at all to pixel resolution, and during the
middle “plateau” iterations, the shock that forms approximately 2/3rds
of the way down the airfoil is moving about one grid point per iteration
from the point it sets up until the point where it converges. During this
“plateau” phase, the nearly linear ambient flow barely changes; the globally
computed Newton updates are nearly zero over most of the domain. In the
ODE initial value problem context, where the progress parameter is time,
such a phenomenon — a critical mode of the solution holding the remaining
modes hostage — is called stiffness. By analogy, in this context where the
progress parameter is iteration index, we call this retarding of the global
update by a critical feature “nonlinear stiffness.”

In analogy with the practice of adaptive refinement, in which a scalar
field, the error estimator, indicates that subset of the domain over which
a better resolution is needed, we would like to compute a scalar field that
indicates the local degree of nonlinearity of a solution iteration. We may
use such an indicator to focus extra work on the relevant subdomain in an
automatically adaptive manner, just as we would apply h, p, or r refine-
ment in an automatically adaptive manner, thus saving work (and storage)
relative to uniform refinement.

Practical use of such a pointwise metric requires that the cost of its
evaluation be subdominant to the cost of solving the problem. We propose
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Figure 3. ||f(u`)|| and Cp(x)` ` = 1, 2, . . . , 20, for transonic full potential flow over a
NACA0012 airfoil

a metric based on absolute ratios of finite differences of Jacobian elements:

τi =
||∂fi

∂u (uk+1)− ∂fi
∂u (uk)||

||uk+1 − uk|| · ||∂fi
∂u (uk)|| .

We propose the name “tensoricity” for this quantity, defined for each com-
ponent i, because it is a directional derivative of Jacobian elements, related
to the tensor term in the multivariate Taylor expansion upon which New-
ton’s method is based (see Dennis & Schnabel (1973)). Tensoricity uses only
by-product norm information; in practice, it would not be recomputed at
every step k, but only when the preconditioner for the Jacobian is recalcu-
lated. Tensoricity is dimensionless and satisfies the null test, in the sense
that τi vanishes if fi is linear in all of the components of u.

Our initial test of the potential utility of tensoricity is in a model prob-
lem arising in industrial metal cutting, approximately described by the
nonlinear elliptic BVP in the unit square Ω (see (Ierotheou et al., 1998) for
a fuller context):

−∇ · (κ(u)∇u) = 0 ∈ Ω , (4)

where κ(u) ≡ 1/(1 + cu2) , (5)

with boundary conditions

u(x, y) = A exp(−σx2), for (x, y) on ∂Ω . (6)

This problem provides a tunably steep and narrowly confined Gaussian
ridge in the temperature field u at the left end of the interval. Applying
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Newton’s method (for instance, in the form of NKS) to the subdomain of
high tensoricity in the left half of the subdomain, iterating to convergence,
using the resulting iterate to help initialize the full domain, and iterating to
convergence on the full domain is approximately half the work of solving the
global problem with Newton’s method. As the nonlinear regions becomes
more and more narrowly confined at the left edge of the domain, the ratio
of computational work can be made almost arbitrarily low, by confining
the first Newton process to a smaller and smaller portion of the domain.
The main savings are in the linear system work and in global synchroniza-
tion steps in the inner Krylov iterations. Jacobian preconditioner formation
is also reduced. It is needed globally only at the end of the computation.
The total number of Newton steps on the active subregion is virtually the
same as the total number of Newton steps on the global problem, without
exploiting tensoricity. This observation reinforces the view that the rate
of convergence of the global problem is determined by the most “nonlin-
ear” subdomain. Quantitative execution time advantages will be presented
elsewhere, in joint work with Gropp, Lai & Palansuriya.

In the literature of computational aerodynamics, there is considerable
blurring of attribution of problem difficulty when it comes to nonlinearity.
In the Navier-Stokes equations, the principal source of nonlinearity is the
first-order advection, which is also the principal contributor of nonsym-
metry to the Jacobian. In addition, the nonlinearity of the advection is
associated with the near singularity of shocks and the resulting stress on
the resolution capabilities of computational aerodynamics discretizations.
Often these twin difficulties of nonsymmetry and near singularity have been
blamed upon the nonlinearity, even though it is possible generate both of
these phenomena independently of nonlinearity. The intrinsic difficulty of
nonlinearity is rapidly shifting tangent hyperplane (Jacobian) approxima-
tions, of which high tensoricity is symptomatic. There is a need for special
attention to all three of the algorithmic problems associated with advec-
tive terms, and we hope that tensoricity will permit better isolation of the
root cause and more efficient allocation of computational resources via the
nonlinear Schwarz methods presented in Section 9.

7. Adaptivity to Hierarchical Memory

As an example of algorithmic adaptivity to the vertical aspects of the mem-
ory system, in overcoming cache-miss-related memory latencies, consider
the incompressible inviscid flow over an M6 wing described in (Kaushik
et al., 1998). Table 3, from (Kaushik et al., 1998), shows a seven-fold se-
rial execution time performance benefit derived from three successively ap-
plied memory locality strategies, in an unstructured grid problem of 22,677



22 DAVID E. KEYES

vertices (90,708 unknowns) small enough to run on a single IBM P2SC
processor. Unenhanced version “1” is the code in its original multicolored
vector-based ordering.

TABLE 3. Execution times and improvement ratios for three strategies for locality en-
hancement and their combinations in an unstructured Euler flow code (run in 4-component
incompressible and 5-component compressible formulations) on a 120 MHz P2SC “thin”
processor

Enhancements Results

Field Structural Edge Incompressible Compressible

Interlacing Blocking Reordering Time/Step Ratio Time/Step Ratio

1 165.7s — 237.6s —

2 × 62.1s 2.67 85.8s 2.77

3 × × 50.0s 3.31 65.7s 3.62

4 × 43.3s 3.82 67.5s 3.52

5 × × 33.5s 4.95 50.8s 4.68

6 × × × 22.1s 7.51 32.2s 7.37

The first two enhancements, interlacing and blocking, are well-known
in the high-performance computing literature, especially the compiler lit-
erature. The third, a greedy edge-reordering applied to a vertex-centered
control volume scheme, is intuitive. There may be many additional locality-
enhancing transformations available in structured and unstructured com-
putational science codes that are neither well-known nor intuitive, which
may need to be discovered more systematically in an optimization process,
such as a direct search or genetic process. Such optimization may even
ultimately be implementable in optimizing compilers or adaptive runtime
systems of the future. However, to automate locality-enhancement through
optimization, a scalar objective function is required, which permits determi-
nation of whether a given move is favorable or unfavorable, short of actually
executing the code.

In an attempt to thus quantify locality, we propose the abstract concept
of memtropy, a real scalar function of a sequence of memory references,
which can be assumed without loss of generality (for uniformly sized data
objects) to be a subset of the nonnegative integers. By design, a set of
well ordered references should have lower memtropy than the same set of
references ordered poorly. If memtropy is to be a useful concept, it must be
shown to correlate monotonically with real-world metrics, like cache miss
frequency.
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A possible form of the proposed metric is a windowed 1-norm of the
cumulative jumps in successive memory references, mi, i = 1, 2, . . .:

µ =
1
n

n∑
i=1

i−1∑
j=0

e−αj2 |mi −mi−1−j| .

We define m0 = m1 to keep the formula simple while insuring that the first
reference m1 incurs no penalty. The index space is triangular and can be
rewritten as

µ =
1
n

n−1∑
j=0

e−αj2
n−j∑
i=1

|mi −mi−1−j| .

It is important to record the actual memory references rather than the
just the size of the jumps between successive references, since a series of n
uniformly sized jumps could either bounce back and forth between two loca-
tions or visit n distinct locations, and the latter should intuitively be more
penalized. The difference term captures spatial locality while the Gaussian
window captures temporal locality by weighting recent differences more
heavily than event-separated differences.

The metric satisfies the null test by vanishing if all references are the
same, is small if all references cycle within a small set, is invariant with
respect to translations of the sequence, and in the case of two sequences
with a fixed relative pattern of jumps, it is smaller for the sequence with
smaller magnitude jumps. The normalization by n tends (modulo α effects),
to produce a µ for a periodic sequence of references that is independent of
the number of periods. The following examples illustrate the main points
of this paragraph. The subscript on the final brace indicates the number of
terms, n, in the sequence of memory references whose pattern is within the
braces. In the first eight sequences, α = 1.
µ({0, 0, 0, 0, . . .}128) = 0
µ({0, 1, 0, 1, . . .}128) = 1.016
µ({3, 4, 3, 4, . . .}128) = 1.016
µ({0, 4, 0, 4, . . .}128) = 4.062
µ({0, 1, 2, 3, 0, 1, 2, 3, . . .}128) = 2.244
µ({0, 1, 2, 3, 3, 2, 1, 0, . . .}128) = 1.325
µ({0, 1, . . . , 30, 31, 31, 30, . . . , 1, 0, . . .}128) = 1.730
µ({0, 1, 2, 3, 3, 2, 1, 0, . . .}64) = 1.329
µ({0, 1, 2, 3, 3, 2, 1, 0, . . .}256) = 1.316

More generally, α is a real parameter, 0 ≤ α <∞, which may be taken as
small as zero to remove temporal locality effects. α can be manipulated to
mimic cache capacity effects by lengthening or shortening the “memory” of
previous references. With α = 2, e.g.,
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µ({0, 1, 2, 3, 3, 2, 1, 0, . . .}128) = 0.950

For less trivial examples of memtropy, consider standard 5-point stencil
operations applied to the unblocked and the blocked orderings shown below.
At each of 64 points in labeled order, including those on the boundary, all
defined N, S, E, and W neighbors are read, together with central point, and
the central point is written (up to 5 reads and 1 write per point; these two
types of references are not differentiated). Considering boundary effects,
there are 352 total memory references in each of the differently ordered sets.
The memtropies shown under each configuration are for α = 1. Blocking
leads to smaller differences in successive mi for stencil points in the interior
of the blocks. As the domains grow in size beyond those illustrated, blocking
becomes more and more important.

57 58 59 60 61 62 63 64

49 50 51 52 53 54 55 56

41 42 43 44 45 46 47 48

33 34 35 36 37 38 39 40

25 26 27 28 29 30 31 32

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8

45 46 47 48 61 62 63 64

41 42 43 44 57 58 59 60

37 38 39 40 53 54 55 56

33 34 35 36 49 50 51 52

13 14 15 16 29 30 31 32

9 10 11 12 25 26 27 28

5 6 7 8 21 22 23 24

1 2 3 4 17 18 19 20

7.516 7.383

For an example with greater relevance to the CFD results in this section,
consider 5-point stencil operations applied to each of two field components
for the segregated and interlaced orderings shown below. At each of 16
points, for each component, both components at all defined N, S, E, and
W neighbors are read, together with central point, and central point of
each component is written (up to 10 reads, 1 write per component per
point). Considering boundary effects, there are 288 total memory references
Memtropies shown under each configuration are for α = 1. Memtropy shows
interlacing to be strongly favorable.

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

29 30 31 32

25 26 27 28

21 22 23 24

17 18 19 20

16.736

(25,26) (27,28) (29,30) (31,32)

(17,18) (19,20) (21,22) (23,24)

(9,10) (11,12) (13,14) (15,16)

(1,2) (3,4) (5,6) (7,8)

6.053
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As implied by the examples, memtropy is expected to be useful in or-
dering a given set of references, but not in ranking absolutely the memory-
system friendliness of different sets of references. Furthermore, as a machine-
parameter-independent measure of memory locality, memtropy cannot be
expected to help in fine-tuning for a given architecture. Cache capacity for
a fully associative cache can be very crudely reflected in the α, but other
associativity policies, replacement policy, cache line size, multilevel effects,
cannot be specifically be represented in the primitive form of memtropy
described above. Therefore, critical threshold effects in realistic cache trace
simulations cannot be represented (see, e.g., (Culler et al., 1998)).

On the other hand, cache simulators, which are in principle capable of
performance prediction on a specific memory system configuration, have
complementary weaknesses. Cache simulators are fixed to a machine with
specific associativity and replacement policies, capacity, line size, etc. Run-
ning a simulator is a fairly expensive discrete event simulation, which is,
in itself, a Grand Challenge problem in computer science. Running a sim-
ulation for a set of memory traces is ordinarily much slower than running
the code from which the traces were generated on the hardware of inter-
est. Simulators are useful for insight and for design of new hardware, not
for exhaustive searches of optimal memory access patterns. Furthermore,
memory traces from a given application program predict real cache histo-
ries rather imperfectly — other processes interfere in the cache, including
the operating system, itself.

Although locality is difficult to define and therefore to measure, it is a
major key to latency tolerance, helping with both amortization and cov-
ering. With strong locality, latency can be conquered directly with large
block transfers. Sufficient locality permits not only fast out-of-cache imple-
mentations but even acceptable of out-of-core implementations (Warren et
al., 1998). Strong locality can also be used to cover latency in the following
way. Latency can be covered with extra concurrency by switching to an-
other thread. Extra cache memory allows the data for many threads to be
co-resident; concurrency can therefore be bought with extra memory. Better
locality “looks like” extra cache memory (in the sense that fewer memory
access miss the cache) without increasing cost or penalizing performance.

8. Adaptivity to Distributed Memory

As a motivator for algorithmic adaptivity to the horizontal aspects of the
memory system, in overcoming synchronization-related message latencies,
consider again the incompressible inviscid flow over an M6 wing described
in (Kaushik et al., 1998), this time the cache-efficient code of line 5 in
Table 3 run in parallel on 128, 256, and 512 nodes of a Cray T3E-900.
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Table 4 shows apparently very good adaptivity to varying numbers of
processors, as evidenced by the relatively slight degradation in convergence
rate with the four-fold increase in concurrency, from 37 pseudo-transient
steps to 41. Sustained flop rate per processor decreases only slightly from
71.5 Mflop/s to 68.3 Mflop/s as the surface-to-volume ratio increases with a
four-fold reduction in computational volume per processor. Aggregate flop
rate for the system increases from 9.1 Gflop/s to 35.0 Gflop/s with the four-
fold increase in processor power. However, Table 4 also shows deterioration
in fixed-problem-size efficiency, from 94% of a two-fold processor increase
to 84% of a four-fold processor increase, for an unstructured tetrahedral
grid of 2,761,774 vertices (11,047,096 unknowns). As highlighted, the prin-
cipal nonscaling feature is the global inner products (whose share of total
execution time grows to 9% of execution time for 512 nodes), due mostly to
synchronization delays. (Separate runs on 512 nodes, with barriers before
the inner products and norms, show that the time required by software
overhead and hardware transmission time of these global operations alone
is only about 1% of the total execution time, meaning that synchronization
delays account for the remaining 8%.)

TABLE 4. Performance data for fixed-problem-size scaling of an unstructured Euler
flow code on a T3E

communication sustained sustained

no. no. exec. speed overall inner halo Mflop/s total

procs. its. time up eff. prod. exch. per proc. Gflop/s

128 37 2,811s 1.00 1.00 6% 3% 71.5 9.1

256 38 1,495s 1.88 0.94 8% 3% 69.7 17.8

512 41 834s 3.37 0.84 9% 4% 68.3 35.0

The inefficiency attributable to synchronization may be reduced in any
combination of three ways:
− Reduce penalty of each synchronization step: load balance surface work

phase simultaneously with dominant volume work phase.
− Reduce frequency of synchronizations: employ more speculative control

for fewer total norms required, and/or less stable numerics in projec-
tion steps for fewer inner products.

− Reduce globality of each synchronization step: replace global Newton
linearization with regional Newton processes inside of an outer loosely
synchronous nonlinear Picard iteration.

Recent work by Karypis and Kumar (1998) is providing a means of deal-
ing with the first strategy listed above. The load imbalance, which grows
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with the increasing percentage of surface vertices (those whose edges are
cut by a subdomain partition boundary) to volume vertices (those whose
edges are entirely contained within a subdomain partition) as a fixed-size
problem is decomposed for greater concurrency, can be addressed by multi-
ple distribution weights. At present, we balance based on volume (compu-
tational) work alone, without regard for the disparity between processors
in surface (communication) work. Computation work is dominant, so a
single-objective load balance is almost adequate. However, as surface work
becomes more important, a secondary objective becomes a candidate for
simultaneous balance.

Implementation of the second and third strategies for reducing syn-
chronization inefficiency above invites departures from the traditional bulk
synchronous SPMD application model. This call beyond bulk synchronous
programming is strengthened by the results of Section 6 and forms the
motivation for Section 9.

9. Synchronous and Asynchronous Forms of Nonlinear Schwarz
and Schur

The transonic potential example considered in Section 6 shows the algo-
rithmic inefficiency of a global linearization, because of useless work done
in areas far from the key nonlinearity that limits the progress of Newton
iteration. The incompressible flow example considered in Section 8 shows
the architectural inefficiency of frequently synchronization in the linear al-
gebraic methods required to solve the global Newton correction equations.
The extension of nonlinear solution algorithms to ASCI-scale platforms
(10,000 or more processors) may require that computational resources be
deployed less rigidly for greater efficiency. We are at the beginning of explor-
ing two such nonlinear domain decomposition methods: Schwarz-Newton
and Schur-Newton.

Schwarz-Newton methods are also known as “nonlinear Schwarz.” Rec-
ognizing that degree of nonlinearity is a form of local “stiffness” to which
global Newton problems should not be held hostage, Schwarz-Newton meth-
ods invert the orders of linearization and decomposition, putting decom-
position on the outside, and wrapping a nonlinear Picard iteration around
Newton solutions on individual subdomains that cover the overall problem
domain. They are seemingly universally relevant in continuum mechanics: in
aerodynamics, acoustics, combustion, plasticity, geophysics, and most other
nonlinear applications. Many problems in these fields have in common the
embedding of a strongly nonlinear near-field problem in an ambient weakly
nonlinear far-field problem. Schur-Newton methods, in which the nonlin-
ear iteration is reduced to a complex lower-dimensional interface, are the
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nonoverlapping analogs of Schwarz-Newton methods, just as Schur com-
plement methods are the analogs of Schwarz methods in the linear theory
(Keyes & Gropp, 1987).

9.1. NONLINEAR SCHWARZ AND SCHUR METHODS FOR TWO
SUBDOMAINS

Given u ∈ Rn, coming from a discretization on Ω, and f : Rn → Rn, such
that f(u) = 0 is a governing system (including implicitly posed BCs) on
Ω, we define a nonlinear Schwarz method for a two-subdomain partition of
Ω as follows. Let Ω be partitioned into overlapping subdomains Ω1 and Ω2

that cover the original domain, inducing a partioning of unknown vector u
into u1 and u2 and of residual vector f into f1 and f2. Given initial iterates
u

(0)
1 and u

(0)
2 , iterate k = 0, 1, . . ., until convergence:

Solve f1(u1, u
(k)
2 ) = 0 for u

(k+1)
1 ;

Solve f2(u
(k+1)
1 , u2) = 0 for u

(k+1)
2 .

This is a “multiplicative” synchronous version; an “additive” synchron-
ous version is also possible, in which the second equation is replaced with
f2(u

(k)
1 , u2) = 0, breaking the data dependence upon the output of the

first equation. Both versions are synchronous since the k + 1st iterates are
based upon the most recently available data from the current or previ-
ous iterations, whether sequentially or concurrently undertaken. Let Ω1 be
a subdomain drawn reasonably compactly around the strongly nonlinear
region, and Ω2 include its complement. In the multiplicative version, all
processors could be first assigned to Ω1, and then remapped to Ω2, if the
individual stages were iterated sufficiently many times to justify the dy-
namic repartitioning. In the additive version, processors could be allocated
the respective subdomain problems based on a load balancing that took
into account total work (cost per iteration and number of iterations) be-
tween synchronization stages. Each subdomain solution process on which
Newton iterations take place between Schwarz updates can be further par-
titioned for parallel solution by NKS. Thus, we can have data parallelism
within the task parallelism of the separate subdomain solutions. The region
of overlap region can coincide with an entire subdomain; i.e., subdomain Ω2

can be the entire domain. In addition to all of the algorithmic parameters
requiring specification in the individual NKS subdomain contexts, there is
an interesting new parameter for theorists to explore: the convergence tol-
erance of the Newton methods, and the effect of incomplete convergence in
early iterations upon the progress of the Picard iterations.

The Schur-Newton method (described by different names in Lai, et al.
(1997; 1998)) for two subdomains is similar. Let the same Ω be partitioned
instead into nonoverlapping subdomains Ω into Ω1 and Ω2, with bounding
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curve Γ, inducing partionings of u into u1, u2, and uΓ and of f into f1, f2,
and fΓ. Given initial iterates u

(0)
1 , u

(0)
2 , and u

(0)
Γ , iterate k = 0, 1, . . . until

convergence:

Solve fΓ(u(k)
1 , u

(k)
2 , uΓ) = 0 for u

(k+1)
Γ ;

where fi(u
(k)
i , u

(k)
Γ ) = 0 for i = 1, 2 .

As with Schwarz-Newton, each subdomain solve, regarded as coarsely
task-parallel, can be further partitioned for parallel solution by inner NKS
(or inner Newton-Schur) methods. The Jacobian matrix for the system con-
densed to uΓ, ∂fΓ/∂uΓ, is dense. Its action on Krylov vectors can be eval-
uated by fully converged subroutine calls to Newton methods in adjoining
subdomains. It can be preconditioned by Broyden (or Broyden-Schubert)
updates. This is a straightforward nonlinear analog of the Schur comple-
ment method; it reduces identically to block Gaussian elimination of the
Jacobian matrix down to the interface unknowns if f(u) is linear. Based on
the extensive theory for linear Schur complement methods (Smith et al.,
1996), better preconditioners may be derived from this limiting observation.

9.2. USER-SPECIFIABLE THREADS IN
COMPLEX IMPLICIT NONLINEAR METHODS

Practical nonlinear methods (inexact, modified, quasi Newton) are some-
what “dirty” in comparison to textbook methods. The Jacobian and/or
preconditioner matrices for it are frequently built from crude, inexpensive
discretizations (relative to the discretization of f) and not necessarily fre-
quently updated. The practical reason for this is that Jacobian construc-
tion and the construction of its (approximate) factors can easily dominate
the computational complexity (both arithmetic and communication) of the
Newton process. It is understood theoretically and observed experimentally
that approximate and/or “stale” Jacobians can be used in place of the true
Jacobian, with a net benefit in time-to-convergence, after the cheaper iter-
ations and the convergence rate penalty trade-offs are accounted for.

Since Jacobian blocks are computationally intensive and rarely needed
urgently, we are motivated to defer their computational and recomputation
to a background mode, off the critical path of the execution. The Jacobian
can be recomputed lazily, while the processor or the memory system or
the network is stalled on some critical-path computation. Many other non-
critical-path tasks could also make use of stalled resources. However, in
codes written for flat memory systems, these tasks are almost invariably
placed on the critical execution path.

In a typical nonlinear implicit method, the minimal critical path is:
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..., solve, bound step, update, solve, bound step, update, ...

“Off the path” tasks include: Jacobian refresh, convergence testing, con-
tinuation and algorithmic parameter adaptation, interprocessor communi-
cation and disk I/O, visualization, filtering, compression, data mining, etc.
Some of these “off the path” tasks enjoy considerable locality. Parallelizabil-
ity of “naked” sparse linear problems may lead to unrealistically pessimistic
conclusions about the scalability of implicit methods. However the full-scale
simulations requiring the largest parallel resources can typically cover the
latencies of the critical path solvers with many types of useful work — work
that would be required anyway, but that may, from a purely algorithmic
perspective, be executed concurrently with the critical path work with very
little penalty in terms of overall convergence rate or parallel overhead.

There are two reasons why the critical path is unnecessarily burdened
with such tasks in today’s codes: (1) a lack of experience in thinking asyn-
chronously, and (2) lack of programming model support. Programming
models for parallel implicit solvers of the future will support multithreaded
execution — at least at the software level. (Direct hardware support of
multithreading has also arrived in the Tera machine, and will become more
widespread.) Combined with a thread-safe message passing system, this en-
vironment will provide many opportunities to exercise the strategy of both
covering and deferring synchronization (the second strategy at the end of
of Section 8), endowing implicit solvers with considerably more latency tol-
erance than even the best non-threaded implementations currently enjoy.

Given the availability of threads for partitioning of the tasks local to
each processor to those that are on the critical path and those that are not,
we can further exploit this environment for greater latency tolerance of the
critical path code by following the third and final strategy at the end of
Section 8: reducing the globality of the synchronizations that do, of neces-
sity, still occur. This leads us to our final recommendation that classical
asynchronous algorithms be considered for future nonuniform applications
on distributed architectures.

Asynchronous methods have a long history in parallel computing. Chazan
and Miranker (1969) showed that the linear fixed point iteration, x ←
Ax + b, may be solved asynchronously by partitioning the elements of x
and the corresponding rows of A and b and updating each partition of x
based on the best currently available values, but not necessarily the most
recently computed values anywhere in the memory space. Each value of
x is migrated at some nondeterministic rate from the processor where it
is updated to the processors where it is consumed. (The set of processors
where it is consumed is determined by the column sparsity structure of the
rows of A on other processors; if A is dense, it is consumed everywhere.)
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Chazan and Miranker showed that there are examples for which such asyn-
chronous (“chaotic”) relaxation diverges, and provided a theory for the case
in which ρ(|A|) < 1 and the degree of staleness of off-processor unknowns
is bounded. (This rules out the case, for instance, in which one processor
fails ever to update and broadcast its local unknowns to those that depend
upon them.)

Miellou (1975) generalized the asynchronous theory to nonlinear fixed
points: x← F (x). This is sufficiently general to include Newton’s method.
He provided theoretical convergence results for the case of “contracting” op-
erators, namely operators F (x) with contracting Lipschitz matrices: |F (x)−
F (y)| ≤ A|x− y| for some nonnegative A such that ρ(A) < 1.

Baudet (1978) relaxed various theoretical hypotheses of the earlier pa-
pers and performed experiments on a 6-processor C.mmp at CMU; and so
forth. Bersekas (1990) is a book-length monograph on aynchronous meth-
ods.

We do not need to contemplate full asynchrony to derive a latency-
tolerant benefit from such relaxed-synchrony methods. It is sufficient for
distributed-memory purposes to employ pipelined deferred synchronous
methods, in which the remotely owned values arrive not at random in-
tervals, but at staged intervals, depending upon their effective network dis-
tance from a given consuming processor. Generalizations of this relaxed syn-
chrony are straightforward special cases of fully asynchronous fixed point
methods. Whether there are deferred synchrony Krylov methods is a dif-
ferent question of potentially major significance.

Newton-Krylov-Schwarz and Schwarz-Newton methods can both be cast
as global fixed point iterations, but the hypotheses of the convergence the-
orems cited above will generally be unverifiable in important problems.
Experience is needed. Proof of convergence is not especially relevant, since
fast convergence is needed to justify the use of these techniques in high-
performance applications. Physical intuition and experience will ultimately
guide use of the methods. Polyalgorithms will emerge, in which the opening
game is played with Schwarz-Newton methods, and the endgame with more
rapidly convergent Newton-Krylov-Schwarz methods. The object-oriented
software environment will make such fundamental changes of context within
the same execution sequence easy to contemplate.

10. Selected Ripe Agendas in Algorithms

Summarizing our attempt to extrapolate algorithmic progress, based upon
the easy to extrapolate gap between applications demand and architec-
tural availability, we believe that support for highly nonuniform applica-
tions and high latency architectures will be critical. Both aspects will ben-
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efit from programmer-managed multithreading, at a high level. (System-
software and hardware-managed multithreading at lower levels is also likely
to be strongly beneficial.) Both aspects will also benefit from algorithms
that require the concurrent processes to synchronize less frequently than is
customary at present.

To take advantage of the considerable new flexibility in programming
in such an environment, it is necessary to have new quantitative metrics to
guide the allocation of work to processes and threads and new metrics to
guide the allocation of data items to distributed, hierarchical memory. The
examples of new metrics we have given herein are meant to be suggestive.
We hope that they will be examined, improved upon, and supplemented
with many others.

We note that even traditional forms of algorithmic adaptivity (e.g., grid
and discretization adaptivity) have proved challenging to accommodate in
parallel implementations because of the dynamic load-balancing problem.
Dynamically balanced load tends to be difficult to prescribe cost-effectively
and may be difficult to support in underpowered communication networks.4

Less synchronous styles of programming take a little of the heat off of the
quality of the load balancing, but only a little, since we still expect bulk
synchronous methods to be employed within larger asynchronous tasks.
Multiobjective dynamic load balancing remains high on the algorithmic
agenda.

We expect much of the software infrastructure required for solution al-
gorithms to be developed for other layers of the overall problem-solving
environment. For instance, parallel I/O, visualization, and steering will
be accomplished off the critical path for computation, and will pioneer
portable multithreaded asynchronous features. Application programmers
will use these features to go beyond monolithic models and discretizations,
to multi-models and multi-discretizations (both conceptually, and in terms
of practical software engineering).

As the complexity of solvers grows, we expect more built-in use of con-
trol theory and optimization to perform automated parameter selection in
algorithms. With the advance of meaningful performance metrics, formal
optimization techniques may permeate lower levels of the software — run-
time systems and compilers.

4If we have failed to mention the problems of limited bandwidth and concentrated only
on problems of high latency, it is primarily because we have not paid enough attention to
the load balancing problem. In any reasonable PDE solution process, surface-based com-
munication will always be subdominant to volume-based computation, but volume-based
communication may also become important in the load balancing process. Fortunately,
high bandwidth does not seem to be as daunting to achieve on future architectures as
low latency.



TRENDS IN ALGORITHMS FOR NONUNIFORM APPLICATIONS 33

Finally, expect to see more “intelligence” in tomorrow’s solvers — in-
telligence that goes beyond the forms of routine adaptivity available today,
which is used to make local decisions. Tomorrow’s algorithms will access
more global knowledge of a problem-algorithm-architecture class, using in-
formation stored from previous iterations of a given execution or mined
from a data base of similar completed executions. Many fields that are
considered distant cousins to numerical analysis in the world of computer
science today will heavily be drawn upon in support of the computational
aerosciences — and the computational sciences — of the 21st century.
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